Biblio

Found 1163 results

Filters: First Letter Of Title is R  [Clear All Filters]
2021-03-29
John, A., MC, A., Ajayan, A. S., Sanoop, S., Kumar, V. R..  2020.  Real-Time Facial Emotion Recognition System With Improved Preprocessing and Feature Extraction. 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT). :1328—1333.

Human emotion recognition plays a vital role in interpersonal communication and human-machine interaction domain. Emotions are expressed through speech, hand gestures and by the movements of other body parts and through facial expression. Facial emotions are one of the most important factors in human communication that help us to understand, what the other person is trying to communicate. People understand only one-third of the message verbally, and two-third of it is through non-verbal means. There are many face emotion recognition (FER) systems present right now, but in real-life scenarios, they do not perform efficiently. Though there are many which claim to be a near-perfect system and to achieve the results in favourable and optimal conditions. The wide variety of expressions shown by people and the diversity in facial features of different people will not aid in the process of coming up with a system that is definite in nature. Hence developing a reliable system without any flaws showed by the existing systems is a challenging task. This paper aims to build an enhanced system that can analyse the exact facial expression of a user at that particular time and generate the corresponding emotion. Datasets like JAFFE and FER2013 were used for performance analysis. Pre-processing methods like facial landmark and HOG were incorporated into a convolutional neural network (CNN), and this has achieved good accuracy when compared with the already existing models.

2021-04-08
Westland, T., Niu, N., Jha, R., Kapp, D., Kebede, T..  2020.  Relating the Empirical Foundations of Attack Generation and Vulnerability Discovery. 2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science (IRI). :37–44.
Automatically generating exploits for attacks receives much attention in security testing and auditing. However, little is known about the continuous effect of automatic attack generation and detection. In this paper, we develop an analytic model to understand the cost-benefit tradeoffs in light of the process of vulnerability discovery. We develop a three-phased model, suggesting that the cumulative malware detection has a productive period before the rate of gain flattens. As the detection mechanisms co-evolve, the gain will likely increase. We evaluate our analytic model by using an anti-virus tool to detect the thousands of Trojans automatically created. The anti-virus scanning results over five months show the validity of the model and point out future research directions.
Bouzar-Benlabiod, L., Rubin, S. H., Belaidi, K., Haddar, N. E..  2020.  RNN-VED for Reducing False Positive Alerts in Host-based Anomaly Detection Systems. 2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science (IRI). :17–24.
Host-based Intrusion Detection Systems HIDS are often based on anomaly detection. Several studies deal with anomaly detection by analyzing the system-call traces and get good detection rates but also a high rate off alse positives. In this paper, we propose a new anomaly detection approach applied on the system-call traces. The normal behavior learning is done using a Sequence to sequence model based on a Variational Encoder-Decoder (VED) architecture that integrates Recurrent Neural Networks (RNN) cells. We exploit the semantics behind the invoking order of system-calls that are then seen as sentences. A preprocessing phase is added to structure and optimize the model input-data representation. After the learning step, a one-class classification is run to categorize the sequences as normal or abnormal. The architecture may be used for predicting abnormal behaviors. The tests are achieved on the ADFA-LD dataset.
2021-06-24
Liu, Zhibin, Liu, Ziang, Huang, Yuanyuan, Liu, Xin, Zhou, Xiaokang, Zhou, Rui.  2020.  A Research of Distributed Security and QoS Testing Framework. 2020 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). :174—181.
Since the birth of the Internet, the quality of network service has been a widespread concerned problem. With the continuous development of communication and information technology, people gradually realized that the contradiction between the limited resources and the business requirements of network cannot be fundamentally solved. In this paper, we design and develop a distributed security quality of service testing framework called AweQoS(AwesomeQoS), to adapt to the current complex network environment. This paper puts forward the necessity that some security tests should be closely combined with quality of service testing, and further discusses the basic methods of distributed denial of service attack and defense. We introduce the design idea and working process of AweQoS in detail, and introduce a bandwidth test method based on user datagram protocol. Experimental results show that this new test method has better test performance and potential under the AweQoS framework.
2021-05-05
Zhu, Zheng, Tian, Yingjie, Li, Fan, Yang, Hongshan, Ma, Zheng, Rong, Guoping.  2020.  Research on Edge Intelligence-based Security Analysis Method for Power Operation System. 2020 7th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/2020 6th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom). :258—263.

At present, the on-site safety problems of substations and critical power equipment are mainly through inspection methods. Still, manual inspection is difficult, time-consuming, and uninterrupted inspection is not possible. The current safety management is mainly guaranteed by rules and regulations and standardized operating procedures. In the on-site environment, it is very dependent on manual execution and confirmation, and the requirements for safety supervision and operating personnel are relatively high. However, the reliability, the continuity of control and patrol cannot be fully guaranteed, and it is easy to cause security vulnerabilities and cause security accidents due to personnel slackness. In response to this shortcoming, this paper uses edge computing and image processing techniques to discover security risks in time and designs a deep convolution attention mechanism network to perform image processing. Then the network is cropped and compressed so that it can be processed at the edge, and the results are aggregated to the cloud for unified management. A comprehensive security assessment module is designed in the cloud to conduct an overall risk assessment of the results reported by all edges, and give an alarm prompt. The experimental results in the real environment show the effectiveness of this method.

2021-09-09
Zeke, LI, Zewen, CHEN, Chunyan, WANG, Zhiguang, XU, Ye, LIANG.  2020.  Research on Security Evaluation Technology of Wireless Access of Electric Power Monitoring System Based on Fuzzy. 2020 IEEE 3rd International Conference on Computer and Communication Engineering Technology (CCET). :318–321.
In order to solve the defense problem of wireless network security threats in new energy stations, a new wireless network security risk assessment model which proposes a wireless access security evaluation method for power monitoring system based on fuzzy theory, was established based on the study of security risk assessment methods in this paper. The security evaluation method first divides the security evaluation factor set, then determines the security evaluation weight coefficient, then calculates the network security level membership matrix, and finally combines specific examples to analyze the resulting data. this paper provided new ideas and methods for the wireless access security evaluation of new energy stations.
2021-03-29
Liu, W., Niu, H., Luo, W., Deng, W., Wu, H., Dai, S., Qiao, Z., Feng, W..  2020.  Research on Technology of Embedded System Security Protection Component. 2020 IEEE International Conference on Advances in Electrical Engineering and Computer Applications( AEECA). :21—27.

With the development of the Internet of Things (IoT), it has been widely deployed. As many embedded devices are connected to the network and massive amounts of security-sensitive data are stored in these devices, embedded devices in IoT have become the target of attackers. The trusted computing is a key technology to guarantee the security and trustworthiness of devices' execution environment. This paper focuses on security problems on IoT devices, and proposes a security architecture for IoT devices based on the trusted computing technology. This paper implements a security management system for IoT devices, which can perform integrity measurement, real-time monitoring and security management for embedded applications, providing a safe and reliable execution environment and whitelist-based security protection for IoT devices. This paper also designs and implements an embedded security protection system based on trusted computing technology, containing a measurement and control component in the kernel and a remote graphical management interface for administrators. The kernel layer enforces the integrity measurement and control of the embedded application on the device. The graphical management interface communicates with the remote embedded device through the TCP/IP protocol, and provides a feature-rich and user-friendly interaction interface. It implements functions such as knowledge base scanning, whitelist management, log management, security policy management, and cryptographic algorithm performance testing.

2021-03-15
Shahkar, S., Khorasani, K..  2020.  A Resilient Control Against Time-Delay Switch and Denial of Service Cyber Attacks on Load Frequency Control of Distributed Power Systems. 2020 IEEE Conference on Control Technology and Applications (CCTA). :718—725.

A time-delay switch (TDS) cyber attack is a deliberate attempt by malicious adversaries aiming at destabilizing a power system by impeding the communication signals to/from the centralized controller from/to the network sensors and generating stations that participate in the load frequency control (LFC). A TDS cyber attack can be targeting the sensing loops (transmitting network measurements to the centralized controller) or the control signals dispatched from the centralized controller to the governor valves of the generating stations. A resilient TDS control strategy is proposed and developed in this work that thwarts network instabilities that are caused by delays in the sensing loops, and control commands, and guarantees normal operation of the LFC mechanism. This will be achieved by augmenting the telemetered control commands with locally generated feedback control laws (i.e., “decentralized” control commands) taking measurements that are available and accessible at the power generating stations (locally) independent from all the telemetered signals to/from the centralized controller. Our objective is to devise a controller that is capable of circumventing all types of TDS and DoS (Denial of Service) cyber attacks as well as a broad class of False Data Injection (FDI) cyber attacks.

2020-12-17
Hu, Z., Niu, J., Ren, T., Li, H., Rui, Y., Qiu, Y., Bai, L..  2020.  A Resource Management Model for Real-time Edge System of Multiple Robots. 2020 7th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/2020 6th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom). :222—227.

Industrial robots are playing an important role in now a day industrial productions. However, due to the increasing in robot hardware modules and the rapid expansion of software modules, the reliability of operating systems for industrial robots is facing severe challenges, especially for the light-weight edge computing platforms. Based on current technologies on resource security isolation protection and access control, a novel resource management model for real-time edge system of multiple robot arms is proposed on light-weight edge devices. This novel resource management model can achieve the following functions: mission-critical resource classification, resource security access control, and multi-level security data isolation transmission. We also propose a fault location and isolation model on each lightweight edge device, which ensures the reliability of the entire system. Experimental results show that the robot operating system can meet the requirements of hierarchical management and resource access control. Compared with the existing methods, the fault location and isolation model can effectively locate and deal with the faults generated by the system.

2021-08-17
Arivarasi, A., Ramesh, P..  2020.  Review of Source Location Security Protection using Trust Authentication Schema. 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT). :215—222.
Wireless Sensor Networks promises the wireless network tools that does not require any stable infrastructure. Routing is the most important effect of network operation for the extended data rates within the network. Route discovery and route search sent the required packets from the target node source. However, good data transmission is also a threatening task in networks that provide efficient and energy-efficient routing. Various research activities focus on the topology control, source location privacy optimization and effective routing improvement in WSN. Wherein the existing security solutions both routing protocols and source location solutions disrupt the self-organizing nature of wireless sensor networks. Therefore, large overhead signatures are displayed and digitally verified by the requesting node. The cloud-based and routing based schemes have provided efficient security but there are a lot of obstacles for source data and travel path information security in the WSN network. This study is dedicated to calculate the desired number of deployments for sensor nodes in a given area once the selected metric achieves a certain level of coverage, while maintaining wireless connectivity in the network. A trusted node authentication scheme in wireless sensor network reduces the communication between nodes in a secure data transmission network, where shared cryptography is established all adjacent to the sensor node. Route discovery and retransmission increases the network overhead and increases the average end-to-end delay of the network in the conventional systems. This results in higher time complexity, communication overhead and less security of constrained sensor network resources.
2020-12-17
Lee, J., Chen, H., Young, J., Kim, H..  2020.  RISC-V FPGA Platform Toward ROS-Based Robotics Application. 2020 30th International Conference on Field-Programmable Logic and Applications (FPL). :370—370.

RISC-V is free and open standard instruction set architecture following reduced instruction set computer principle. Because of its openness and scalability, RISC-V has been adapted not only for embedded CPUs such as mobile and IoT market, but also for heavy-workload CPUs such as the data center or super computing field. On top of it, Robotics is also a good application of RISC-V because security and reliability become crucial issues of robotics system. These problems could be solved by enthusiastic open source community members as they have shown on open source operating system. However, running RISC-V on local FPGA becomes harder than before because now RISC-V foundation are focusing on cloud-based FPGA environment. We have experienced that recently released OS and toolchains for RISC-V are not working well on the previous CPU image for local FPGA. In this paper we design the local FPGA platform for RISC-V processor and run the robotics application on mainstream Robot Operating System on top of the RISC-V processor. This platform allow us to explore the architecture space of RISC-V CPU for robotics application, and get the insight of the RISC-V CPU architecture for optimal performance and the secure system.

2022-10-16
Bouhafs, Faycal, den Hartog, Frank, Raschella, Alessandro, Mackay, Michael, Shi, Qi, Sinanovic, Sinan.  2020.  Realizing Physical Layer Security in Large Wireless Networks using Spectrum Programmability. 2020 IEEE Globecom Workshops (GC Wkshps. :1–6.
This paper explores a practical approach to securing large wireless networks by applying Physical Layer Security (PLS). To date, PLS has mostly been seen as an information theory concept with few practical implementations. We present an Access Point (AP) selection algorithm that uses PLS to find an AP that offers the highest secrecy capacity to a legitimate user. We then propose an implementation of this algorithm using the novel concept of spectrum programming which extends Software-Defined Networking to the physical and data-link layers and makes wireless network management and control more flexible and scalable than traditional platforms. Our Wi-Fi network evaluation results show that our approach outperforms conventional solutions in terms of security, but at the expense of communication capacity, thus identifying a trade-off between security and performance. These results encourage implementation and extension to further wireless technologies.
2021-11-29
Zhang, Lin, Chen, Xin, Kong, Fanxin, Cardenas, Alvaro A..  2020.  Real-Time Attack-Recovery for Cyber-Physical Systems Using Linear Approximations. 2020 IEEE Real-Time Systems Symposium (RTSS). :205–217.
Attack detection and recovery are fundamental elements for the operation of safe and resilient cyber-physical systems. Most of the literature focuses on attack-detection, while leaving attack-recovery as an open problem. In this paper, we propose novel attack-recovery control for securing cyber-physical systems. Our recovery control consists of new concepts required for a safe response to attacks, which includes the removal of poisoned data, the estimation of the current state, a prediction of the reachable states, and the online design of a new controller to recover the system. The synthesis of such recovery controllers for cyber-physical systems has barely investigated so far. To fill this void, we present a formal method-based approach to online compute a recovery control sequence that steers a system under an ongoing sensor attack from the current state to a target state such that no unsafe state is reachable on the way. The method solves a reach-avoid problem on a Linear Time-Invariant (LTI) model with the consideration of an error bound $ε$ $\geq$ 0. The obtained recovery control is guaranteed to work on the original system if the behavioral difference between the LTI model and the system's plant dynamics is not larger than $ε$. Since a recovery control should be obtained and applied at the runtime of the system, in order to keep its computational time cost as low as possible, our approach firstly builds a linear programming restriction with the accordingly constrained safety and target specifications for the given reach-avoid problem, and then uses a linear programming solver to find a solution. To demonstrate the effectiveness of our method, we provide (a) the comparison to the previous work over 5 system models under 3 sensor attack scenarios: modification, delay, and reply; (b) a scalability analysis based on a scalable model to evaluate the performance of our method on large-scale systems.
2021-04-08
Cheng, J., He, R., Yuepeng, E., Wu, Y., You, J., Li, T..  2020.  Real-Time Encrypted Traffic Classification via Lightweight Neural Networks. GLOBECOM 2020 - 2020 IEEE Global Communications Conference. :1–6.
The fast growth of encrypted traffic puts forward burning requirements on the efficiency of traffic classification. Although deep learning models perform well in the classification, they sacrifice the efficiency to obtain high-precision results. To reduce the resource and time consumption, a novel and lightweight model is proposed in this paper. Our design principle is to “maximize the reuse of thin modules”. A thin module adopts the multi-head attention and the 1D convolutional network. Attributed to the one-step interaction of all packets and the parallelized computation of the multi-head attention mechanism, a key advantage of our model is that the number of parameters and running time are significantly reduced. In addition, the effectiveness and efficiency of 1D convolutional networks are proved in traffic classification. Besides, the proposed model can work well in a real time manner, since only three consecutive packets of a flow are needed. To improve the stability of the model, the designed network is trained with the aid of ResNet, layer normalization and learning rate warmup. The proposed model outperforms the state-of-the-art works based on deep learning on two public datasets. The results show that our model has higher accuracy and running efficiency, while the number of parameters used is 1.8% of the 1D convolutional network and the training time halves.
2021-08-31
Rathod, Pawan Manoj, Shende, RajKumar K..  2020.  Recommendation System using optimized Matrix Multiplication Algorithm. 2020 IEEE International Symposium on Sustainable Energy, Signal Processing and Cyber Security (iSSSC). :1–4.
Volume, Variety, Velocity, Veracity & Value of data has drawn the attention of many analysts in the last few years. Performance optimization and comparison are the main challenges we face when we talk about the humongous volume of data. Data Analysts use data for activities like forecasting or deep learning and to process these data various tools are available which helps to achieve this task with minimum efforts. Recommendation System plays a crucial role while running any business such as a shopping website or travel agency where the system recommends the user according to their search history, likes, comments, or their past order/booking details. Recommendation System works on various strategies such as Content Filtering, Collaborative Filtering, Neighborhood Methods, or Matrix Factorization methods. For achieving maximum efficiency and accuracy based on the data a specific strategy can be the best case or the worst case for that scenario. Matrix Factorization is the key point of interest in this work. Matrix Factorization strategy includes multiplication of user matrix and item matrix in-order to get a rating matrix that can be recommended to the users. Matrix Multiplication can be achieved by using various algorithms such as Naive Algorithm, Strassen Algorithm, Coppersmith - Winograd (CW) Algorithm. In this work, a new algorithm is proposed to achieve less amount of time and space complexity used in-order for performing matrix multiplication which helps to get the results much faster. By using the Matrix Factorization strategy with various Matrix Multiplication Algorithm we are going to perform a comparative analysis of the same to conclude the proposed algorithm is more efficient.
2021-06-28
Chen, Yi-Fan, Huang, Ding-Hsiang, Huang, Cheng-Fu, Lin, Yi-Kuei.  2020.  Reliability Evaluation for a Cloud Computer Network with Fog Computing. 2020 IEEE 20th International Conference on Software Quality, Reliability and Security Companion (QRS-C). :682–683.
The most recent and important developments in the field of computer networks are cloud and fog computing. In this study, modern cloud computer networks comprising computers, internet of things (IoT), fog servers, and cloud servers for data transmission, is investigated. A cloud computer networks can be modeled as a network with nodes and arcs, in which each arc represents a transmission line, and each node represents an IoT device, a fog server, or a cloud server. Each transmission line has several possible capacities and is regarded as a multistate. The network is termed a multi-state cloud computer network (MCCN). this study firstly constructs the mathematic model to elucidate the flow relationship among the IoT devices, edge servers, and cloud servers and subsequently develop an algorithm to evaluate the performance of the MCCN by calculating network reliability which is defined as the probability of the data being successfully processed by the MCCN.
2021-05-18
Li, Zesong, Yang, Hui, Ge, Junwei, Yu, Qinyong.  2020.  Research on Dynamic Detection Method of Buffer Overflow Vulnerabilities Based on Complete Boundary Test. 2020 IEEE 6th International Conference on Computer and Communications (ICCC). :2246–2250.
At present, when the device management application programs the devices (such as mobile terminals, Internet of things terminals and devices, etc.), buffer overflow will inevitably occur due to the defects of filter input condition setting, variable type conversion error, logical judgment error, pointer reference error and so on. For this kind of software and its running environment, it is difficult to reduce the false positive rate and false negative rate with traditional static detection method for buffer overflow vulnerability, while the coverage rate of dynamic detection method is still insufficient and it is difficult to achieve full automation. In view of this, this paper proposes an automatic dynamic detection method based on boundary testing, which has complete test data set and full coverage of defects. With this method, the input test points of the software system under test are automatically traversed, and each input test point is analyzed automatically to generate complete test data; driven by the above complete test data, the software under test runs automatically, in which the embedded dynamic detection code automatically judges the conditions of overflow occurrence, and returns the overflow information including the location of the error code before the overflow really occurs. Because the overflow can be located accurately without real overflow occurrence, this method can ensure the normal detection of the next input test point, thus ensuring the continuity of the whole automatic detection process and the full coverage of buffer overflow detection. The test results show that all the indexes meet the requirements of the method and design.
2021-05-03
Naik, Nikhil, Nuzzo, Pierluigi.  2020.  Robustness Contracts for Scalable Verification of Neural Network-Enabled Cyber-Physical Systems. 2020 18th ACM-IEEE International Conference on Formal Methods and Models for System Design (MEMOCODE). :1–12.
The proliferation of artificial intelligence based systems in all walks of life raises concerns about their safety and robustness, especially for cyber-physical systems including multiple machine learning components. In this paper, we introduce robustness contracts as a framework for compositional specification and reasoning about the robustness of cyber-physical systems based on neural network (NN) components. Robustness contracts can encompass and generalize a variety of notions of robustness which were previously proposed in the literature. They can seamlessly apply to NN-based perception as well as deep reinforcement learning (RL)-enabled control applications. We present a sound and complete algorithm that can efficiently verify the satisfaction of a class of robustness contracts on NNs by leveraging notions from Lagrangian duality to identify system configurations that violate the contracts. We illustrate the effectiveness of our approach on the verification of NN-based perception systems and deep RL-based control systems.
Luo, Lan, Zhang, Yue, Zou, Cliff, Shao, Xinhui, Ling, Zhen, Fu, Xinwen.  2020.  On Runtime Software Security of TrustZone-M Based IoT Devices. GLOBECOM 2020 - 2020 IEEE Global Communications Conference. :1–7.
Internet of Things (IoT) devices have been increasingly integrated into our daily life. However, such smart devices suffer a broad attack surface. Particularly, attacks targeting the device software at runtime are challenging to defend against if IoT devices use resource-constrained microcontrollers (MCUs). TrustZone-M, a TrustZone extension for MCUs, is an emerging security technique fortifying MCU based IoT devices. This paper presents the first security analysis of potential software security issues in TrustZone-M enabled MCUs. We explore the stack-based buffer overflow (BOF) attack for code injection, return-oriented programming (ROP) attack, heap-based BOF attack, format string attack, and attacks against Non-secure Callable (NSC) functions in the context of TrustZone-M. We validate these attacks using the Microchip SAM L11 MCU, which uses the ARM Cortex-M23 processor with the TrustZone-M technology. Strategies to mitigate these software attacks are also discussed.
2021-09-01
Walter, Dominik, Witterauf, Michael, Teich, Jürgen.  2020.  Real-time Scheduling of I/O Transfers for Massively Parallel Processor Arrays. 2020 18th ACM-IEEE International Conference on Formal Methods and Models for System Design (MEMOCODE). :1—11.
The following topics are dealt with: formal verification; formal specification; cyber-physical systems; program verification; mobile robots; control engineering computing; temporal logic; security of data; Internet of Things; traffic engineering computing.
2021-07-08
Long, Saiqin, Li, Zhetao, Xing, Yun, Tian, Shujuan, Li, Dongsheng, Yu, Rong.  2020.  A Reinforcement Learning-Based Virtual Machine Placement Strategy in Cloud Data Centers. :223—230.
{With the widespread use of cloud computing, energy consumption of cloud data centers is increasing which mainly comes from IT equipment and cooling equipment. This paper argues that once the number of virtual machines on the physical machines reaches a certain level, resource competition occurs, resulting in a performance loss of the virtual machines. Unlike most papers, we do not impose placement constraints on virtual machines by giving a CPU cap to achieve the purpose of energy savings in cloud data centers. Instead, we use the measure of performance loss to weigh. We propose a reinforcement learning-based virtual machine placement strategy(RLVMP) for energy savings in cloud data centers. The strategy considers the weight of virtual machine performance loss and energy consumption, which is finally solved with the greedy strategy. Simulation experiments show that our strategy has a certain improvement in energy savings compared with the other algorithms.
2021-04-27
Yang, H., Bai, Y., Zou, Z., Zhang, Q., Wang, B., Yang, R..  2020.  Research on Data Security Sharing Mechanism of Power Internet of Things Based on Blockchain. 2020 IEEE 9th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). 9:2029—2032.

The rapid growth of power Internet of Things devices has led to traditional data security sharing mechanisms that are no longer suitable for attribute and permission management of massive devices. In response to this problem, this article proposes a blockchain-based data security sharing mechanism for the power Internet of Things, which reduces the risk of data leakage through decentralization in the architecture and promotes the integration of multiple information and methods.

2021-05-25
Fauser, Moritz, Zhang, Ping.  2020.  Resilience of Cyber-Physical Systems to Covert Attacks by Exploiting an Improved Encryption Scheme. 2020 59th IEEE Conference on Decision and Control (CDC). :5489—5494.
In recent years, the integration of encryption schemes into cyber-physical systems (CPS) has attracted much attention to improve the confidentiality of sensor signals and control input signals sent over the network. However, in principle an adversary can still modify the sensor signals and the control input signals, even though he does not know the concrete values of the signals. In this paper, we shall first show that a standard encryption scheme can not prevent some sophisticated attacks such as covert attacks, which remain invisible in the CPS with encrypted communication and a conventional diagnosis system. To cope with this problem, an improved encryption scheme is proposed to mask the communication and to cancel the influence of the attack signal out of the system. The basic idea is to swap the plaintext and the generated random value in the somewhat homomorphic encryption scheme to prevent a direct access of the adversary to the transmitted plaintext. It will be shown that the CPS with the improved encryption scheme is resilient to covert attacks. The proposed encryption scheme and the CPS structure are finally illustrated through the well-established quadruple-tank process.
2021-01-25
Naz, M. T., Zeki, A. M..  2020.  A Review of Various Attack Methods on Air-Gapped Systems. 2020 International Conference on Innovation and Intelligence for Informatics, Computing and Technologies (3ICT). :1—6.

In the past air-gapped systems that are isolated from networks have been considered to be very secure. Yet there have been reports of such systems being breached. These breaches have shown to use unconventional means for communication also known as covert channels such as Acoustic, Electromagnetic, Magnetic, Electric, Optical, and Thermal to transfer data. In this paper, a review of various attack methods that can compromise an air-gapped system is presented along with a summary of how efficient and dangerous a particular method could be. The capabilities of each covert channel are listed to better understand the threat it poses and also some countermeasures to safeguard against such attack methods are mentioned. These attack methods have already been proven to work and awareness of such covert channels for data exfiltration is crucial in various industries.

2021-06-02
Anbumani, P., Dhanapal, R..  2020.  Review on Privacy Preservation Methods in Data Mining Based on Fuzzy Based Techniques. 2020 2nd International Conference on Advances in Computing, Communication Control and Networking (ICACCCN). :689—694.
The most significant motivation behind calculations in data mining will play out excavation on incomprehensible past examples since the extremely large data size. During late occasions there are numerous phenomenal improvements in data assembling because of the advancement in the field of data innovation. Lately, Privacy issues in data Preservation didn't get a lot of consideration in the process mining network; nonetheless, a few protection safeguarding procedures in data change strategies have been proposed in the data mining network. There are more normal distinction between data mining and cycle mining exist yet there are key contrasts that make protection safeguarding data mining methods inadmissible to mysterious cycle data. Results dependent on the data mining calculation can be utilized in different regions, for example, Showcasing, climate estimating and Picture Examination. It is likewise uncovered that some delicate data has a result of the mining calculation. Here we can safeguard the Privacy by utilizing PPT (Privacy Preservation Techniques) strategies. Important Concept in data mining is privacy preservation Techniques (PPT) because data exchanged between different persons needs security, so that other persons didn't know what actual data transferred between the actual persons. Preservation in data mining deals that not showing the output information / data in the data mining by using various methods while the output data is precious. There are two techniques used for privacy preservation techniques. One is to alter the input information / data and another one is to alter the output information / data. The method is proposed for protection safeguarding in data base environmental factors is data change. This capacity has fuzzy three-sided participation with this strategy for data change to change the first data collection.