Biblio

Found 1163 results

Filters: First Letter Of Title is R  [Clear All Filters]
2023-02-17
Georgieva-Trifonova, Tsvetanka.  2022.  Research on Filtering Feature Selection Methods for E-Mail Spam Detection by Applying K-NN Classifier. 2022 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA). :1–4.
In the present paper, the application of filtering methods to select features when detecting email spam using the K-NN classifier is examined. The experiments include computation of the accuracy and F-measure of the e-mail texts classification with different methods for feature selection, different number of selected features and two ways to find the distance between dataset examples when executing K-NN classifier - Euclidean distance and cosine similarity. The obtained results are summarized and analyzed.
Khan, Shahnawaz, Yusuf, Ammar, Haider, Mohammad, Thirunavukkarasu, K., Nand, Parma, Imam Rahmani, Mohammad Khalid.  2022.  A Review of Android and iOS Operating System Security. 2022 ASU International Conference in Emerging Technologies for Sustainability and Intelligent Systems (ICETSIS). :67–72.
Mobile devices are an inseparable part of our lives. They have made it possible to access all the information and services anywhere at any time. Almost all of the organizations try to provide a mobile device-based solution to its users. However, this convenience has arisen the risk of losing personal information and has increased the threat to security. It has been observed recently that some of the mobile device manufacturers and mobile apps developers have lost the private information of their users to hackers. It has risen a great concern among mobile device users about their personal information. Android and iOS are the major operating systems for mobile devices and share over 99% of the mobile device market. This research aims to conduct a comparative analysis of the security of the components in the Android and iOS operating systems. It analyses the security from several perspectives such as memory randomization, application sandboxing, isolation, encryption, built-in antivirus, and data storage. From the analysis, it is evident that iOS is more secure than Android operating system. However, this security comes with a cost of losing the freedom.
2023-02-03
Choudhry, Mahipal Singh, Jetli, Vaibhav, Mathur, Siddhant, Saini, Yash.  2022.  A Review on Behavioural Biometric Authentication. 2022 International Conference on Computing, Communication, Security and Intelligent Systems (IC3SIS). :1–6.

With the advent of technology and owing to mankind’s reliance on technology, it is of utmost importance to safeguard people’s data and their identity. Biometrics have for long played an important role in providing that layer of security ranging from small scale uses such as house locks to enterprises using them for confidentiality purposes. In this paper we will provide an insight into behavioral biometrics that rely on identifying and measuring human characteristics or behavior. We review different types of behavioral parameters such as keystroke dynamics, gait, footstep pressure signals and more.

2023-01-06
Siriwardhana, Yushan, Porambage, Pawani, Liyanage, Madhusanka, Ylianttila, Mika.  2022.  Robust and Resilient Federated Learning for Securing Future Networks. 2022 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit). :351—356.
Machine Learning (ML) and Artificial Intelligence (AI) techniques are widely adopted in the telecommunication industry, especially to automate beyond 5G networks. Federated Learning (FL) recently emerged as a distributed ML approach that enables localized model training to keep data decentralized to ensure data privacy. In this paper, we identify the applicability of FL for securing future networks and its limitations due to the vulnerability to poisoning attacks. First, we investigate the shortcomings of state-of-the-art security algorithms for FL and perform an attack to circumvent FoolsGold algorithm, which is known as one of the most promising defense techniques currently available. The attack is launched with the addition of intelligent noise at the poisonous model updates. Then we propose a more sophisticated defense strategy, a threshold-based clustering mechanism to complement FoolsGold. Moreover, we provide a comprehensive analysis of the impact of the attack scenario and the performance of the defense mechanism.
Roy, Arunava, Dasgupta, Dipankar.  2022.  A Robust Framework for Adaptive Selection of Filter Ensembles to Detect Adversarial Inputs. 2022 52nd Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W). :59—67.
Existing defense strategies against adversarial attacks (AAs) on AI/ML are primarily focused on examining the input data streams using a wide variety of filtering techniques. For instance, input filters are used to remove noisy, misleading, and out-of-class inputs along with a variety of attacks on learning systems. However, a single filter may not be able to detect all types of AAs. To address this issue, in the current work, we propose a robust, transferable, distribution-independent, and cross-domain supported framework for selecting Adaptive Filter Ensembles (AFEs) to minimize the impact of data poisoning on learning systems. The optimal filter ensembles are determined through a Multi-Objective Bi-Level Programming Problem (MOBLPP) that provides a subset of diverse filter sequences, each exhibiting fair detection accuracy. The proposed framework of AFE is trained to model the pristine data distribution to identify the corrupted inputs and converges to the optimal AFE without vanishing gradients and mode collapses irrespective of input data distributions. We presented preliminary experiments to show the proposed defense outperforms the existing defenses in terms of robustness and accuracy.
2023-07-31
Zhang, Liangjun, Tao, Kai, Qian, Weifeng, Wang, Weiming, Liang, Junpeng, Cai, Yi, Feng, Zhenhua.  2022.  Real-Time FPGA Investigation of Interplay Between Probabilistic Shaping and Forward Error Correction. Journal of Lightwave Technology. 40:1339—1345.
In this work, we implement a complete probabilistic amplitude shaping (PAS) architecture on a field-programmable gate array (FPGA) platform to study the interplay between probabilistic shaping (PS) and forward error correction (FEC). Due to the fully parallelized input–output interfaces based on look up table (LUT) and low computational complexity without high-precision multiplication, hierarchical distribution matching (HiDM) is chosen as the solution for real time probabilistic shaping. In terms of FEC, we select two kinds of the mainstream soft decision-forward error correction (SD-FEC) algorithms currently used in optical communication system, namely Open FEC (OFEC) and soft-decision quasi-cyclic low-density parity-check (SD-QC-LDPC) codes. Through FPGA experimental investigation, we studied the impact of probabilistic shaping on OFEC and LDPC, respectively, based on PS-16QAM under moderate shaping, and also the impact of probabilistic shaping on LDPC code based on PS-64QAM under weak/strong shaping. The FPGA experimental results show that if pre-FEC bit error rate (BER) is used as the predictor, moderate shaping induces no degradation on the OFEC performance, while strong shaping slightly degrades the error correction performance of LDPC. Nevertheless, there is no error floor when the output BER is around 10-15. However, if normalized generalized mutual information (NGMI) is selected as the predictor, the performance degradation of LDPC will become insignificant, which means pre-FEC BER may not a good predictor for LDPC in probabilistic shaping scenario. We also studied the impact of residual errors after FEC decoding on HiDM. The FPGA experimental results show that the increased BER after HiDM decoding is within 10 times compared to post-FEC BER.
Conference Name: Journal of Lightwave Technology
2022-12-02
Fang, Wengao, Guan, Xiaojuan.  2022.  Research on iOS Remote Security Access Technology Based on Zero Trust. 2022 IEEE 6th Information Technology and Mechatronics Engineering Conference (ITOEC). 6:238—241.

Under the situation of regular epidemic prevention and control, teleworking has gradually become a normal working mode. With the development of modern information technologies such as big data, cloud computing and mobile Internet, it's become a problem that how to build an effective security defense system to ensure the information security of teleworking in complex network environment while ensuring the availability, collaboration and efficiency of teleworking. One of the solutions is Zero Trust Network(ZTN), most enterprise infrastructures will operate in a hybrid zero trust/perimeter-based mode while continuing to invest in IT modernization initiatives and improve organization business processes. In this paper, we have systematically studied the zero trust principles, the logical components of zero trust architecture and the key technology of zero trust network. Based on the abstract model of zero trust architecture and information security technologies, a prototype has been realized which suitable for iOS terminals to access enterprise resources safely in teleworking mode.

2023-02-03
Li, Mingxuan, Li, Feng, Yin, Jun, Fei, Jiaxuan, Chen, Jia.  2022.  Research on Security Vulnerability Mining Technology for Terminals of Electric Power Internet of Things. 2022 IEEE 6th Information Technology and Mechatronics Engineering Conference (ITOEC). 6:1638–1642.
Aiming at the specificity and complexity of the power IoT terminal, a method of power IoT terminal firmware vulnerability detection based on memory fuzzing is proposed. Use the method of bypassing the execution to simulate and run the firmware program, dynamically monitor and control the execution of the firmware program, realize the memory fuzzing test of the firmware program, design an automatic vulnerability exploitability judgment plug-in for rules and procedures, and provide power on this basis The method and specific process of the firmware vulnerability detection of the IoT terminal. The effectiveness of the method is verified by an example.
ISSN: 2693-289X
2023-02-17
Amatov, Batyi, Lehniger, Kai, Langendorfer, Peter.  2022.  Return-Oriented Programming Gadget Catalog for the Xtensa Architecture. 2022 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops). :655–660.
This paper shows that the modern high customizable Xtensa architecture for embedded devices is exploitable by Return-Oriented Programming (ROP) attacks. We used a simple Hello-World application written with the RIOT OS as an almost minimal code basis for determining if the number of gadgets that can be found in this code base is sufficient to build a reasonably complex attack. We determined 859 found gadgets which are sufficient to create a gadget catalog for the Xtensa. Despite the code basis used being really small, the presented gadget catalog provides Turing completeness, which allows an arbitrary computation of any exploit program.
2022-12-06
Nisha, Dhingra, Akshaya, Sindhu, Vikas.  2022.  A Review of DIS-Flooding Attacks in RPL based IoT Network. 2022 International Conference on Communication, Computing and Internet of Things (IC3IoT). :1-6.

The “Internet of Things (IoT)” is a term that describes physical sensors, processing software, power and other technologies to connect or interchange information between systems and devices through the Internet and other forms of communication. RPL protocol can efficiently establish network routes, communicate routing information, and adjust the topology. The 6LoWPAN concept was born out of the belief that IP should protect even the tiniest devices, and for low-power devices, minimal computational capabilities should be permitted to join IoT. The DIS-Flooding against RPL-based IoT with its mitigation techniques are discussed in this paper.

Hkiri, Amal, Karmani, Mouna, Machhout, Mohsen.  2022.  The Routing Protocol for low power and lossy networks (RPL) under Attack: Simulation and Analysis. 2022 5th International Conference on Advanced Systems and Emergent Technologies (IC_ASET). :143-148.

Routing protocol for low power and lossy networks (RPL) is the underlying routing protocol of 6LoWPAN, a core communication standard for the Internet of Things. In terms of quality of service (QoS), device management, and energy efficiency, RPL beats competing wireless sensor and ad hoc routing protocols. However, several attacks could threaten the network due to the problem of unauthenticated or unencrypted control frames, centralized root controllers, compromised or unauthenticated devices. Thus, in this paper, we aim to investigate the effect of topology and Resources attacks on RPL.s efficiency. The Hello Flooding attack, Increase Number attack and Decrease Rank attack are the three forms of Resources attacks and Topology attacks respectively chosen to work on. The simulations were done to understand the impact of the three different attacks on RPL performances metrics including End-to-End Delay (E2ED), throughput, Packet Delivery Ratio (PDR) and average power consumption. The findings show that the three attacks increased the E2ED, decreased the PDR and the network throughput, and degrades the network’, which further raises the power consumption of the network nodes.

2022-12-20
Song, Suhwan, Hur, Jaewon, Kim, Sunwoo, Rogers, Philip, Lee, Byoungyoung.  2022.  R2Z2: Detecting Rendering Regressions in Web Browsers through Differential Fuzz Testing. 2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE). :1818–1829.
A rendering regression is a bug introduced by a web browser where a web page no longer functions as users expect. Such rendering bugs critically harm the usability of web browsers as well as web applications. The unique aspect of rendering bugs is that they affect the presented visual appearance of web pages, but those web pages have no pre-defined correct appearance. Therefore, it is challenging to automatically detect errors in their appearance. In practice, web browser vendors rely on non-trivial and time-prohibitive manual analysis to detect and handle rendering regressions. This paper proposes R2Z2, an automated tool to find rendering regressions. R2Z2 uses the differential fuzz testing approach, which repeatedly compares the rendering results of two different versions of a browser while providing the same HTML as input. If the rendering results are different, R2Z2 further performs cross browser compatibility testing to check if the rendering difference is indeed a rendering regression. After identifying a rendering regression, R2Z2 will perform an in-depth analysis to aid in fixing the regression. Specifically, R2Z2 performs a delta-debugging-like analysis to pinpoint the exact browser source code commit causing the regression, as well as inspecting the rendering pipeline stages to pinpoint which pipeline stage is responsible. We implemented a prototype of R2Z2 particularly targeting the Chrome browser. So far, R2Z2 found 11 previously undiscovered rendering regressions in Chrome, all of which were confirmed by the Chrome developers. Importantly, in each case, R2Z2 correctly reported the culprit commit. Moreover, R2Z2 correctly pin-pointed the culprit rendering pipeline stage in all but one case.
ISSN: 1558-1225
2023-02-17
K, Devaki, L, Leena Jenifer.  2022.  Re-Encryption Model for Multi-Block Data Updates in Network Security. 2022 International Conference on Applied Artificial Intelligence and Computing (ICAAIC). :1331–1336.
Nowadays, online cloud storage networks can be accessed by third parties. Businesses that host large data centers buy or rent storage space from individuals who need to store their data. According to customer needs, data hub operators visualise the data and expose the cloud storage for storing data. Tangibly, the resources may wander around numerous servers. Data resilience is a prior need for all storage methods. For routines in a distributed data center, distributed removable code is appropriate. A safe cloud cache solution, AES-UCODR, is proposed to decrease I/O overheads for multi-block updates in proxy re-encryption systems. Its competence is evaluated using the real-world finance sector.
2023-05-12
Wang, Weiqiang.  2022.  Research on China's National Cultural Security Data Collection and Intelligent Analysis Framework in the New Era under the Networked Big Data. 2022 6th International Conference on Intelligent Computing and Control Systems (ICICCS). :786–789.
National cultural security has existed since ancient times, but it has become a focal proposition in the context of the times and real needs. From the perspective of national security, national cultural security is an important part of national security, and it has become a strategic task that cannot be ignored in defending national security. Cultural diversity and imbalance are the fundamental prerequisites for the existence of national cultural security. Finally, the artificial intelligence algorithm is used as the theoretical basis for this article, the connotation and characteristics of China's national cultural security theory; Xi Jinping's "network view"; network ideological security view. The fourth part is the analysis of the current cultural security problems, hazards and their root causes in our country.
ISSN: 2768-5330
2023-04-14
Sun, Yanling, Chen, Ning, Jiang, Tianjiao.  2022.  Research on Image Encryption based on Generalized M-J Set. 2022 IEEE 2nd International Conference on Electronic Technology, Communication and Information (ICETCI). :1165–1168.
With the rapid development of information technology, hacker invasion, Internet fraud and privacy disclosure and other events frequently occur, therefore information security issues become the focus of attention. Protecting the secure transmission of information has become a hot topic in today's research. As the carrier of information, image has the characteristics of vivid image and large amount of information. It has become an indispensable part of people's communication. In this paper, we proposed the key simulation analysis research based on M-J set. The research uses a complex iterative mapping to construct M set. On the basis of the constructed M set, the constructed Julia set is used to form the encryption key. The experimental results show that the generalized M-set has the characteristics of chaotic characteristic and initial value sensitivity, and the complex mapping greatly exaggerates the key space. The research on the key space based on the generalized M-J set is helpful to improve the effect of image encryption.
2023-02-03
Li, Zhiqiang, Han, Shuai.  2022.  Research on Physical Layer Security of MIMO Two-way Relay System. ICC 2022 - IEEE International Conference on Communications. :3311–3316.
MIMO system makes full use of the space dimension, in the era of increasingly tense spectrum resources, which greatly improves the spectrum efficiency and is one of the future communication support technologies. At the same time, considering the high cost of direct communication between the two parties in a long distance, the relay communication mode has been paid more and more attention. In relay communication network, each node connected by relay has different security levels. In order to forward the information of all nodes, the relay node has the lowest security permission level. Therefore, it is meaningful to study the physical layer security problem in MIMO two-way relay system with relay as the eavesdropper. In view of the above situation, this paper proposes the physical layer security model of MIMO two-way relay cooperative communication network, designs a communication matching grouping algorithm with low complexity and a two-step carrier allocation optimization algorithm, which improves the total security capacity of the system. At the same time, theoretical analysis and simulation verify the effectiveness of the proposed algorithm.
ISSN: 1938-1883
2022-12-09
Zeng, Ranran, Lin, Yue, Li, Xiaoyu, Wang, Lei, Yang, Jie, Zhao, Dexin, Su, Minglan.  2022.  Research on the Implementation of Real-Time Intelligent Detection for Illegal Messages Based on Artificial Intelligence Technology. 2022 11th International Conference on Communications, Circuits and Systems (ICCCAS). :278—284.
In recent years, the detection of illegal and harmful messages which plays an significant role in Internet service is highly valued by the government and society. Although artificial intelligence technology is increasingly applied to actual operating systems, it is still a big challenge to be applied to systems that require high real-time performance. This paper provides a real-time detection system solution based on artificial intelligence technology. We first introduce the background of real-time detection of illegal and harmful messages. Second, we propose a complete set of intelligent detection system schemes for real-time detection, and conduct technical exploration and innovation in the media classification process including detection model optimization, traffic monitoring and automatic configuration algorithm. Finally, we carry out corresponding performance verification.
2022-12-01
Barnard, Pieter, Macaluso, Irene, Marchetti, Nicola, DaSilva, Luiz A..  2022.  Resource Reservation in Sliced Networks: An Explainable Artificial Intelligence (XAI) Approach. ICC 2022 - IEEE International Conference on Communications. :1530—1535.
The growing complexity of wireless networks has sparked an upsurge in the use of artificial intelligence (AI) within the telecommunication industry in recent years. In network slicing, a key component of 5G that enables network operators to lease their resources to third-party tenants, AI models may be employed in complex tasks, such as short-term resource reservation (STRR). When AI is used to make complex resource management decisions with financial and service quality implications, it is important that these decisions be understood by a human-in-the-loop. In this paper, we apply state-of-the-art techniques from the field of Explainable AI (XAI) to the problem of STRR. Using real-world data to develop an AI model for STRR, we demonstrate how our XAI methodology can be used to explain the real-time decisions of the model, to reveal trends about the model’s general behaviour, as well as aid in the diagnosis of potential faults during the model’s development. In addition, we quantitatively validate the faithfulness of the explanations across an extensive range of XAI metrics to ensure they remain trustworthy and actionable.
2023-02-17
Lychko, Sergey, Tsoy, Tatyana, Li, Hongbing, Martínez-García, Edgar A., Magid, Evgeni.  2022.  ROS Network Security for a Swing Doors Automation in a Robotized Hospital. 2022 International Siberian Conference on Control and Communications (SIBCON). :1–6.
Internet of Medical Things (IoMT) is a rapidly growing branch of IoT (Internet of Things), which requires special treatment to cyber security due to confidentiality of healthcare data and patient health threat. Healthcare data and automated medical devices might become vulnerable targets of malicious cyber-attacks. While a large number of robotic applications, including medical and healthcare, employ robot operating system (ROS) as their backbone, not enough attention is paid for ROS security. The paper discusses a security of ROS-based swing doors automation in the context of a robotic hospital framework, which should be protected from cyber-attacks.
ISSN: 2380-6516
2023-01-20
Abdelrahman, Mahmoud S., Kassem, A., Saad, Ahmed A., Mohammed, Osama A..  2022.  Real-Time Wide Area Event Identification and Analysis in Power Grid Based on EWAMS. 2022 IEEE Industry Applications Society Annual Meeting (IAS). :1–13.
Event detection and classification are crucial to power system stability. The Wide Area Measurement System (WAMS) technology helps in enhancing wide area situational awareness by providing useful synchronized information to the grid control center in order to accurately identify various power system events. This paper demonstrates the viability of using EWAMS (Egyptian Wide Area Measurement System) data as one of the evolving technologies of smart grid to identify extreme events within the Egyptian power grid. The proposed scheme is based on online synchronized measurements of wide-area monitoring devices known as Frequency Disturbance Recorders (FDRs) deployed at selected substations within the grid. The FDR measures the voltage, voltage angle, and frequency at the substation and streams the processed results to the Helwan University Host Server (HUHS). Each FDR is associated with a timestamp reference to the Global Positioning System (GPS) base. An EWAMS-based frequency disturbance detection algorithm based on the rate of frequency deviation is developed to identify varies types of events such as generator trip and load shedding. Based on proper thresholding on the frequency and rate of change of frequency of the Egyptian grid, different types of events have been captured in many locations during the supervision and monitoring the operation of the grid. EWAMS historical data is used to analyze a wide range of data pre-event, during and post-event for future enhancement of situational awareness as well as decision making.
2023-02-28
Kim, Byoungkoo, Yoon, Seungyong, Kang, Yousung.  2022.  Reinforcement of IoT Open Platform Security using PUF -based Device Authentication. 2022 13th International Conference on Information and Communication Technology Convergence (ICTC). :1969—1971.
Recently, as the use of Internet of Things (IoT) devices has expanded, security issues have emerged. As a solution to the IoT security problem, PUF (Physical Unclonable Function) technology has been proposed, and research on key generation or device authentication using it has been actively conducted. In this paper, we propose a method to apply PUF-based device authentication technology to the Open Connectivity Foundation (OCF) open platform. The proposed method can greatly improve the security level of IoT open platform by utilizing PUF technology.
2023-07-10
Gao, Xuefei, Yao, Chaoyu, Hu, Liqi, Zeng, Wei, Yin, Shengyang, Xiao, Junqiu.  2022.  Research and Implementation of Artificial Intelligence Real-Time Recognition Method for Crack Edge Based on ZYNQ. 2022 2nd International Conference on Algorithms, High Performance Computing and Artificial Intelligence (AHPCAI). :460—465.
At present, pavement crack detection mainly depends on manual survey and semi-automatic detection. In the process of damage detection, it will inevitably be subject to the subjective influence of inspectors and require a lot of identification time. Therefore, this paper proposes the research and implementation of artificial intelligence real-time recognition method of crack edge based on zynq, which combines edge calculation technology with deep learning, The improved ipd-yolo target detection network is deployed on the zynq zu2cg edge computing development platform. The mobilenetv3 feature extraction network is used to replace the cspdarknet53 feature extraction network in yolov4, and the deep separable convolution is used to replace the conventional convolution. Combined with the advantages of the deep neural network in the cloud and edge computing, the rock fracture detection oriented to the edge computing scene is realized. The experimental results show that the accuracy of the network on the PID data set The recall rate and F1 score have been improved to better meet the requirements of real-time identification of rock fractures.
2023-01-20
Feng, Guocong, Huang, Qingshui, Deng, Zijie, Zou, Hong, Zhang, Jiafa.  2022.  Research on cloud security construction of power grid in smart era. 2022 IEEE 2nd International Conference on Data Science and Computer Application (ICDSCA). :976—980.
With the gradual construction and implementation of cloud computing, the information security problem of the smart grid has surfaced. Therefore, in the construction of the smart grid cloud computing platform, information security needs to be considered in planning, infrastructure, and management at the same time, and it is imminent to build an information network that is secure from terminal to the platform to data. This paper introduces the concept of cloud security technology and the latest development of cloud security technology and discusses the main strategies of cloud security construction in electric power enterprises.
2023-04-28
Deng, Zijie, Feng, Guocong, Huang, Qingshui, Zou, Hong, Zhang, Jiafa.  2022.  Research on Enterprise Information Security Risk Assessment System Based on Bayesian Neural Network. 2022 IEEE 2nd International Conference on Data Science and Computer Application (ICDSCA). :938–941.
Information security construction is a social issue, and the most urgent task is to do an excellent job in information risk assessment. The bayesian neural network currently plays a vital role in enterprise information security risk assessment, which overcomes the subjective defects of traditional assessment results and operates efficiently. The risk quantification method based on fuzzy theory and Bayesian regularization BP neural network mainly uses fuzzy theory to process the original data and uses the processed data as the input value of the neural network, which can effectively reduce the ambiguity of language description. At the same time, special neural network training is carried out for the confusion that the neural network is easy to fall into the optimal local problem. Finally, the risk is verified and quantified through experimental simulation. This paper mainly discusses the problem of enterprise information security risk assessment based on a Bayesian neural network, hoping to provide strong technical support for enterprises and organizations to carry out risk rectification plans. Therefore, the above method provides a new information security risk assessment idea.
2023-01-13
Huang, Qingshui, Deng, Zijie, Feng, Guocong, Zou, Hong, Zhang, Jiafa.  2022.  Research on system construction under the operation mode of power grid cloud security management platform. 2022 IEEE 2nd International Conference on Data Science and Computer Application (ICDSCA). :981–984.
A unified cloud management platform is the key to efficient and secure management of cloud computing resources. To improve the operation effect of the power cloud service platform, power companies can use the micro-service architecture technology to carry out data processing, information integration, and innovative functional architecture of the power cloud service platform, realize the optimal design of the power cloud service platform and improve the power cloud service platform-security service quality. According to the technical requirements of the power cloud security management platform, this paper designs the technical architecture of the power unified cloud security management platform and expounds on the functional characteristics of the cloud security management platform to verify the feasibility and effectiveness of the cloud security management platform.