Biblio

Found 1163 results

Filters: First Letter Of Title is R  [Clear All Filters]
2022-03-14
Basnet, Manoj, Poudyal, Subash, Ali, Mohd. Hasan, Dasgupta, Dipankar.  2021.  Ransomware Detection Using Deep Learning in the SCADA System of Electric Vehicle Charging Station. 2021 IEEE PES Innovative Smart Grid Technologies Conference - Latin America (ISGT Latin America). :1—5.
The Supervisory control and data acquisition (SCADA) systems have been continuously leveraging the evolution of network architecture, communication protocols, next-generation communication techniques (5G, 6G, Wi-Fi 6), and the internet of things (IoT). However, SCADA system has become the most profitable and alluring target for ransomware attackers. This paper proposes the deep learning-based novel ransomware detection framework in the SCADA controlled electric vehicle charging station (EVCS) with the performance analysis of three deep learning algorithms, namely deep neural network (DNN), 1D convolution neural network (CNN), and long short-term memory (LSTM) recurrent neural network. All three-deep learning-based simulated frameworks achieve around 97% average accuracy (ACC), more than 98% of the average area under the curve (AUC) and an average F1-score under 10-fold stratified cross-validation with an average false alarm rate (FAR) less than 1.88%. Ransomware driven distributed denial of service (DDoS) attack tends to shift the state of charge (SOC) profile by exceeding the SOC control thresholds. Also, ransomware driven false data injection (FDI) attack has the potential to damage the entire BES or physical system by manipulating the SOC control thresholds. It's a design choice and optimization issue that a deep learning algorithm can deploy based on the tradeoffs between performance metrics.
2022-09-20
Rajput, Prashant Hari Narayan, Sarkar, Esha, Tychalas, Dimitrios, Maniatakos, Michail.  2021.  Remote Non-Intrusive Malware Detection for PLCs based on Chain of Trust Rooted in Hardware. 2021 IEEE European Symposium on Security and Privacy (EuroS&P). :369—384.
Digitization has been rapidly integrated with manufacturing industries and critical infrastructure to increase efficiency, productivity, and reduce wastefulness, a transition being labeled as Industry 4.0. However, this expansion, coupled with the poor cybersecurity posture of these Industrial Internet of Things (IIoT) devices, has made them prolific targets for exploitation. Moreover, modern Programmable Logic Controllers (PLC) used in the Operational Technology (OT) sector are adopting open-source operating systems such as Linux instead of proprietary software, making such devices susceptible to Linux-based malware. Traditional malware detection approaches cannot be applied directly or extended to such environments due to the unique restrictions of these PLC devices, such as limited computational power and real-time requirements. In this paper, we propose ORRIS, a novel lightweight and out-of-the-device framework that detects malware at both kernel and user-level by processing the information collected using the Joint Test Action Group (JTAG) interface. We evaluate ORRIS against in-the-wild Linux malware achieving maximum detection accuracy of ≈99.7% with very few false-positive occurrences, a result comparable to the state-of-the-art commercial products. Moreover, we also develop and demonstrate a real-time implementation of ORRIS for commercial PLCs.
2022-04-18
Bonatti, Piero A., Sauro, Luigi, Langens, Jonathan.  2021.  Representing Consent and Policies for Compliance. 2021 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :283–291.
Being compliant with the GDPR (and data protection regulations in general) is a difficult task, that calls for manifold, computer-based automated support. In this context, several use cases related to the management and the enforcement of privacy policies and consent call for a machine-understandable policy language, equipped with reliable algorithms for compliance checking and explanations. In this paper, we outline a set of requirements for such languages and algorithms, and address such requirements with a framework based on a profile of OWL2 and a set of policy serializations based on popular formats such as ODRL and JSON. Such ``external'' policy syntax is translated into the ``internal'' OWL2 syntax, thereby enabling semantic compliance checking and explanations using specialized OWL2 reasoners. We provide a precise definition of both the OWL2 profile and the external policy language based on JSON.
2022-01-25
Pal, Partha, Paulos, Aaron, Schantz, Richard.  2021.  Resiliency and Antifragility in Modern Software Systems- A Concept Paper. 2021 IEEE International Conference on Autonomic Computing and Self-Organizing Systems Companion (ACSOS-C). :263—268.
The pervasive use of software systems and current threat environment demand that software systems not only survive cyberattacks, but also bounce back better, stronger, and faster. However, what constitutes a modern software system? Where should the security and resilience mechanisms be-in the application software or in the cloud environment where it runs? In this concept paper, we set up a context to pose these questions and present a roadmap to answer them. We describe challenges to achieving resilience and beyond, and outline potential research directions to stimulate discussion in the workshop.
2022-04-26
Pisharody, Sandeep, Bernays, Jonathan, Gadepally, Vijay, Jones, Michael, Kepner, Jeremy, Meiners, Chad, Michaleas, Peter, Tse, Adam, Stetson, Doug.  2021.  Realizing Forward Defense in the Cyber Domain. 2021 IEEE High Performance Extreme Computing Conference (HPEC). :1–7.

With the recognition of cyberspace as an operating domain, concerted effort is now being placed on addressing it in the whole-of-domain manner found in land, sea, undersea, air, and space domains. Among the first steps in this effort is applying the standard supporting concepts of security, defense, and deterrence to the cyber domain. This paper presents an architecture that helps realize forward defense in cyberspace, wherein adversarial actions are repulsed as close to the origin as possible. However, substantial work remains in making the architecture an operational reality including furthering fundamental research cyber science, conducting design trade-off analysis, and developing appropriate public policy frameworks.

2021-02-15
Reyad, O., Karar, M., Hamed, K..  2020.  Random Bit Generator Mechanism Based on Elliptic Curves and Secure Hash Function. 2019 International Conference on Advances in the Emerging Computing Technologies (AECT). :1–6.
Pseudorandom bit generators (PRBG) can be designed to take the advantage of some hard number theoretic problems such as the discrete logarithm problem (DLP). Such type of generators will have good randomness and unpredictability properties as it is so difficult to find an easy solution to the regarding mathematical dilemma. Hash functions in turn play a remarkable role in many cryptographic tasks to achieve various security strengths. In this paper, a pseudorandom bit generator mechanism that is based mainly on the elliptic curve discrete logarithm problem (ECDLP) and hash derivation function is proposed. The cryptographic hash functions are used in consuming applications that require various security strengths. In a good hash function, finding whatever the input that can be mapped to any pre-specified output is considered computationally infeasible. The obtained pseudorandom bits are tested with NIST statistical tests and it also could fulfill the up-to-date standards. Moreover, a 256 × 256 grayscale images are encrypted with the obtained pseudorandom bits following by necessary analysis of the cipher images for security prove.
2021-01-18
Ergün, S., Tanrıseven, S..  2020.  Random Number Generator Based on Skew-tent Map and Chaotic Sampling. 2020 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS). :224–227.
In this paper a novel random number generator is introduced and it is based on the Skew-tent discrete-time chaotic map. The RNG presented in this paper is made using the discrete-time chaotic map and chaotic sampling of regular waveform method together to increase the throughput and statistical quality of the output sequence. An explanation of the arithmetic model for the proposed design is given in this paper with an algebra confirmation for the generated bit stream that shows how it passes the primary four tests of the FIPS-140-2 test suit successfully. Finally the bit stream resulting from the hardware implementation of the circuit in a similar method has been confirmed to pass all NIST-800-22 test with no post processing. A presentation of the experimentally obtained results is given therefor proving the the circuit’s usefulness. The proposed RNG can be built with the integrated circuit.
2020-03-23
Choi, Jungyong, Shin, WoonSeob, Kim, Jonghyun, Kim, Ki-Hyung.  2020.  Random Seed Generation For IoT Key Generation and Key Management System Using Blockchain. 2020 International Conference on Information Networking (ICOIN). :663–665.
Recently, the Internet of Things (IoT) is growing rapidly. IoT sensors are attached to various devices, and information is detected, collected and utilized through various wired and wireless communication environments. As the IoT is used in various places, IoT devices face a variety of malicious attacks such as MITM and reverse engineering. To prevent these, encryption is required for device-to-device communication, and keys required for encryption must be properly managed. We propose a scheme to generate seed needed for key generation and a scheme to manage the public key using blockchain.
2021-01-18
Anupadma, S., Dharshini, B. S., Roshini, S., K, J. Singh.  2020.  Random selective block encryption technique for image cryptography using chaotic cryptography. 2020 International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE). :1–5.
Dynamic random growth technique and a hybrid chaotic map which is proposed in this paper are used to perform block-based image encryption. The plaintext attack can easily crack the cat map, as it is periodic, and therefore cat map securely used in which it can eliminate the cyclical occurrence and withstand the plaintext attack's effect. The diffusion process calculates the intermediate parameters according to the image block. For the generation of the random data stream in the chaotic map, we use an intermediate parameter as an initial parameter. In this way, the generated data stream depends on the plain text image that can withstand the attack on plain text. The experimental results of this process prove that the proposed dynamic random growth technique and a hybrid chaotic map for image encryption is a secured one in which it can be used in secured image transmission systems.
2021-02-22
Alzakari, N., Dris, A. B., Alahmadi, S..  2020.  Randomized Least Frequently Used Cache Replacement Strategy for Named Data Networking. 2020 3rd International Conference on Computer Applications Information Security (ICCAIS). :1–6.
To accommodate the rapidly changing Internet requirements, Information-Centric Networking (ICN) was recently introduced as a promising architecture for the future Internet. One of the ICN primary features is `in-network caching'; due to its ability to minimize network traffic and respond faster to users' requests. Therefore, various caching algorithms have been presented that aim to enhance the network performance using different measures, such as cache hit ratio and cache hit distance. Choosing a caching strategy is critical, and an adequate replacement strategy is also required to decide which content should be dropped. Thus, in this paper, we propose a content replacement scheme for ICN, called Randomized LFU that is implemented with respect to content popularity taking the time complexity into account. We use Abilene and Tree network topologies in our simulation models. The proposed replacement achieves encouraging results in terms of the cache hit ratio, inner hit, and hit distance and it outperforms FIFO, LRU, and Random replacement strategies.
2021-05-20
Sunehra, Dhiraj, Sreshta, V. Sai, Shashank, V., Kumar Goud, B. Uday.  2020.  Raspberry Pi Based Smart Wearable Device for Women Safety using GPS and GSM Technology. 2020 IEEE International Conference for Innovation in Technology (INOCON). :1—5.
Security has become a major concern for women, children and even elders in every walk of their life. Women are getting assaulted and molested, children are getting kidnapped, elder citizens are also facing many problems like robbery, etc. In this paper, a smart security solution called smart wearable device system is implemented using the Raspberry Pi3 for enhancing the safety and security of women/children. It works as an alert as well as a security system. It provides a buzzer alert alert to the people who are nearby to the user (wearing the smart device). The system uses Global Positioning System (GPS) to locate the user, sends the location of the user through SMS to the emergency contact and police using the Global System for Mobile Communications (GSM) / General Radio Packet Service (GPRS) technology. The device also captures the image of the assault and surroundings of the user or victim using USB Web Camera interfaced to the device and sends it as an E-mail alert to the emergency contact soon after the user presses the panic button present on Smart wearable device system.
2021-08-11
Chang, Rong N., Bhaskaran, Kumar, Dey, Prasenjit, Hsu, Hsianghan, Takeda, Seiji, Hama, Toshiyuki.  2020.  Realizing A Composable Enterprise Microservices Fabric with AI-Accelerated Material Discovery API Services. 2020 IEEE 13th International Conference on Cloud Computing (CLOUD). :313–320.
The complexity of building, deploying, and managing cross-organizational enterprise computing services with self-service, security, and quality assurances has been increasing exponentially in the era of hybrid multiclouds. AI-accelerated material discovery capabilities, for example, are desirable for enterprise application users to consume through business API services with assurance of satisfactory nonfunctional properties, e.g., enterprise-compliant self-service management of sharable sensitive data and machine learning capabilities at Internet scale. This paper presents a composable microservices based approach to creating and continuously improving enterprise computing services. Moreover, it elaborates on several key architecture design decisions for Navarch, a composable enterprise microservices fabric that facilitates consuming, managing, and composing enterprise API services. Under service management model of individual administration, every Navarch microservice is a managed composable API service that can be provided by an internal organization, an enterprise partner, or a public service provider. This paper also illustrates a Navarch-enabled systematic and efficient approach to transforming an AI-accelerated material discovery tool into secure, scalable, and composable enterprise microservices. Performance of the microservices can be continuously improved by exploiting advanced heterogeneous microservice hosting infrastructures. Factual comparative performance analyses are provided before the paper concludes with future work.
2021-10-04
Thakur, Subhasis, Breslin, John G..  2020.  Real-time Peer to Peer Energy Trade with Blockchain Offline Channels. 2020 IEEE International Conference on Power Systems Technology (POWERCON). :1–6.
Blockchain become a suitable platform for peer to peer energy trade as it facilitates secure interactions among parties with trust or a mutual trusted 3rd party. However, the scalability issue of blockchains is a problem for real-time energy trade to be completed within a small time duration. In this paper, we use offline channels for blockchains to circumvent scalability problems of blockchains for peer to peer energy trade with small trade duration. We develop algorithms to find stable coalitions for energy trade using blockchain offline channels. We prove that our solution is secure against adversarial prosumer behaviors, it supports real-time trade as the algorithm is guaranteed to find and record stable coalitions before a fixed time, and the coalition structure generated by the algorithm is efficient.
2022-02-10
Wang, Qianqian, Wang, Ben, Yu, Jiangfan, Schweizer, Kathrin, Nelson, Bradley J., Zhang, Li.  2020.  Reconfigurable Magnetic Microswarm for Thrombolysis under Ultrasound Imaging. 2020 IEEE International Conference on Robotics and Automation (ICRA). :10285–10291.
We propose thrombolysis using a magnetic nanoparticle microswarm with tissue plasminogen activator (tPA) under ultrasound imaging. The microswarm is generated in blood using an oscillating magnetic field and can be navigated with locomotion along both the long and short axis. By modulating the input field, the aspect ratio of the microswarm can be reversibly tuned, showing the ability to adapt to different confined environments. Simulation results indicate that both in-plane and out-of-plane fluid convection are induced around the microswarm, which can be further enhanced by tuning the aspect ratio of the microswarm. Under ultrasound imaging, the microswarm is navigated in a microchannel towards a blood clot and deformed to obtain optimal lysis. Experimental results show that the lysis rate reaches -0.1725 ± 0.0612 mm3/min in the 37°C blood environment under the influence of the microswarm-induced fluid convection and tPA. The lysis rate is enhanced 2.5-fold compared to that without the microswarm (-0.0681 ± 0.0263 mm3/min). Our method provides a new strategy to increase the efficiency of thrombolysis by applying microswarm-induced fluid convection, indicating that swarming micro/nanorobots have the potential to act as effective tools towards targeted therapy.
ISSN: 2577-087X
2021-02-23
Alshamrani, A..  2020.  Reconnaissance Attack in SDN based Environments. 2020 27th International Conference on Telecommunications (ICT). :1—5.
Software Defined Networking (SDN) is a promising network architecture that aims at providing high flexibility through the separation between network logic (control plane) and forwarding functions (data plane). This separation provides logical centralization of controllers, global network overview, ease of programmability, and a range of new SDN-compliant services. In recent years, the adoption of SDN in enterprise networks has been constantly increasing. In the meantime, new challenges arise in different levels such as scalability, management, and security. In this paper, we elaborate on complex security issues in the current SDN architecture. Especially, reconnaissance attack where attackers generate traffic for the goal of exploring existing services, assets, and overall network topology. To eliminate reconnaissance attack in SDN environment, we propose SDN-based solution by utilizing distributed firewall application, security policy, and OpenFlow counters. Distributed firewall application is capable of tracking the flow based on pre-defined states that would monitor the connection to sensitive nodes toward malicious activity. We utilize Mininet to simulate the testing environment. We are able to detect and mitigate this type of attack at early stage and in average around 7 second.
2021-02-15
Hu, X., Deng, C., Yuan, B..  2020.  Reduced-Complexity Singular Value Decomposition For Tucker Decomposition: Algorithm And Hardware. ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :1793–1797.
Tensors, as the multidimensional generalization of matrices, are naturally suited for representing and processing high-dimensional data. To date, tensors have been widely adopted in various data-intensive applications, such as machine learning and big data analysis. However, due to the inherent large-size characteristics of tensors, tensor algorithms, as the approaches that synthesize, transform or decompose tensors, are very computation and storage expensive, thereby hindering the potential further adoptions of tensors in many application scenarios, especially on the resource-constrained hardware platforms. In this paper, we propose a reduced-complexity SVD (Singular Vector Decomposition) scheme, which serves as the key operation in Tucker decomposition. By using iterative self-multiplication, the proposed scheme can significantly reduce the storage and computational costs of SVD, thereby reducing the complexity of the overall process. Then, corresponding hardware architecture is developed with 28nm CMOS technology. Our synthesized design can achieve 102GOPS with 1.09 mm2 area and 37.6 mW power consumption, and thereby providing a promising solution for accelerating Tucker decomposition.
2021-03-22
Wang, Z., Chen, L..  2020.  Re-encrypted Data Access Control Scheme Based on Blockchain. 2020 IEEE 6th International Conference on Computer and Communications (ICCC). :1757–1764.
Nowadays, massive amounts of data are stored in the cloud, how to access control the cloud data has become a prerequisite for protecting the security of cloud data. In order to address the problems of centralized control and privacy protection in current access control, we propose an access control scheme based on the blockchain and re-encryption technology, namely PERBAC-BC scheme. The access control policy is managed by the decentralized and immutability characteristics of blockchain, while the re-encryption is protected by the trusted computing characteristic of blockchain and the privacy is protected by the identity re-encryption technology. The overall structure diagram and detailed execution flow of the scheme are given in this paper. Experimental results show that, compared with the traditional hybrid encryption scheme, the time and space consumption is less when the system is expanded. Then, the time and space performance of each part of the scheme is simulated, and the security of blockchain is proved. The results also show that the time and space performance of the scheme are better and the security is stronger, which has certain stability and expandability.
2021-08-31
Adamov, Alexander, Carlsson, Anders.  2020.  Reinforcement Learning for Anti-Ransomware Testing. 2020 IEEE East-West Design Test Symposium (EWDTS). :1–5.
In this paper, we are going to verify the possibility to create a ransomware simulation that will use an arbitrary combination of known tactics and techniques to bypass an anti-malware defense. To verify this hypothesis, we conducted an experiment in which an agent was trained with the help of reinforcement learning to run the ransomware simulator in a way that can bypass anti-ransomware solution and encrypt the target files. The novelty of the proposed method lies in applying reinforcement learning to anti-ransomware testing that may help to identify weaknesses in the anti-ransomware defense and fix them before a real attack happens.
2021-02-16
Shi, Y., Sagduyu, Y. E., Erpek, T..  2020.  Reinforcement Learning for Dynamic Resource Optimization in 5G Radio Access Network Slicing. 2020 IEEE 25th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD). :1—6.
The paper presents a reinforcement learning solution to dynamic resource allocation for 5G radio access network slicing. Available communication resources (frequency-time blocks and transmit powers) and computational resources (processor usage) are allocated to stochastic arrivals of network slice requests. Each request arrives with priority (weight), throughput, computational resource, and latency (deadline) requirements, and if feasible, it is served with available communication and computational resources allocated over its requested duration. As each decision of resource allocation makes some of the resources temporarily unavailable for future, the myopic solution that can optimize only the current resource allocation becomes ineffective for network slicing. Therefore, a Q-learning solution is presented to maximize the network utility in terms of the total weight of granted network slicing requests over a time horizon subject to communication and computational constraints. Results show that reinforcement learning provides major improvements in the 5G network utility relative to myopic, random, and first come first served solutions. While reinforcement learning sustains scalable performance as the number of served users increases, it can also be effectively used to assign resources to network slices when 5G needs to share the spectrum with incumbent users that may dynamically occupy some of the frequency-time blocks.
2022-09-09
Sakriwala, Taher Saifuddin, Pandey, Vikas, Raveendran, Ranjith Kumar Sreenilayam.  2020.  Reliability Assessment Framework for Additive Manufactured Products. 2020 International Conference on Computational Performance Evaluation (ComPE). :350—354.
An increasing number of industries around the world are adopting advance manufacturing technologies for product design, among which additive manufacturing (AM) is gaining attention among aerospace, defense, automotive and health care domains. Products with complicated designs demanding lesser weight, improved performance and conformance are manufactured by companies using AM technologies. Some noticeable examples of ducting, airflow system and vent products in the aerospace domain can be seen being made out of AM techniques. One of the benefits being mentioned is the significant reduction in the number of components going into a finished product, thereby impacting the supply chain as well. However, one of the challenges in AM process is to reduce the process variation which affects the reliability of the product. To realize the true benefits of additively manufactured products, it is imperative to ensure that the reliability of AM products is similar or better than traditionally manufactured products. Current state of art for assessing reliability of traditionally manufactured products is mature. However, the reliability assessment framework for products manufactured by advanced technologies are being studied upon. In this direction, this paper highlights a structured reliability assessment framework for additive manufactured products, which will help in identifying, analyzing and mitigating reliability risks as part of product development life cycle.
2021-07-07
Elbasi, Ersin.  2020.  Reliable abnormal event detection from IoT surveillance systems. 2020 7th International Conference on Internet of Things: Systems, Management and Security (IOTSMS). :1–5.
Surveillance systems are widely used in airports, streets, banks, military areas, borders, hospitals, and schools. There are two types of surveillance systems which are real-time systems and offline surveillance systems. Usually, security people track videos on time in monitoring rooms to find out abnormal human activities. Real-time human tracking from videos is very expensive especially in airports, borders, and streets due to the huge number of surveillance cameras. There are a lot of research works have been done for automated surveillance systems. In this paper, we presented a new surveillance system to recognize human activities from several cameras using machine learning algorithms. Sequences of images are collected from cameras using the internet of things technology from indoor or outdoor areas. A feature vector is created for each recognized moving object, then machine learning algorithms are applied to extract moving object activities. The proposed abnormal event detection system gives very promising results which are more than 96% accuracy in Multilayer Perceptron, Iterative Classifier Optimizer, and Random Forest algorithms.
2021-01-11
Dikii, D. I..  2020.  Remote Access Control Model for MQTT Protocol. 2020 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). :288–291.
The author considers the Internet of Things security problems, namely, the organization of secure access control when using the MQTT protocol. Security mechanisms and methods that are employed or supported by the MQTT protocol have been analyzed. Thus, the protocol employs authentication by the login and password. In addition, it supports cryptographic processing over transferring data via the TLS protocol. Third-party services on OAuth protocol can be used for authentication. The authorization takes place by configuring the ACL-files or via third-party services and databases. The author suggests a device discretionary access control model of machine-to-machine interaction under the MQTT protocol, which is based on the HRU-model. The model entails six operators: the addition and deletion of a subject, the addition and deletion of an object, the addition and deletion of access privileges. The access control model is presented in a form of an access matrix and has three types of privileges: read, write, ownership. The model is composed in a way that makes it compatible with the protocol of a widespread version v3.1.1. The available types of messages in the MQTT protocol allow for the adjustment of access privileges. The author considered an algorithm with such a service data unit build that the unit could easily be distinguished in the message body. The implementation of the suggested model will lead to the minimization of administrator's involvement due to the possibility for devices to determine access privileges to the information resource without human involvement. The author suggests recommendations for security policies, when organizing an informational exchange in accordance with the MQTT protocol.
2021-09-30
Bagbaba, Ahmet Cagri, Jenihhin, Maksim, Ubar, Raimund, Sauer, Christian.  2020.  Representing Gate-Level SET Faults by Multiple SEU Faults at RTL. 2020 IEEE 26th International Symposium on On-Line Testing and Robust System Design (IOLTS). :1–6.
The advanced complex electronic systems increasingly demand safer and more secure hardware parts. Correspondingly, fault injection became a major verification milestone for both safety- and security-critical applications. However, fault injection campaigns for gate-level designs suffer from huge execution times. Therefore, designers need to apply early design evaluation techniques to reduce the execution time of fault injection campaigns. In this work, we propose a method to represent gate-level Single-Event Transient (SET) faults by multiple Single-Event Upset (SEU) faults at the Register-Transfer Level. Introduced approach is to identify true and false logic paths for each SET in the flip-flops' fan-in logic cones to obtain more accurate sets of flip-flops for multiple SEUs injections at RTL. Experimental results demonstrate the feasibility of the proposed method to successfully reduce the fault space and also its advantage with respect to state of the art. It was shown that the approach is able to reduce the fault space, and therefore the fault-injection effort, by up to tens to hundreds of times.
2021-03-29
Ye, F..  2020.  Research and Application of Improved APRIORI Algorithm Based on Hash Technology. 2020 Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC). :64–67.
Apriori Algorithm is the most Classic Association Rule Mining Algorithm, which has unique advantages, but it also has some disadvantages such as high overhead. This paper first describes Apriori Algorithm, points out its shortcomings, introduces related concepts, and then proposes a method based on Hash technology and compressed combination item set technology to improve APRIORI algorithm. This paper introduces the basic idea and the concrete process of the improvement in detail, analyzes the efficiency of the improved algorithm by the experiment, and advances the application of the improved algorithm in the library personalized service.
2021-02-22
Si, Y., Zhou, W., Gai, J..  2020.  Research and Implementation of Data Extraction Method Based on NLP. 2020 IEEE 14th International Conference on Anti-counterfeiting, Security, and Identification (ASID). :11–15.
In order to accurately extract the data from unstructured Chinese text, this paper proposes a rule-based method based on natural language processing and regular expression. This method makes use of the language expression rules of the data in the text and other related knowledge to form the feature word lists and rule template to match the text. Experimental results show that the accuracy of the designed algorithm is 94.09%.