Biblio

Found 473 results

Filters: First Letter Of Title is L  [Clear All Filters]
2018-05-15
Saeed, Ahmed, Harras, Khaled, Zegura, Ellen, Ammar, Mostafa.  Submitted.  Local and Low-cost Whitespace Detection. Proc. IEEE International Conference on Distributed Computing Systems}, issue date = {June 20017.
2018-05-17
2023-02-17
Belkhouche, Yassine.  2022.  A language processing-free unified spam detection framework using byte histograms and deep learning. 2022 Fourth International Conference on Transdisciplinary AI (TransAI). :83–86.
In this paper, we established a unified deep learning-based spam filtering method. The proposed method uses the message byte-histograms as a unified representation for all message types (text, images, or any other format). A deep convolutional neural network (CNN) is used to extract high-level features from this representation. A fully connected neural network is used to perform the classification using the extracted CNN features. We validate our method using several open-source text-based and image-based spam datasets.We obtained an accuracy higher than 94% on all datasets.
2023-05-11
Tanaka, Tatsuki, Sugawara, Takeshi.  2022.  Laser-Based Signal-Injection Attack on Piezoresistive MEMS Pressure Sensors. 2022 IEEE Sensors. :1–4.
As more and more information systems rely sen-sors for their critical decisions, there is a growing threat of injecting false signals to sensors in the analog domain. In particular, LightCommands showed that MEMS microphones are susceptible to light, through the photoacoustic and photoelectric effects, enabling an attacker to silently inject voice commands to smart speakers. Understanding such unexpected transduction mechanisms is essential for designing secure and reliable MEMS sensors. Is there any other transduction mechanism enabling laser-induced attacks? We positively answer the question by experimentally evaluating two commercial piezoresistive MEMS pressure sensors. By shining a laser light at the piezoresistors through an air hole on the sensor package, the pressure reading changes by ±1000 hPa with 0.5 mW laser power. This phenomenon can be explained by the photoelectric effect at the piezoresistors, which increases the number of carriers and decreases the resistance. We finally show that an attacker can induce the target signal at the sensor reading by shining an amplitude-modulated laser light.
ISSN: 2168-9229
2023-06-09
Liu, Luchen, Lin, Xixun, Zhang, Peng, Zhang, Lei, Wang, Bin.  2022.  Learning Common Dependency Structure for Unsupervised Cross-Domain Ner. ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :8347—8351.
Unsupervised cross-domain NER task aims to solve the issues when data in a new domain are fully-unlabeled. It leverages labeled data from source domain to predict entities in unlabeled target domain. Since training models on large domain corpus is time-consuming, in this paper, we consider an alternative way by introducing syntactic dependency structure. Such information is more accessible and can be shared between sentences from different domains. We propose a novel framework with dependency-aware GNN (DGNN) to learn these common structures from source domain and adapt them to target domain, alleviating the data scarcity issue and bridging the domain gap. Experimental results show that our method outperforms state-of-the-art methods.
2023-08-11
Temirbekova, Zhanerke, Pyrkova, Anna, Abdiakhmetova, Zukhra, Berdaly, Aidana.  2022.  Library of Fully Homomorphic Encryption on a Microcontroller. 2022 International Conference on Smart Information Systems and Technologies (SIST). :1—5.
Fully homomorphic encryption technologies allow you to operate on encrypted data without disclosing it, therefore they have a lot of potential for solving personal data storage and processing issues. Because of the increased interest in these technologies, various software tools and libraries that allow completely homomorphic encryption have emerged. However, because this subject of cryptography is still in its early stages, standards and recommendations for the usage of completely homomorphic encryption algorithms are still being developed. The paper presents the main areas of application of homomorphic encryption. The analysis of existing developments in the field of homomorphic encryption is carried out. The analysis showed that existing library implementations do not support the division and subtraction operation. The analysis revealed the need to develop a library of fully homomorphic encryption, which allows performing all mathematical operations on them (addition, difference, multiplication and division), as well as the relevance of developing its own implementation of a library of homomorphic encryption on integers. Then, implement the development of a fully homomorphic encryption library in C++ and on an ESP 32 microcontroller. The ability to perform four operations (addition, difference, multiplication and division) on encrypted data will expand the scope of application of homomorphic encryption. A method of homomorphic division and subtraction is proposed that allows performing the division and subtraction operation on homomorphically encrypted data. The level of security, the types of operations executed, the maximum length of operands, and the algorithm's running time are all described as a consequence of numerical experimentation with parameters.
2022-12-20
Kabir, Alamgir, Ahammed, Md. Tabil, Das, Chinmoy, Kaium, Mehedi Hasan, Zardar, Md. Abu, Prathibha, Soma.  2022.  Light Fidelity (Li-Fi) based Indoor Communication System. 2022 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI). :1–5.
Wireless-fidelity (Wi-Fi) and Bluetooth are examples of modern wireless communication technologies that employ radio waves as the primary channel for data transmission. but it ought to find alternatives over the limitation and interference in the radio frequency (RF) band. For viable alternatives, visible light communication (VLC) technology comes to play as Light Fidelity (Li-Fi) which uses visible light as a channel for delivering very high-speed communication in a Wi-Fi way. In terms of availability, bandwidth, security and efficiency, Li-Fi is superior than Wi-Fi. In this paper, we present a Li-Fi-based indoor communication system. prototype model has been proposed for single user scenario using visible light portion of electromagnetic spectrum. This system has been designed for audio data communication in between the users in transmitter and receiver sections. LED and photoresistor have been used as optical source and receiver respectively. The electro-acoustic transducer provides the required conversion of electrical-optical signal in both ways. This system might overcome problems like radio-frequency bandwidth scarcity However, its major problem is that it only works when it is pointed directly at the target.
2023-08-11
Yuan, Shengli, Phan-Huynh, Randy.  2022.  A Lightweight Hash-Chain-Based Multi-Node Mutual Authentication Algorithm for IoT Networks. 2022 IEEE Future Networks World Forum (FNWF). :72—74.
As an emerging technology, IoT is rapidly revolutionizing the global communication network with billions of new devices deployed and connected with each other. Many of these devices collect and transfer a large amount of sensitive or mission critical data, making security a top priority. Compared to traditional Internet, IoT networks often operate in open and harsh environment, and may experience frequent delays, traffic loss and attacks; Meanwhile, IoT devices are often severally constrained in computational power, storage space, network bandwidth, and power supply, which prevent them from deploying traditional security schemes. Authentication is an important security mechanism that can be used to identify devices or users. Due to resource constrains of IoT networks, it is highly desirable for the authentication scheme to be lightweight while also being highly effective. In this paper, we developed and evaluated a hash-chain-based multi-node mutual authentication algorithm. Nodes on a network all share a common secret key and broadcast to other nodes in range. Each node may also add to the hash chain and rebroadcast, which will be used to authenticate all nodes in the network. This algorithm has a linear running time and complexity of O(n), a significant improvement from the O(nˆ2) running time and complexity of the traditional pairwise multi-node mutual authentication.
2023-08-16
Priya, D Divya, Kiran, Ajmeera, Purushotham, P.  2022.  Lightweight Intrusion Detection System(L-IDS) for the Internet of Things. 2022 International Conference on Advancements in Smart, Secure and Intelligent Computing (ASSIC). :1—4.
Internet of Things devices collect and share data (IoT). Internet connections and emerging technologies like IoT offer privacy and security challenges, and this trend is anticipated to develop quickly. Internet of Things intrusions are everywhere. Businesses are investing more to detect these threats. Institutes choose accurate testing and verification procedures. In recent years, IoT utilisation has increasingly risen in healthcare. Where IoT applications gained popular among technologists. IoT devices' energy limits and scalability raise privacy and security problems. Experts struggle to make IoT devices more safe and private. This paper provides a machine-learning-based IDS for IoT network threats (ML-IDS). This study aims to implement ML-supervised IDS for IoT. We're going with a centralised, lightweight IDS. Here, we compare seven popular categorization techniques on three data sets. The decision tree algorithm shows the best intrusion detection results.
2023-02-17
Yang, Jingcong, Xia, Qi, Gao, Jianbin, Obiri, Isaac Amankona, Sun, Yushan, Yang, Wenwu.  2022.  A Lightweight Scalable Blockchain Architecture for IoT Devices. 2022 IEEE 5th International Conference on Electronics Technology (ICET). :1014–1018.
With the development of Internet of Things (IoT) technology, the transaction behavior of IoT devices has gradually increased, which also brings the problem of transaction data security and transaction processing efficiency. As one of the research hotspots in the field of data security, blockchain technology has been widely applied in the maintenance of transaction records and the construction of financial payment systems. However, the proportion of microtransactions in the Internet of Things poses challenges to the coupling of blockchain and IoT devices. This paper proposes a three-party scalable architecture based on “IoT device-edge server-blockchain”. In view of the characteristics of micropayment, the verification mechanism of the execution results of the off-chain transaction is designed, and the bridge node is designed in the off-chain architecture, which ensures the finality of the blockchain to the transaction. According to system evaluation, this scalable architecture improves the processing efficiency of micropayments on blockchain, while ensuring its decentration equal to that of blockchain. Compared with other blockchain-based IoT device payment schemes, our architecture is more excellent in activity.
ISSN: 2768-6515
2023-03-03
Jallouli, Ons, Chetto, Maryline, Assad, Safwan El.  2022.  Lightweight Stream Ciphers based on Chaos for Time and Energy Constrained IoT Applications. 2022 11th Mediterranean Conference on Embedded Computing (MECO). :1–5.
The design of efficient and secure cryptographic algorithms is a fundamental problem of cryptography. Due to the tight cost and constrained resources devices such as Radio-Frequency IDentification (RFID), wireless sensors, smart cards, health-care devices, lightweight cryptography has received a great deal of attention. Recent research mainly focused on designing optimized cryptographic algorithms which trade offs between security performance, time consuming, energy consumption and cost. In this paper, we present two chaotic stream ciphers based on chaos and we report the results of a comparative performance evaluation study. Compared to other crypto-systems of the literature, we demonstrate that our designed stream ciphers are suitable for practical secure applications of the Internet of Things (IoT) in a constrained resource environment.
2022-12-01
Abeyagunasekera, Sudil Hasitha Piyath, Perera, Yuvin, Chamara, Kenneth, Kaushalya, Udari, Sumathipala, Prasanna, Senaweera, Oshada.  2022.  LISA : Enhance the explainability of medical images unifying current XAI techniques. 2022 IEEE 7th International conference for Convergence in Technology (I2CT). :1—9.
This work proposed a unified approach to increase the explainability of the predictions made by Convolution Neural Networks (CNNs) on medical images using currently available Explainable Artificial Intelligent (XAI) techniques. This method in-cooperates multiple techniques such as LISA aka Local Interpretable Model Agnostic Explanations (LIME), integrated gradients, Anchors and Shapley Additive Explanations (SHAP) which is Shapley values-based approach to provide explanations for the predictions provided by Blackbox models. This unified method increases the confidence in the black-box model’s decision to be employed in crucial applications under the supervision of human specialists. In this work, a Chest X-ray (CXR) classification model for identifying Covid-19 patients is trained using transfer learning to illustrate the applicability of XAI techniques and the unified method (LISA) to explain model predictions. To derive predictions, an image-net based Inception V2 model is utilized as the transfer learning model.
2023-04-28
Wang, Yiwen, Liang, Jifan, Ma, Xiao.  2022.  Local Constraint-Based Ordered Statistics Decoding for Short Block Codes. 2022 IEEE Information Theory Workshop (ITW). :107–112.
In this paper, we propose a new ordered statistics decoding (OSD) for linear block codes, which is referred to as local constraint-based OSD (LC-OSD). Distinguished from the conventional OSD, which chooses the most reliable basis (MRB) for re-encoding, the LC-OSD chooses an extended MRB on which local constraints are naturally imposed. A list of candidate codewords is then generated by performing a serial list Viterbi algorithm (SLVA) over the trellis specified with the local constraints. To terminate early the SLVA for complexity reduction, we present a simple criterion which monitors the ratio of the bound on the likelihood of the unexplored candidate codewords to the sum of the hard-decision vector’s likelihood and the up-to-date optimal candidate’s likelihood. Simulation results show that the LC-OSD can have a much less number of test patterns than that of the conventional OSD but cause negligible performance loss. Comparisons with other complexity-reduced OSDs are also conducted, showing the advantages of the LC-OSD in terms of complexity.
2023-02-17
Chandra, I., L, Mohana Sundari, Ashok Kumar, N., Singh, Ngangbam Phalguni, Arockia Dhanraj, Joshuva.  2022.  A Logical Data Security Establishment over Wireless Communications using Media based Steganographic Scheme. 2022 International Conference on Electronics and Renewable Systems (ICEARS). :823–828.
Internet speeds and technological advancements have made individuals increasingly concerned about their personal information being compromised by criminals. There have been a slew of new steganography and data concealment methods suggested in recent years. Steganography is the art of hiding information in plain sight (text, audio, image and video). Unauthorized users now have access to steganographic analysis software, which may be used to retrieve the carrier files valuable secret information. Unfortunately, because to their inefficiency and lack of security, certain steganography techniques are readily detectable by steganalytical detectors. We present a video steganography technique based on the linear block coding concept that is safe and secure. Data is protected using a binary graphic logo but also nine uncompressed video sequences as cover data and a secret message. It's possible to enhance the security by rearranging pixels randomly in both the cover movies and the hidden message. Once the secret message has been encoded using the Hamming algorithm (7, 4) before being embedded, the message is even more secure. The XOR function will be used to add the encoded message's result to a random set of values. Once the message has been sufficiently secured, it may be inserted into the video frames of the cover. In addition, each frame's embedding region is chosen at random so that the steganography scheme's resilience can be improved. In addition, our experiments have shown that the approach has a high embedding efficiency. The video quality of stego movies is quite close to the original, with a PSNR (Pick Signal to Noise Ratio) over 51 dB. Embedding a payload of up to 90 Kbits per frame is also permissible, as long as the quality of the stego video is not noticeably degraded.
2023-01-20
Li, Ruixiao, Bhattacharjee, Shameek, Das, Sajal K., Yamana, Hayato.  2022.  Look-Up Table based FHE System for Privacy Preserving Anomaly Detection in Smart Grids. 2022 IEEE International Conference on Smart Computing (SMARTCOMP). :108—115.
In advanced metering infrastructure (AMI), the customers' power consumption data is considered private but needs to be revealed to data-driven attack detection frameworks. In this paper, we present a system for privacy-preserving anomaly-based data falsification attack detection over fully homomorphic encrypted (FHE) data, which enables computations required for the attack detection over encrypted individual customer smart meter's data. Specifically, we propose a homomorphic look-up table (LUT) based FHE approach that supports privacy preserving anomaly detection between the utility, customer, and multiple partied providing security services. In the LUTs, the data pairs of input and output values for each function required by the anomaly detection framework are stored to enable arbitrary arithmetic calculations over FHE. Furthermore, we adopt a private information retrieval (PIR) approach with FHE to enable approximate search with LUTs, which reduces the execution time of the attack detection service while protecting private information. Besides, we show that by adjusting the significant digits of inputs and outputs in our LUT, we can control the detection accuracy and execution time of the attack detection, even while using FHE. Our experiments confirmed that our proposed method is able to detect the injection of false power consumption in the range of 11–17 secs of execution time, depending on detection accuracy.
2023-02-02
Zhang, Yanjun, Zhao, Peng, Han, Ziyang, Yang, Luyu, Chen, Junrui.  2022.  Low Frequency Oscillation Mode Identification Algorithm Based on VMD Noise Reduction and Stochastic Subspace Method. 2022 Power System and Green Energy Conference (PSGEC). :848–852.
Low-frequency oscillation (LFO) is a security and stability issue that the power system focuses on, measurement data play an important role in online monitoring and analysis of low-frequency oscillation parameters. Aiming at the problem that the measurement data containing noise affects the accuracy of modal parameter identification, a VMD-SSI modal identification algorithm is proposed, which uses the variational modal decomposition algorithm (VMD) for noise reduction combined with the stochastic subspace algorithm for identification. The VMD algorithm decomposes and reconstructs the initial signal with certain noise, and filters out the noise signal. Then, the optimized signal is input into stochastic subspace identification algorithm(SSI), the modal parameters is obtained. Simulation of a three-machine ninenode system verifies that the VMD-SSI mode identification algorithm has good anti-noise performance.
2023-07-31
Tao, Kai, Long, Zhijun, Qian, Weifeng, Wei, Zitao, Chen, Xinda, Wang, Weiming, Xia, Yan.  2022.  Low-complexity Forward Error Correction For 800G Unamplified Campus Link. 2022 20th International Conference on Optical Communications and Networks (ICOCN). :1—3.
The discussion about forward error correction (FEC) used for 800G unamplified link (800LR) is ongoing. Aiming at two potential options for FEC bit error ratio (BER) threshold, we propose two FEC schemes, respectively based on channel-polarized (CP) multilevel coding (MLC) and bit interleaved coded modulation (BICM), with the same inner FEC code. The field-programmable gate array (FPGA) verification results indicate that with the same FEC overhead (OH), proposed CP-MLC outperforms BICM scheme with less resource and power consumption.
2023-07-18
Langhammer, Martin, Gribok, Sergey, Pasca, Bogdan.  2022.  Low-Latency Modular Exponentiation for FPGAs. 2022 IEEE 30th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM). :1—9.
Modular exponentiation, especially for very large integers of hundreds or thousands of bits, is a commonly used function in popular cryptosystems such as RSA. The complexity of this algorithm is partly driven by the very large word sizes, which require many - often millions - of primitive operations in a CPU implementation, or a large amount of logic when accelerated by an ASIC. FPGAs, with their many embedded DSP resources have started to be used as well. In almost all cases, the calculations have required multiple - occasionally many - clock cycles to complete. Recently, blockchain algorithms have required very low-latency implementations of modular multiplications, motivating new implementations and approaches.In this paper we show nine different high performance modular exponentiation for 1024-bit operands, using a 1024-bit modular multiplication as it’s core. Rather than just showing a number of completed designs, our paper shows the evolution of architectures which lead to different resource mix options. This will allow the reader to apply the examples to different FPGA targets which may have differing ratios of logic, memory, and embedded DSP blocks. In one design, we show a 1024b modular multiplier requiring 83K ALMs and 2372 DSPs, with a delay of 21.21ns.
2023-08-03
Chen, Wenlong, Wang, Xiaolin, Wang, Xiaoliang, Xu, Ke, Guo, Sushu.  2022.  LRVP: Lightweight Real-Time Verification of Intradomain Forwarding Paths. IEEE Systems Journal. 16:6309–6320.
The correctness of user traffic forwarding paths is an important goal of trusted transmission. Many network security issues are related to it, i.e., denial-of-service attacks, route hijacking, etc. The current path-aware network architecture can effectively overcome this issue through path verification. At present, the main problems of path verification are high communication and high computation overhead. To this aim, this article proposes a lightweight real-time verification mechanism of intradomain forwarding paths in autonomous systems to achieve a path verification architecture with no communication overhead and low computing overhead. The problem situation is that a packet finally reaches the destination, but its forwarding path is inconsistent with the expected path. The expected path refers to the packet forwarding path determined by the interior gateway protocols. If the actual forwarding path is different from the expected one, it is regarded as an incorrect forwarding path. This article focuses on the most typical intradomain routing environment. A few routers are set as the verification routers to block the traffic with incorrect forwarding paths and raise alerts. Experiments prove that this article effectively solves the problem of path verification and the problem of high communication and computing overhead.
Conference Name: IEEE Systems Journal
2023-05-12
Jbene, Mourad, Tigani, Smail, Saadane, Rachid, Chehri, Abdellah.  2022.  An LSTM-based Intent Detector for Conversational Recommender Systems. 2022 IEEE 95th Vehicular Technology Conference: (VTC2022-Spring). :1–5.
With the rapid development of artificial intelligence (AI), many companies are moving towards automating their services using automated conversational agents. Dialogue-based conversational recommender agents, in particular, have gained much attention recently. The successful development of such systems in the case of natural language input is conditioned by the ability to understand the users’ utterances. Predicting the users’ intents allows the system to adjust its dialogue strategy and gradually upgrade its preference profile. Nevertheless, little work has investigated this problem so far. This paper proposes an LSTM-based Neural Network model and compares its performance to seven baseline Machine Learning (ML) classifiers. Experiments on a new publicly available dataset revealed The superiority of the LSTM model with 95% Accuracy and 94% F1-score on the full dataset despite the relatively small dataset size (9300 messages and 17 intents) and label imbalance.
ISSN: 2577-2465
2023-06-02
Liang, Dingyang, Sun, Jianing, Zhang, Yizhi, Yan, Jun.  2022.  Lightweight Neural Network-based Web Fingerprinting Model. 2022 International Conference on Networking and Network Applications (NaNA). :29—34.

Onion Routing is an encrypted communication system developed by the U.S. Naval Laboratory that uses existing Internet equipment to communicate anonymously. Miscreants use this means to conduct illegal transactions in the dark web, posing a security risk to citizens and the country. For this means of anonymous communication, website fingerprinting methods have been used in existing studies. These methods often have high overhead and need to run on devices with high performance, which makes the method inflexible. In this paper, we propose a lightweight method to address the high overhead problem that deep learning website fingerprinting methods generally have, so that the method can be applied on common devices while also ensuring accuracy to a certain extent. The proposed method refers to the structure of Inception net, divides the original larger convolutional kernels into smaller ones, and uses group convolution to reduce the website fingerprinting and computation to a certain extent without causing too much negative impact on the accuracy. The method was experimented on the data set collected by Rimmer et al. to ensure the effectiveness.

2023-01-20
Feng, Guocong, Mu, Tianshi, Lyu, Huahui, Yang, Hang, Lai, Yuyang, Li, Huijuan.  2022.  A Lightweight Attribute-based Encryption Scheme for Data Access Control in Smart Grids. 2022 IEEE 5th International Conference on Computer and Communication Engineering Technology (CCET). :280—284.
Smart grids are envisioned as the next-generation electricity grids. The data measured from the smart grid is very sensitive. It is thus highly necessary to adopt data access control in smart grids to guarantee the security and privacy of the measured data. Due to its flexibility and scalability, attribute-based encryption (ABE) is widely utilized to realize data access control in smart grids. However, most existing ABE solutions impose a heavy decryption overhead on their users. To this end, we propose a lightweight attribute-based encryption scheme for data access control in smart grids by adopting the idea of computation outsourcing. Under our proposed scheme, users can outsource a large amount of computation to a server during the decryption phase while still guaranteeing the security and privacy of the data. Theoretical analysis and experimental evaluation demonstrate that our scheme outperforms the existing schemes by achieving a very low decryption cost.
2023-07-21
Liu, Mingchang, Sachidananda, Vinay, Peng, Hongyi, Patil, Rajendra, Muneeswaran, Sivaanandh, Gurusamy, Mohan.  2022.  LOG-OFF: A Novel Behavior Based Authentication Compromise Detection Approach. 2022 19th Annual International Conference on Privacy, Security & Trust (PST). :1—10.
Password-based authentication system has been praised for its user-friendly, cost-effective, and easily deployable features. It is arguably the most commonly used security mechanism for various resources, services, and applications. On the other hand, it has well-known security flaws, including vulnerability to guessing attacks. Present state-of-the-art approaches have high overheads, as well as difficulties and unreliability during training, resulting in a poor user experience and a high false positive rate. As a result, a lightweight authentication compromise detection model that can make accurate detection with a low false positive rate is required.In this paper we propose – LOG-OFF – a behavior-based authentication compromise detection model. LOG-OFF is a lightweight model that can be deployed efficiently in practice because it does not include a labeled dataset. Based on the assumption that the behavioral pattern of a specific user does not suddenly change, we study the real-world authentication traffic data. The dataset contains more than 4 million records. We use two features to model the user behaviors, i.e., consecutive failures and login time, and develop a novel approach. LOG-OFF learns from the historical user behaviors to construct user profiles and makes probabilistic predictions of future login attempts for authentication compromise detection. LOG-OFF has a low false positive rate and latency, making it suitable for real-world deployment. In addition, it can also evolve with time and make more accurate detection as more data is being collected.
2023-05-12
Rebolledo-Mendez, Jovan D, Tonatiuh Gomez Briones, Felix A., Gonzalez Cardona, Leslie G.  2022.  Legal Artificial Assistance Agent to Assist Refugees. 2022 IEEE International Conference on Big Data (Big Data). :5126–5128.
Populations move across regions in search of better living possibilities, better life outcomes or going away from problems that affected their lives in the previous region they lived in. In the United States of America, this problem has been happening over decades. Intelligent Conversational Text-based Agents, also called Chatbots, and Artificial Intelligence are increasingly present in our lives and over recent years, their presence has increased considerably, due to the usability cases and the familiarity they are wining constantly. Using NLP algorithms for law in accessible platforms allows scaling of users to access a certain level of law expert who could assist users in need. This paper describes the motivation and circumstances of this problem as well as the description of the development of an Intelligent Conversational Agent system that was used by immigrants in the USA so they could get answers to questions and get suggestions about better legal options they could have access to. This system has helped thousands of people, especially in California
2023-09-01
Fang, Lele, Liu, Jiahao, Zhu, Yan, Chan, Chi-Hang, Martins, Rui Paulo.  2022.  LSB-Reused Protection Technique in Secure SAR ADC against Power Side-Channel Attack. 2022 Asian Hardware Oriented Security and Trust Symposium (AsianHOST). :1—6.
Successive approximation register analog-to-digital converter (SAR ADC) is widely adopted in the Internet of Things (IoT) systems due to its simple structure and high energy efficiency. Unfortunately, SAR ADC dissipates various and unique power features when it converts different input signals, leading to severe vulnerability to power side-channel attack (PSA). The adversary can accurately derive the input signal by only measuring the power information from the analog supply pin (AVDD), digital supply pin (DVDD), and/or reference pin (Ref) which feed to the trained machine learning models. This paper first presents the detailed mathematical analysis of power side-channel attack (PSA) to SAR ADC, concluding that the power information from AVDD is the most vulnerable to PSA compared with the other supply pin. Then, an LSB-reused protection technique is proposed, which utilizes the characteristic of LSB from the SAR ADC itself to protect against PSA. Lastly, this technique is verified in a 12-bit 5 MS/s secure SAR ADC implemented in 65nm technology. By using the current waveform from AVDD, the adopted convolutional neural network (CNN) algorithms can achieve \textgreater99% prediction accuracy from LSB to MSB in the SAR ADC without protection. With the proposed protection, the bit-wise accuracy drops to around 50%.