Biblio
In today's smart healthcare system, medical records of patients are exposed to a large number of users for various purposes, from monitoring the patients' health to data analysis. Preserving the privacy of a patient has become an important and challenging issue. outsourced Ciphertext-Policy Attribute-Based Encryption (CP-ABE) provides a solution for the data sharing and privacy preservation problem in the healthcare system in fog environment. However, the high computational cost in case of frequent attribute updates renders it infeasible for providing access control in healthcare systems. In this paper, we propose an efficient method to overcome the frequent attribute update problem of outsourced CP-ABE. In our proposed approach, we generate two keys for each user (a static key and a dynamic key) based on the constant and changing attributes of the users. Therefore, in case of an attribute change for a user, only the dynamic key is updated. Also, the key update is done at the fog nodes without compromising the security of the system. Thus, both the communication and the computational overhead associated with the key update in the outsourced CP-ABE scheme are reduced, making it an ideal solution for data access control in healthcare systems. The efficacy of our proposed approach is shown through theoretical analysis and experimentation.
Web applications have become an essential resource to access the services of diverse subjects (e.g., financial, healthcare) available on the Internet. Despite the efforts that have been made on its security, namely on the investigation of better techniques to detect vulnerabilities on its source code, the number of vulnerabilities exploited has not decreased. Static analysis tools (SATs) are often used to test the security of applications since their outcomes can help developers in the correction of the bugs they found. The conducted investigation made over SATs stated they often generate errors (false positives (FP) and false negatives (FN)), whose cause is recurrently associated with very diverse coding styles, i.e., similar functionality is implemented in distinct manners, and programming practices that create ambiguity, such as the reuse and share of variables. Based on a common practice of using multiple forms in a same webpage and its processing in a single file, we defined a use case for user login and register with six coding styles scenarios for processing their data, and evaluated the behaviour of three SATs (phpSAFE, RIPS and WAP) with them to verify and understand why SATs produce FP and FN.
Advances in technology have led not only to increased security and privacy but also to new channels of information leakage. New leak channels have resulted in the emergence of increased relevance of various types of attacks. One such attacks are Side-Channel Attacks, i.e. attacks aimed to find vulnerabilities in the practical component of the algorithm. However, with the development of these types of attacks, methods of protection against them have also appeared. One of such methods is White-Box Cryptography.
The security of Industrial Control system (ICS) of cybersecurity networks ensures that control equipment fails and that regular procedures are available at its control facilities and internal industrial network. For this reason, it is essential to improve the security of industrial control facility networks continuously. Since network security is threatening, industrial installations are irreparable and perhaps environmentally hazardous. In this study, the industrialized Early Intrusion Detection System (EIDS) was used to modify the Intrusion Detection System (IDS) method. The industrial EIDS was implemented using routers, IDS Snort, Industrial honeypot, and Iptables MikroTik. EIDS successfully simulated and implemented instructions written in IDS, Iptables router, and Honeypots. Accordingly, the attacker's information was displayed on the monitoring page, which had been designed for the ICS. The EIDS provides cybersecurity and industrial network systems against vulnerabilities and alerts industrial network security heads in the shortest possible time.
Steganography is a data hiding technique, which is generally used to hide the data within a file to avoid detection. It is used in the police department, detective investigation, and medical fields as well as in many more fields. Various techniques have been proposed over the years for Image Steganography and also attackers or hackers have developed many decoding tools to break these techniques to retrieve data. In this paper, CAPTCHA codes are used to ensure that the receiver is the intended receiver and not any machine. Here a randomized CAPTCHA code is created to provide additional security to communicate with the authenticated user and used Image Steganography to achieve confidentiality. For achieving secret and reliable communication, encryption and decryption mechanism is performed; hence a machine cannot decode it using any predefined algorithm. Once a secure connection has been established with the intended receiver, the original message is transmitted using the LSB algorithm, which uses the RGB color spectrum to hide the image data ensuring additional encryption.
Lately mining of information from online life is pulling in more consideration because of the blast in the development of Big Data. In security, Big Data manages an assortment of immense advanced data for investigating, envisioning and to draw the bits of knowledge for the expectation and anticipation of digital assaults. Big Data Analytics (BDA) is the term composed by experts to portray the art of dealing with, taking care of and gathering a great deal of data for future evaluation. Data is being made at an upsetting rate. The quick improvement of the Internet, Internet of Things (IoT) and other creative advances are the rule liable gatherings behind this proceeded with advancement. The data made is an impression of the earth, it is conveyed out of, along these lines can use the data got away from structures to understand the internal exercises of that system. This has become a significant element in cyber security where the objective is to secure resources. Moreover, the developing estimation of information has made large information a high worth objective. Right now, investigate ongoing exploration works in cyber security comparable to huge information and feature how Big information is secured and how huge information can likewise be utilized as a device for cyber security. Simultaneously, a Big Data based concentrated log investigation framework is actualized to distinguish the system traffic happened with assailants through DDOS, SQL Injection and Bruce Force assault. The log record is naturally transmitted to the brought together cloud server and big information is started in the investigation process.
Cybercrime is growing dramatically in the technological world nowadays. World Wide Web criminals exploit the personal information of internet users and use them to their advantage. Unethical users leverage the dark web to buy and sell illegal products or services and sometimes they manage to gain access to classified government information. A number of illegal activities that can be found in the dark web include selling or buying hacking tools, stolen data, digital fraud, terrorists activities, drugs, weapons, and more. The aim of this project is to collect evidence of any malicious activity in the dark web by using computer security mechanisms as traps called honeypots.
Nowadays, the emerging Internet-of-Things (IoT) emphasize the need for the security of network-connected devices. Additionally, there are two types of services in IoT devices that are easily exploited by attackers, weak authentication services (e.g., SSH/Telnet) and exploited services using command injection. Based on this observation, we propose IoTCMal, a hybrid IoT honeypot framework for capturing more comprehensive malicious samples aiming at IoT devices. The key novelty of IoTC-MAL is three-fold: (i) it provides a high-interactive component with common vulnerable service in real IoT device by utilizing traffic forwarding technique; (ii) it also contains a low-interactive component with Telnet/SSH service by running in virtual environment. (iii) Distinct from traditional low-interactive IoT honeypots[1], which only analyze family categories of malicious samples, IoTCMal primarily focuses on homology analysis of malicious samples. We deployed IoTCMal on 36 VPS1 instances distributed in 13 cities of 6 countries. By analyzing the malware binaries captured from IoTCMal, we discover 8 malware families controlled by at least 11 groups of attackers, which mainly launched DDoS attacks and digital currency mining. Among them, about 60% of the captured malicious samples ran in ARM or MIPs architectures, which are widely used in IoT devices.
The resistance to attacks aimed to break CAPTCHA challenges and the effectiveness, efficiency and satisfaction of human users in solving them called usability are the two major concerns while designing CAPTCHA schemes. User-friendliness, universality, and accessibility are related dimensions of usability, which must also be addressed adequately. With recent advances in segmentation and optical character recognition techniques, complex distortions, degradations and transformations are added to text-based CAPTCHA challenges resulting in their reduced usability. The extent of these deformations can be decreased if some additional security mechanism is incorporated in such challenges. This paper proposes an additional security mechanism that can add an extra layer of protection to any text-based CAPTCHA challenge, making it more challenging for bots and scripts that might be used to attack websites and web applications. It proposes the use of hidden text-boxes for user entry of CAPTCHA string which serves as honeypots for bots and automated scripts. The honeypot technique is used to trick bots and automated scripts into filling up input fields which legitimate human users cannot fill in. The paper reports implementation of honeypot technique and results of tests carried out over three months during which form submissions were logged for analysis. The results demonstrated great effectiveness of honeypots technique to improve security control and usability of text-based CAPTCHA challenges.
Electronic voting systems have enhanced efficiency in student elections management in universities, supporting such elections to become less expensive, logistically simple, with higher accuracy levels as compared to manually conducted elections. However, e-voting systems that are confined to campus hall voting inhibits access to eligible voters who are away from campus. This study examined the challenges of lack of wide access and impersonation of voter in the student elections of 2018 in Kabarak University. The main objective of this study was therefore to upgrade the offline electronic voting system through developing a secure online voting system and deploying the system for use in the 2019 student elections at Kabarak University. The resultant system and development process employed demonstrate the applicability of a secure online voting not only in the higher education context, but also in other democracies where infusion of online access and authentication in the voting processes is a requisite.
Indoor localization has been a popular research subject in recent years. Usually, object localization using sound involves devices on the objects, acquiring data from stationary sound sources, or by localizing the objects with external sensors when the object generates sounds. Indoor localization systems using microphones have traditionally also used systems with several microphones, setting the limitations on cost efficiency and required space for the systems. In this paper, the goal is to investigate whether it is possible for a stationary system to localize a silent object in a room, with only one microphone and ambient noise as information carrier. A subtraction method has been combined with a fingerprint technique, to define and distinguish the noise absorption characteristic of the silent object in the frequency domain for different object positions. The absorption characteristics of several positions of the object is taken as comparison references, serving as fingerprints of known positions for an object. With the experiment result, the tentative idea has been verified as feasible, and noise signal based lateral localization of silent objects can be achieved.
Robot Operating System (ROS) is becoming more and more important and is used widely by developers and researchers in various domains. One of the most important fields where it is being used is the self-driving cars industry. However, this framework is far from being totally secure, and the existing security breaches do not have robust solutions. In this paper we focus on the camera vulnerabilities, as it is often the most important source for the environment discovery and the decision-making process. We propose an unsupervised anomaly detection tool for detecting suspicious frames incoming from camera flows. Our solution is based on spatio-temporal autoencoders used to truthfully reconstruct the camera frames and detect abnormal ones by measuring the difference with the input. We test our approach on a real-word dataset, i.e. flows coming from embedded cameras of self-driving cars. Our solution outperforms the existing works on different scenarios.