Biblio

Found 1261 results

Filters: First Letter Of Title is I  [Clear All Filters]
2021-08-11
Stan, Orly, Cohen, Adi, Elovici, Yuval, Shabtai, Asaf.  2020.  Intrusion Detection System for the MIL-STD-1553 Communication Bus. IEEE Transactions on Aerospace and Electronic Systems. 56:3010–3027.
MIL-STD-1553 is a military standard that defines the specification of a serial communication bus that has been implemented in military and aerospace avionic platforms for over 40 years. MIL-STD-1553 was designed for a high level of fault tolerance while less attention was paid to cyber security issues. Thus, as indicated in recent studies, it is exposed to various threats. In this article, we suggest enhancing the security of MIL-STD-1553 communication buses by integrating a machine learning-based intrusion detection system (IDS); such anIDS will be capable of detecting cyber attacks in real time. The IDS consists of two modules: 1) a remote terminal (RT) authentication module that detects illegitimately connected components and data transfers and 2) a sequence-based anomaly detection module that detects anomalies in the operation of the system. The IDS showed high detection rates for both normal and abnormal behavior when evaluated in a testbed using real 1553 hardware, as well as a very fast and accurate training process using logs from a real system. The RT authentication module managed to authenticate RTs with +0.99 precision and +0.98 recall; and detect illegitimate component (or a legitimate component that impersonates other components) with +0.98 precision and +0.99 recall. The sequence-based anomaly detection module managed to perfectly detect both normal and abnormal behavior. Moreover, the sequencebased anomaly detection module managed to accurately (i.e., zero false positives) model the normal behavior of a real system in a short period of time ( 22 s).
2021-02-23
Liu, J., Xiao, K., Luo, L., Li, Y., Chen, L..  2020.  An intrusion detection system integrating network-level intrusion detection and host-level intrusion detection. 2020 IEEE 20th International Conference on Software Quality, Reliability and Security (QRS). :122—129.
With the rapid development of Internet, the issue of cyber security has increasingly gained more attention. An intrusion Detection System (IDS) is an effective technique to defend cyber-attacks and reduce security losses. However, the challenge of IDS lies in the diversity of cyber-attackers and the frequently-changing data requiring a flexible and efficient solution. To address this problem, machine learning approaches are being applied in the IDS field. In this paper, we propose an efficient scalable neural-network-based hybrid IDS framework with the combination of Host-level IDS (HIDS) and Network-level IDS (NIDS). We applied the autoencoders (AE) to NIDS and designed HIDS using word embedding and convolutional neural network. To evaluate the IDS, many experiments are performed on the public datasets NSL-KDD and ADFA. It can detect many attacks and reduce the security risk with high efficiency and excellent scalability.
2021-09-07
Kalkan, Soner Can, Sahingoz, Ozgur Koray.  2020.  In-Vehicle Intrusion Detection System on Controller Area Network with Machine Learning Models. 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1–6.
Parallel with the developing world, transportation technologies have started to expand and change significantly year by year. This change brings with it some inevitable problems. Increasing human population and growing transportation-needs result many accidents in urban and rural areas, and this recursively results extra traffic problems and fuel consumption. It is obvious that the issues brought by this spiral loop needed to be solved with the use of some new technological achievements. In this context, self-driving cars or automated vehicles concepts are seen as a good solution. However, this also brings some additional problems with it. Currently many cars are provided with some digital security systems, which are examined in two phases, internal and external. These systems are constructed in the car by using some type of embedded system (such as the Controller Area Network (CAN)) which are needed to be protected form outsider cyberattacks. These attack can be detected by several ways such as rule based system, anomaly based systems, list based systems, etc. The current literature showed that researchers focused on the use of some artificial intelligence techniques for the detection of this type of attack. In this study, an intrusion detection system based on machine learning is proposed for the CAN security, which is the in-vehicle communication structure. As a result of the study, it has been observed that the decision tree-based ensemble learning models results the best performance in the tested models. Additionally, all models have a very good accuracy levels.
2021-02-16
Lotfalizadeh, H., Kim, D. S..  2020.  Investigating Real-Time Entropy Features of DDoS Attack Based on Categorized Partial-Flows. 2020 14th International Conference on Ubiquitous Information Management and Communication (IMCOM). :1—6.
With the advent of IoT devices and exponential growth of nodes on the internet, computer networks are facing new challenges, with one of the more important ones being DDoS attacks. In this paper, new features to detect initiation and termination of DDoS attacks are investigated. The method to extract these features is devised with respect to some openflowbased switch capabilities. These features provide us with a higher resolution to view and process packet count entropies, thus improving DDoS attack detection capabilities. Although some of the technical assumptions are based on SDN technology and openflow protocol, the methodology can be applied in other networking paradigms as well.
2021-03-01
Sarathy, N., Alsawwaf, M., Chaczko, Z..  2020.  Investigation of an Innovative Approach for Identifying Human Face-Profile Using Explainable Artificial Intelligence. 2020 IEEE 18th International Symposium on Intelligent Systems and Informatics (SISY). :155–160.
Human identification is a well-researched topic that keeps evolving. Advancement in technology has made it easy to train models or use ones that have been already created to detect several features of the human face. When it comes to identifying a human face from the side, there are many opportunities to advance the biometric identification research further. This paper investigates the human face identification based on their side profile by extracting the facial features and diagnosing the feature sets with geometric ratio expressions. These geometric ratio expressions are computed into feature vectors. The last stage involves the use of weighted means to measure similarity. This research addresses the problem of using an eXplainable Artificial Intelligence (XAI) approach. Findings from this research, based on a small data-set, conclude that the used approach offers encouraging results. Further investigation could have a significant impact on how face profiles can be identified. Performance of the proposed system is validated using metrics such as Precision, False Acceptance Rate, False Rejection Rate and True Positive Rate. Multiple simulations indicate an Equal Error Rate of 0.89.
2021-02-22
Li, M., Zhang, Y., Sun, Y., Wang, W., Tsang, I. W., Lin, X..  2020.  I/O Efficient Approximate Nearest Neighbour Search based on Learned Functions. 2020 IEEE 36th International Conference on Data Engineering (ICDE). :289–300.
Approximate nearest neighbour search (ANNS) in high dimensional space is a fundamental problem in many applications, such as multimedia database, computer vision and information retrieval. Among many solutions, data-sensitive hashing-based methods are effective to this problem, yet few of them are designed for external storage scenarios and hence do not optimized for I/O efficiency during the query processing. In this paper, we introduce a novel data-sensitive indexing and query processing framework for ANNS with an emphasis on optimizing the I/O efficiency, especially, the sequential I/Os. The proposed index consists of several lists of point IDs, ordered by values that are obtained by learned hashing (i.e., mapping) functions on each corresponding data point. The functions are learned from the data and approximately preserve the order in the high-dimensional space. We consider two instantiations of the functions (linear and non-linear), both learned from the data with novel objective functions. We also develop an I/O efficient ANNS framework based on the index. Comprehensive experiments on six benchmark datasets show that our proposed methods with learned index structure perform much better than the state-of-the-art external memory-based ANNS methods in terms of I/O efficiency and accuracy.
2021-08-11
Lang, Weimin, Shan, Desheng, Zhang, Han, Wei, Shengyun, Yu, Liangqin.  2020.  IoBTChain: an Integration Framework of Internet of Battlefield Things (IoBT) and Blockchain. 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). 1:607–611.
As a typical representative of a new generation military information technology, the value and significance of Internet of Battlefield Things (IoBT) has been widely recognized by the world's military forces. At the same time, Internet of Battlefield Things (IoBT) is facing serious scalability and security challenges. This paper presents the basic concept and six-domain model of IoBT, explains the integration security framework of IoBT and blockchain. Furthermore, we design and build a novel IoT framework called IoBTChain based on blockchain and smart contracts, which adopts a credit-based resource management system to control the amount of resources that an IoBT device can obtain from a cloud server based on pre-defined priority rules, application types, and behavior history. We illustrate the deployment procedure of blockchain and smart contracts, the device registration procedure on blockchain, the IoBT behavior regulation workflow and the pricing-based resource allocation algorithm.
2021-03-01
Chowdary, S. S., Ghany, M. A. Abd El, Hofmann, K..  2020.  IoT based Wireless Energy Efficient Smart Metering System Using ZigBee in Smart Cities. 2020 7th International Conference on Internet of Things: Systems, Management and Security (IOTSMS). :1–4.
Electricity has become the primary need of human life. The emerging of IoT concept recently in our lives, has offered the chance to establish energy efficient smart devices, systems and cities. Due to the urging need for conserving energy, this paper proposes an IoT based wireless energy efficient smart metering systems for smart cities. A network of smart meters is achieved to deliver the energy consumption data to the Energy/Utility provider. The star and mesh topologies are used in creating the network of smart meters in order to increase the distance of coverage. The proposed system offers an easily operated application for users as well as a Website and database for electricity Supplier Company. The proposed system design has an accuracy level of 95% and it is about 35% lower cost than its peer in the global market. The proposed design reduced the power consumption by 25%.
2022-10-20
Mohamed, Nour, Rabie, Tamer, Kamel, Ibrahim.  2020.  IoT Confidentiality: Steganalysis breaking point for J-UNIWARD using CNN. 2020 Advances in Science and Engineering Technology International Conferences (ASET). :1—4.
The Internet of Things (IoT) technology is being utilized in endless applications nowadays and the security of these applications is of great importance. Image based IoT applications serve a wide variety of fields such as medical application and smart cities. Steganography is a great threat to these applications where adversaries can use the images in these applications to hide malicious messages. Therefore, this paper presents an image steganalysis technique that employs Convolutional Neural Networks (CNN) to detect the infamous JPEG steganography technique: JPEG universal wavelet relative distortion (J-UNIWARD). Several experiments were conducted to determine the breaking point of J-UNIWARD, whether the hiding technique relies on correlation of the images, and the effect of utilizing Discrete Cosine Transform (DCT) on the performance of the CNN. The results of the CNN display that the breaking point of J-UNIWARD is 1.5 (bpnzAC), the correlation of the database affects the detection accuracy, and DCT increases the detection accuracy by 13%.
2021-08-12
Awadelkarim Mohamed, Awad M., Abdallah M. Hamad, Yahia.  2020.  IoT Security: Review and Future Directions for Protection Models. 2020 International Conference on Computing and Information Technology (ICCIT-1441). :1—4.
Nowadays, Internet of Things (IoT) has gained considerable significance and concern, consequently, and in particular with widespread usage and adoption of the IoT applications and projects in various industries, the consideration of the IoT Security has increased dramatically too. Therefore, this paper presents a concise and a precise review for the current state of the IoT security models and frameworks. The paper also proposes a new unified criteria and characteristics, namely Formal, Inclusive, Future, Agile, and Compliant with the standards (FIFAC), in order to assure modularity, reliability, and trust for future IoT security models, as well as, to provide an assortment of adaptable controls for protecting the data consistently across all IoT layers.
2021-08-11
Li, Shanghao, He, Shan, Li, Lin, Guo, Donghui.  2020.  IP Trading System with Blockchain on Web-EDA. 2020 IEEE 14th International Conference on Anti-counterfeiting, Security, and Identification (ASID). :164—168.
As the scale of integrated circuits continues to expand, electronic design automation (EDA) and intellectual property (IP) reuse play an increasingly important role in the integrated circuit design process. Although many Web-EDA platforms have begun to provide online EDA software to reduce the threshold for the use of EDA tools, IP protection on the Web- EDA platform is an issue. This article uses blockchain technology to design an IP trading system for the Web-EDA platform to achieve mutual trust and transactions between IP owners and users. The structure of the IP trading system is described in detail, and a blockchain wallet for the Web-EDA platform is developed.
He, Guorong, Dong, Chen, Liu, Yulin, Fan, Xinwen.  2020.  IPlock: An Effective Hybrid Encryption for Neuromorphic Systems IP Core Protection. 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). 1:612—616.
Recent advances in resistive synaptic devices have enabled the emergence of brain-inspired smart chips. These chips can execute complex cognitive tasks in digital signal processing precisely and efficiently using an efficient neuromorphic system. The neuromorphic synapses used in such chips, however, are different from the traditional integrated circuit architectures, thereby weakening their resistance to malicious transformation and intellectual property (IP) counterfeiting. Accordingly, in this paper, we propose an effective hybrid encryption methodology for IP core protection in neuromorphic computing systems, in-corporating elliptic curve cryptography and SM4 simultaneously. Experimental results confirm that the proposed method can implement real-time encryption of any number of crossbar arrays in neuromorphic systems accurately, while reducing the time overhead by 14.40%-26.08%.
2021-11-29
Silva-Saravia, Horacio, Singh, Iknoor, Chynoweth, Joshua, Mateo, Norbo, Mejia, Manuel, Amadis, Simon, Alvarez, Rufino.  2020.  Islanding Detection and Resynchronization Based upon Wide-Area Monitoring and Situational Awareness in the Dominican Republic. 2020 IEEE PES Transmission Distribution Conference and Exhibition - Latin America (T D LA). :1–6.
This paper shows the benefits of synchrophasor technology for islanding detection and resynchronization in the control room at Empresa de Transmisión Eléctrica Dominicana (ETED) in the Dominican Republic. EPG's Real Time Dynamics Monitoring System (RTDMS®) deployed at ETED was tested during operator training with the event data after an islanding event occurred on October 26, 2019, which caused the ETED System to split into two islands. RTDMS's islanding detection algorithm quickly detected and identified the event. The islanding situation was not clear for operators during the time of the event with the use of traditional SCADA tools. The use of synchophasor technology also provides valuable information for a quick and safe resynchronization. By monitoring the system frequency in each island and voltage angle differences between islands, operators can know the exact time of circuit breaker closure for a successful resynchronization. Synchrophasors allow the resynchronization in a relatively short time, avoiding the risk of additional load loss, generator outages or even a wider system blackout.
2021-05-18
Zhang, Chi, Chen, Jinfu, Cai, Saihua, Liu, Bo, Wu, Yiming, Geng, Ye.  2020.  iTES: Integrated Testing and Evaluation System for Software Vulnerability Detection Methods. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1455–1460.
To find software vulnerabilities using software vulnerability detection technology is an important way to ensure the system security. Existing software vulnerability detection methods have some limitations as they can only play a certain role in some specific situations. To accurately analyze and evaluate the existing vulnerability detection methods, an integrated testing and evaluation system (iTES) is designed and implemented in this paper. The main functions of the iTES are:(1) Vulnerability cases with source codes covering common vulnerability types are collected automatically to form a vulnerability cases library; (2) Fourteen methods including static and dynamic vulnerability detection are evaluated in iTES, involving the Windows and Linux platforms; (3) Furthermore, a set of evaluation metrics is designed, including accuracy, false positive rate, utilization efficiency, time cost and resource cost. The final evaluation and test results of iTES have a good guiding significance for the selection of appropriate software vulnerability detection methods or tools according to the actual situation in practice.
2020-10-12
2021-03-30
Abbas, H., Suguri, H., Yan, Z., Allen, W., Hei, X. S..  2020.  IEEE Access Special Section: Security Analytics and Intelligence for Cyber Physical Systems. IEEE Access. 8:208195—208198.

A Cyber Physical System (CPS) is a smart network system with actuators, embedded sensors, and processors to interact with the physical world by guaranteeing the performance and supporting real-time operations of safety critical applications. These systems drive innovation and are a source of competitive advantage in today’s challenging world. By observing the behavior of physical processes and activating actions, CPS can alter its behavior to make the physical environment perform better and more accurately. By definition, CPS basically has two major components including cyber systems and physical processes. Examples of CPS include autonomous transportation systems, robotics systems, medical monitoring, automatic pilot avionics, and smart grids. Advances in CPS will empower scalability, capability, usability, and adaptability, which will go beyond the simple systems of today. At the same time, CPS has also increased cybersecurity risks and attack surfaces. Cyber attackers can harm such systems from multiple sources while hiding their identities. As a result of sophisticated threat matrices, insufficient knowledge about threat patterns, and industrial network automation, CPS has become extremely insecure. Since such infrastructure is networked, attacks can be prompted easily without much human participation from remote locations, thereby making CPS more vulnerable to sophisticated cyber-attacks. In turn, large-scale data centers managing a huge volume of CPS data become vulnerable to cyber-attacks. To secure CPS, the role of security analytics and intelligence is significant. It brings together huge amounts of data to create threat patterns, which can be used to prevent cyber-attacks in a timely fashion. The primary objective of this Special Section in IEEE A CCESS is to collect a complementary and diverse set of articles, which demonstrate up-to-date information and innovative developments in the domain of security analytics and intelligence for CPS.

2021-07-27
Jiao, Rui, Zhang, Lan, Li, Anran.  2020.  IEye: Personalized Image Privacy Detection. 2020 6th International Conference on Big Data Computing and Communications (BIGCOM). :91–95.
Massive images are being shared via a variety of ways, such as social networking. The rich content of images raise a serious concern for privacy. A great number of efforts have been devoted to designing mechanisms for privacy protection based on the assumption that the privacy is well defined. However, in practice, given a collection of images it is usually nontrivial to decide which parts of images should be protected, since the sensitivity of objects is context-dependent and user-dependent. To meet personalized privacy requirements of different users, we propose a system IEye to automatically detect private parts of images based on both common knowledge and personal knowledge. Specifically, for each user's images, multi-layered semantic graphs are constructed as feature representations of his/her images and a rule set is learned from those graphs, which describes his/her personalized privacy. In addition, an optimization algorithm is proposed to protect the user's privacy as well as minimize the loss of utility. We conduct experiments on two datasets, the results verify the effectiveness of our design to detect and protect personalized image privacy.
2021-01-28
Segoro, M. B., Putro, P. A. Wibowo.  2020.  Implementation of Two Factor Authentication (2FA) and Hybrid Encryption to Reduce the Impact of Account Theft on Android-Based Instant Messaging (IM) Applications. 2020 International Workshop on Big Data and Information Security (IWBIS). :115—120.

Instant messaging is an application that is widely used to communicate. Based on the wearesocial.com report, three of the five most used social media platforms are chat or instant messaging. Instant messaging was chosen for communication because it has security features in log in using a One Time Password (OTP) code, end-to-end encryption, and even two-factor authentication. However, instant messaging applications still have a vulnerability to account theft. This account theft occurs when the user loses his cellphone. Account theft can happen when a cellphone is locked or not. As a result of this account theft, thieves can read confidential messages and send fake news on behalf of the victim. In this research, instant messaging application security will be applied using hybrid encryption and two-factor authentication, which are made interrelated. Both methods will be implemented in 2 implementation designs. The implementation design is securing login and securing sending and receiving messages. For login security, QR Code implementation is sent via email. In sending and receiving messages, the message decryption process will be carried out when the user is authenticated using a fingerprint. Hybrid encryption as message security uses RSA 2048 and AES 128. Of the ten attempts to steal accounts that have been conducted, it is shown that the implementation design is proven to reduce the impact of account theft.

2021-10-22
William Claycomb, Joe Bradley, Matthew Butkovic, Ken Mai, Carol Woody, Mark Sherman.  2020.  Implementing Cyber Security in DoD Supply Chains.

Video presentation from Carnegie Melon University "Implementing Cyber Security in DoD Supply Chains," 2020.

2021-04-27
Pachaghare, S., Patil, P..  2020.  Improving Authentication and Data Sharing Capabilities of Cloud using a Fusion of Kerberos and TTL-based Group Sharing. 2020 5th International Conference on Communication and Electronics Systems (ICCES). :1401—1405.
Cloud security has been of utmost concern for researchers and cloud deployers since the inception of cloud computing. Methods like PKI, hashing, encryption, etc. have proven themselves useful throughout cloud technology development, but they are not considered as a complete security solution for all kinds of cloud authentications. Moreover, data sharing in the cloud has also become a question of research due to the abundant use of data storage available on the cloud. To solve these issues, a Kerberos-based time-to-live (TTL) inspired data sharing and authentication mechanism is proposed on the cloud. The algorithm combines the two algorithms and provides a better cloud deployment infrastructure. It uses state-of-the-art elliptic curve cryptography along with a secure hashing algorithm (SHA 256) for authentication, and group-based time-to-live data sharing to evaluate the file-sharing status for the users. The result evaluates the system under different authentication attacks, and it is observed that the system is efficient under any kind of attack and any kind of file sharing process.
2021-05-25
Santos, Bernardo, Dzogovic, Bruno, Feng, Boning, Jacot, Niels, Do, Van Thuan, Do, Thanh Van.  2020.  Improving Cellular IoT Security with Identity Federation and Anomaly Detection. 2020 5th International Conference on Computer and Communication Systems (ICCCS). :776—780.

As we notice the increasing adoption of Cellular IoT solutions (smart-home, e-health, among others), there are still some security aspects that can be improved as these devices can suffer various types of attacks that can have a high-impact over our daily lives. In order to avoid this, we present a multi-front security solution that consists on a federated cross-layered authentication mechanism, as well as a machine learning platform with anomaly detection techniques for data traffic analysis as a way to study devices' behavior so it can preemptively detect attacks and minimize their impact. In this paper, we also present a proof-of-concept to illustrate the proposed solution and showcase its feasibility, as well as the discussion of future iterations that will occur for this work.

2020-10-30
Kang, Qiao, Lee, Sunwoo, Hou, Kaiyuan, Ross, Robert, Agrawal, Ankit, Choudhary, Alok, Liao, Wei-keng.  2020.  Improving MPI Collective I/O for High Volume Non-Contiguous Requests With Intra-Node Aggregation. IEEE Transactions on Parallel and Distributed Systems. 31:2682—2695.

Two-phase I/O is a well-known strategy for implementing collective MPI-IO functions. It redistributes I/O requests among the calling processes into a form that minimizes the file access costs. As modern parallel computers continue to grow into the exascale era, the communication cost of such request redistribution can quickly overwhelm collective I/O performance. This effect has been observed from parallel jobs that run on multiple compute nodes with a high count of MPI processes on each node. To reduce the communication cost, we present a new design for collective I/O by adding an extra communication layer that performs request aggregation among processes within the same compute nodes. This approach can significantly reduce inter-node communication contention when redistributing the I/O requests. We evaluate the performance and compare it with the original two-phase I/O on Cray XC40 parallel computers (Theta and Cori) with Intel KNL and Haswell processors. Using I/O patterns from two large-scale production applications and an I/O benchmark, we show our proposed method effectively reduces the communication cost and hence maintains the scalability for a large number of processes.

2021-05-13
Monakhov, Yuri, Monakhov, Mikhail, Telny, Andrey, Mazurok, Dmitry, Kuznetsova, Anna.  2020.  Improving Security of Neural Networks in the Identification Module of Decision Support Systems. 2020 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT). :571–574.
In recent years, neural networks have been implemented while solving various tasks. Deep learning algorithms provide state of the art performance in computer vision, NLP, speech recognition, speaker recognition and many other fields. In spite of the good performance, neural networks have significant drawback- they have been found to be vulnerable to adversarial examples resulting from adding small-magnitude perturbations to inputs. While being imperceptible to a human eye, such perturbations lead to significant drop in classification accuracy. It is demonstrated by many studies related to neural network security. Considering the pros and cons of neural networks, as well as a variety of their applications, developing of the methods to improve the robustness of neural networks against adversarial attacks becomes an urgent task. In the article authors propose the “minimalistic” attacker model of the decision support system identification unit, adaptive recommendations on security enhancing, and a set of protective methods. Suggested methods allow for significant increase in classification accuracy under adversarial attacks, as it is demonstrated by an experiment outlined in this article.
2021-07-06
Hess, David J.  2020.  Incumbent-led transitions and civil society: Autonomous vehicle policy and consumer organizations in the United States. Technological Forecasting and Social Change. 151:119825.
The transition to connected and autonomous (or automated) vehicles (CAVs) in the United States is used to explore the role of civil society in the acceleration and deceleration of sociotechnical transitions. This is an “incumbent-led transition,” which occurs when large industrial corporations in one or more industries lead a systemic technological change. This type of transition may generate public concerns about risk and uncertainty, which can be expressed and mobilized by civil society organizations (CSOs). In turn, CSOs may also attempt to decelerate the transition process in order to develop better regulation and to change technology design. Based on an analysis of CSO statements in the public sphere and media reports on CAVs in the U.S., the political strategy of CSOs is examined to improve understanding of the role of civil society in incumbent-led transitions. The analysis indicates that the strategy includes four main aspects: articulating an alternative political goal (slower introduction of advanced autonomous vehicles and more rapid introduction of existing driver-assisted technology), engaging multiple targets or venues of action (different government units and the private sector), forming and expanding a broad coalition, and selecting effective tactics of influence (lobbying, media outreach, and research involving public opinion polls).
2020-10-02
David J. Hess.  2020.  Incumbent-led transitions and civil society: future autonomous vehicle policy and consumer organizations in the United States. Technological Forecasting & Social Change. 151

A central problem for transition studies is how to accelerate or decelerate them with policy guidance. Incumbent-led transitions with government support can generate substantial public support for deceleration. Civil society organizations (CSOs) lead and formulate public opinion in this type of industrial transition. Analysis of CSO strategy can contribute to a better understanding of transition acceleration and deceleration. Four main elements of political strategy are identified for how CSOs attempt to affect an industrial transition. The transition to connected and autonomous (or automated) vehicles (CAVs) in the United States is used to explore the role of civil society in the acceleration and deceleration of sociotechnical transitions. This is an “incumbent-led transition,” which occurs when large industrial corporations in one or more industries lead a systemic technological change. This type of transition may generate public concerns about risk and uncertainty, which can be expressed and mobilized by civil society organizations (CSOs). In turn, CSOs may also attempt to decelerate the transition process in order to develop better regulation and to change technology design. Based on an analysis of CSO statements in the public sphere and media reports on CAVs in the U.S., the political strategy of CSOs is examined to improve understanding of the role of civil society in incumbent-led transitions. The analysis indicates that the strategy includes four main aspects: articulating an alternative political goal (slower introduction of advanced autonomous vehicles and more rapid introduction of existing driver-assisted technology), engaging multiple targets or venues of action (different government units and the private sector), forming and expanding a broad coalition, and selecting effective tactics of influence (lobbying, media outreach, and research involving public opinion polls).