Biblio

Found 2465 results

Filters: First Letter Of Title is S  [Clear All Filters]
2022-02-03
Rivera, Sean, State, Radu.  2021.  Securing Robots: An Integrated Approach for Security Challenges and Monitoring for the Robotic Operating System (ROS). 2021 IFIP/IEEE International Symposium on Integrated Network Management (IM). :754—759.
Robotic systems are becoming an ever-increasing part of everyday life due to their capacity to carry out physical tasks on behalf of human beings. Found in nearly every facet of our lives, robotic systems are used domestically, in small and large-scale factories, for the production and processing of agriculture, for military operations, to name a few. The Robotic Operating System (ROS) is the standard operating system used today for the development of modular robotic systems. However, in its development, ROS has been notorious for the absence of security mechanisms, placing people in danger both physically and digitally. This dissertation summary presents the development of a suite of ROS tools, leading up to the development of a modular, secure framework for ROS. An integrated approach for the security of ROS-enabled robotic systems is described, to set a baseline for the continual development to increase ROS security. The work culminates in the ROS security tool ROS-Immunity, combining internal system defense, external system verification, and automated vulnerability detection in an integrated tool that, in conjunction with Secure-ROS, provides a suite of defenses for ROS systems against malicious attackers.
2022-02-04
Sharif, Amer, Ginting, Dewi S., Dias, Arya D..  2021.  Securing the Integrity of PDF Files using RSA Digital Signature and SHA-3 Hash Function. 2021 International Conference on Data Science, Artificial Intelligence, and Business Analytics (DATABIA). :154–159.
Signatures are used on documents as written proof that the document was verified by the person indicated. Signature also indicated that the document originated from the signer if the document is transferred to another party. A document maybe in physical print form but may also be a digital print. A digital print requires additional security since a digital document may easily be altered by anyone although the said document is signed using a photographed or scanned signature. One of the means of security is by using the RSA Digital Signature method which is a combination of the RSA algorithm with Digital Signature. RSA algorithm is one of the public key cryptography algorithms, while Digital Signature is a security scheme which may guarantee the authenticity, non-repudiation, and integrity of a file by means of a hash function. This research implemented a web-based combination of RSA Digital Signature with SHA-3 hash function to secure the integrity of PDF files using PHP programming language. The result is a web-based system which could guarantee the authenticity, non repudiation and integrity of PDF files. Testing were carried out on six different sizes of PDF files ranging from 6 KB, up to 23285 KB on three different web browsers: Google Chrome, Microsoft Edge, and Mozilla Firefox. Average processing times of signing and verifying on each browsers were 1.3309 seconds, 1.2565 seconds, and 1.2667 seconds.
2022-05-24
Aranha, Helder, Masi, Massimiliano, Pavleska, Tanja, Sellitto, Giovanni Paolo.  2021.  Securing the metrological chain in IoT environments: an architectural framework. 2021 IEEE International Workshop on Metrology for Industry 4.0 IoT (MetroInd4.0 IoT). :704–709.
The Internet of Things (IoT) paradigm, with its highly distributed and interconnected architecture, is gaining ground in Industry 4.0 and in critical infrastructures like the eHealth sector, the Smart Grid, Intelligent Power Plants and Smart Mobility. In these critical sectors, the preservation of metrological characteristics and their traceability is a strong legal requirement, just like cyber-security, since it offers the ground for liability. Any vulnerability in the system in which the metrological network is embedded can endanger human lives, the environment or entire economies. This paper presents a framework comprised of a methodology and some tools for the governance of the metrological chain. The proposed methodology combines the RAMI 4.0 model, which is a Reference Architecture used in the field of Industrial Internet of Things (IIoT), with the the Reference Model for Information Assurance & Security (RMIAS), a framework employed to guarantee information assurance and security, merging them with the well established paradigms to preserve calibration and referability of metrological instruments. Thus, metrological traceability and cyber-security are taken into account straight from design time, providing a conceptual space to achieve security by design and to support the maintenance of the metrological chain over the entire system lifecycle. The framework lends itself to be completely automatized with Model Checking to support automatic detection of non conformity and anomalies at run time.
2022-06-15
Fan, Wenjun, Hong, Hsiang-Jen, Wuthier, Simeon, Zhou, Xiaobo, Bai, Yan, Chang, Sang-Yoon.  2021.  Security Analyses of Misbehavior Tracking in Bitcoin Network. 2021 IEEE International Conference on Blockchain and Cryptocurrency (ICBC). :1–3.
Because Bitcoin P2P networking is permissionless by the application requirement, it is vulnerable against networking threats based on identity/credential manipulations such as Sybil and spoofing attacks. The current Bitcoin implementation keeps track of its peer's networking misbehaviors through ban score. In this paper, we investigate the security problems of the ban-score mechanism and discover that the ban score is not only ineffective against the Bitcoin Message-based DoS attacks but also vulnerable to a Defamation attack. In the Defamation attack, the network adversary can exploit the ban-score mechanism to defame innocent peers.
2022-05-10
Aklamati, Davies, Abdus-Shakur, Basheerah, Kacem, Thabet.  2021.  Security Analysis of AWS-based Video Surveillance Systems. 2021 International Conference on Engineering and Emerging Technologies (ICEET). :1–6.
In the last few years, Cloud computing technology has benefited many organizations that have embraced it as a basis for revamping the IT infrastructure. Cloud computing utilizes Internet capabilities in order to use other computing resources. Amazon Web Services (AWS) is one of the most widely used cloud providers that leverages the endless computing capabilities that the cloud technology has to offer. AWS is continuously evolving to offer a variety of services, including but not limited to, infrastructure as a service (IaaS), platform as a service (PaaS) and packaged software as a service. Among the other important services offered by AWS is Video Surveillance as a Service (VSaaS) that is a hosted cloud-based video surveillance service. Even though this technology is complex and widely used, some security experts have pointed out that some of its vulnerabilities can be exploited in launching attacks aimed at cloud technologies. In this paper, we present a holistic security analysis of cloud-based video surveillance systems by examining the vulnerabilities, threats, and attacks that these technologies are susceptible to. We illustrate our findings by implementing several of these attacks on a test bed representing an AWS-based video surveillance system. The main contributions of our paper are: (1) we provided a holistic view of the security model of cloud based video surveillance summarizing the underlying threats, vulnerabilities and mitigation techniques (2) we proposed a novel taxonomy of attacks targeting such systems (3) we implemented several related attacks targeting cloud-based video surveillance system based on an AWS test environment and provide some guidelines for attack mitigation. The outcome of the conducted experiments showed that the vulnerabilities of the Internet Protocol (IP) and other protocols granted access to unauthorized VSaaS files. We aim that our proposed work on the security of cloud-based video surveillance systems will serve as a reference for cybersecurity researchers and practitioners who aim to conduct research in this field.
2022-09-30
Uddin, Gias.  2021.  Security and Machine Learning Adoption in IoT: A Preliminary Study of IoT Developer Discussions. 2021 IEEE/ACM 3rd International Workshop on Software Engineering Research and Practices for the IoT (SERP4IoT). :36–43.
Internet of Things (IoT) is defined as the connection between places and physical objects (i.e., things) over the internet/network via smart computing devices. IoT is a rapidly emerging paradigm that now encompasses almost every aspect of our modern life. As such, it is crucial to ensure IoT devices follow strict security requirements. At the same time, the prevalence of IoT devices offers developers a chance to design and develop Machine Learning (ML)-based intelligent software systems using their IoT devices. However, given the diversity of IoT devices, IoT developers may find it challenging to introduce appropriate security and ML techniques into their devices. Traditionally, we learn about the IoT ecosystem/problems by conducting surveys of IoT developers/practitioners. Another way to learn is by analyzing IoT developer discussions in popular online developer forums like Stack Overflow (SO). However, we are aware of no such studies that focused on IoT developers’ security and ML-related discussions in SO. This paper offers the results of preliminary study of IoT developer discussions in SO. First, we collect around 53K IoT posts (questions + accepted answers) from SO. Second, we tokenize each post into sentences. Third, we automatically identify sentences containing security and ML-related discussions. We find around 12% of sentences contain security discussions, while around 0.12% sentences contain ML-related discussions. There is no overlap between security and ML-related discussions, i.e., IoT developers discussing security requirements did not discuss ML requirements and vice versa. We find that IoT developers discussing security issues frequently inquired about how the shared data can be stored, shared, and transferred securely across IoT devices and users. We also find that IoT developers are interested to adopt deep neural network-based ML models into their IoT devices, but they find it challenging to accommodate those into their resource-constrained IoT devices. Our findings offer implications for IoT vendors and researchers to develop and design novel techniques for improved security and ML adoption into IoT devices.
2022-11-18
Alkhafajee, A. R., Al-Muqarm, Abbas M. Ali, Alwan, Ali H., Mohammed, Zaid Rajih.  2021.  Security and Performance Analysis of MQTT Protocol with TLS in IoT Networks. 2021 4th International Iraqi Conference on Engineering Technology and Their Applications (IICETA). :206—211.
Internet of Things (IoT) is a sophisticated concept of the traditional internet. In IoT, all things in our lives can be connected with the internet or with each other to exchange data and perform specific functions through the network. However, combining several devices-especially by unskilled users-may pose a number of security risks. In addition, some commonly used communication protocols in the IoT area are not secure. Security, on the other hand, increases overhead by definition, resulting in performance degradation. The Message Queuing Telemetry Transport (MQTT) protocol is a lightweight protocol and can be considered as one of the most popular IoT protocols, it is a publish/subscribe messaging transport protocol that uses a client-server architecture. MQTT is built to run over TCP protocol, thus it does not provide any level of security by default. Therefore, Transport Layer Security (TLS) can be used to ensure the security of the MQTT protocol. This paper analyzed the impact on the performance and security of the MQTT protocol in two cases. The first case, when using TLS protocol to support the security of the MQTT protocol. The second case, using the traditional MQTT without providing any level of security for the exchanged data. The results indicated that there is a tradeoff between the performance and the security when using MQTT protocol with and without the presence of TLS protocol.
Gandhi, Vidhyotma, Ramkumar, K.R., Kaur, Amanpreet, Kaushal, Payal, Chahal, Jasmeen Kaur, Singh, Jaiteg.  2021.  Security and privacy in IoT, Cloud and Augmented Reality. 2021 6th International Conference on Signal Processing, Computing and Control (ISPCC). :131—135.
Internet of Things (IoT), Cloud and Augmented Reality (AR) are the emerging and developing technologies and are at the horizon and hype of their life cycle. Lots of commercial applications based on IoT, cloud and AR provide unrestricted access to data. The real-time applications based on these technologies are at the cusp of their innovations. The most frequent security attacks for IoT, cloud and AR applications are DDoS attacks. In this paper a detailed account of various DDoS attacks that can be the hindrance of many important sensitive services and can degrade the overall performance of recent services which are purely based on network communications. The DDoS attacks should be dealt with carefully and a set of a new generations of algorithm need to be developed to mitigate the problems caused by non-repudiation kinds of attacks.
2021-12-20
Mikhailova, Vasilisa D., Shulika, Maria G., Basan, Elena S., Peskova, Olga Yu..  2021.  Security architecture for UAV. 2021 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT). :0431–0434.
Cyber-physical systems are used in many areas of human life. But people do not pay enough attention to ensuring the security of these systems. As a result of the resulting security gaps, an attacker can launch an attack, not only shutting down the system, but also having some negative impact on the environment. The article examines denial of service attacks in ad-hoc networks, conducts experiments and considers the consequences of their successful execution. As a result of the research, it was determined that an attack can be detected by changes in transmitted traffic and processor load. The cyber-physical system operates on stable algorithms, and even if legal changes occur, they can be easily distinguished from those caused by the attack. The article shows that the use of statistical methods for analyzing traffic and other parameters can be justified for detecting an attack. This study shows that each attack affects traffic in its own way and creates unique patterns of behavior change. The experiments were carried out according to methodology with changings in the intensity of the attacks, with a change in normal behavior. The results of this study can further be used to implement a system for detecting attacks on cyber-physical systems. The collected datasets can be used to train the neural network.
2022-02-03
Yankson, Benjamin, K, Javed Vali, Hung, Patrick C. K., Iqbal, Farkhund, Ali, Liaqat.  2021.  Security Assessment for Zenbo Robot Using Drozer and mobSF Frameworks. 2021 11th IFIP International Conference on New Technologies, Mobility and Security (NTMS). :1—7.
These days, almost everyone has been entirely relying on mobile devices and mobile related applications running on Android Operating Systems, the most used Mobile Operating System in the world with the largest market share. These Mobile devices and applications can become an information goldmine for hackers and are considered one of the significant concerns mobile users face who stand a chance of being victimized during data breach from hackers due to lapse in information security and controls. Such challenge can be put to bare through systematic digital forensic analysis through penetration testing for a humanoid robot like Zenbo, which run Android OS and related application, to help identify associated security vulnerabilities and develop controls required to improve security using popular penetration testing tools such as Drozer, Mobile Application Security framework (mobSF), and AndroBugs with the help of Santoku Linux distribution.
2022-07-15
Sánchez, Ricardo Andrés González, Bernal, Davor Julián Moreno, Parada, Hector Dario Jaimes.  2021.  Security assessment of Nosql Mongodb, Redis and Cassandra database managers. 2021 Congreso Internacional de Innovación y Tendencias en Ingeniería (CONIITI). :1—7.
The advancement of technology in the creation of new tools to solve problems such as information storage generates proportionally developing methods that search for security flaws or breaches that compromise said information. The need to periodically generate security reports on database managers is given by the complexity and number of attacks that can be carried out today. This project seeks to carry out an evaluation of the security of NoSQL database managers. The work methodology is developed according to the order of the objectives, it begins by synthesizing the types of vulnerabilities, attacks and protection schemes limited to MongoDB, Redis and Apache Cassandra. Once established, a prototype of a web system that stores information with a non-relational database will be designed on which a series of attacks defined by a test plan will be applied seeking to add, consult, modify or eliminate information. Finally, a report will be presented that sets out the attacks carried out, the way in which they were applied, the results, possible countermeasures, security advantages and disadvantages for each manager and the conclusions obtained. Thus, it is possible to select which tool is more convenient to use for a person or organization in a particular case. The results showed that MongoDB is more vulnerable to NoSQL injection attacks, Redis is more vulnerable to attacks registered in the CVE and that Cassandra is more complex to use but is less vulnerable.
2022-04-19
Gharib, Anastassia, Ibnkahla, Mohamed.  2021.  Security Aware Cluster Head Selection with Coverage and Energy Optimization in WSNs for IoT. ICC 2021 - IEEE International Conference on Communications. :1–6.
Nodes in wireless Internet of Things (IoT) sensor networks are heterogeneous in nature. This heterogeneity can come from energy and security resources available at the node level. Besides, these resources are usually limited. Efficient cluster head (CH) selection in rounds is the key to preserving energy resources of sensor nodes. However, energy and security resources are contradictory to one another. Therefore, it is challenging to ensure CH selection with appropriate security resources without decreasing energy efficiency. Coverage and energy optimization subject to a required security level can form a solution to the aforementioned trade-off. This paper proposes a security level aware CH selection algorithm in wireless sensor networks for IoT. The proposed method considers energy and security level updates for nodes and coverage provided by associated CHs. The proposed method performs CH selection in rounds and in a centralized parallel processing way, making it applicable to the IoT scenario. The proposed algorithm is compared to existing traditional and emerging CH selection algorithms that apply security mechanisms in terms of energy and security efficiencies.
2022-05-10
Shakil Sejan, Mohammad Abrar, Chung, Wan-Young.  2021.  Security Aware Indoor Visible Light Communication. 2021 IEEE Photonics Conference (IPC). :1–2.
This paper represents the experimental implementation of an encryption-based visible light communication system for indoor communication over 14m, two single LED transmitters as the data source, and four receivers considered as data receivers for performance evaluation.
2022-02-07
Chen, Wenbin, Chen, Yuxin, Jiao, Yishuo, Liu, Quanchun.  2021.  Security Awareness Scheme of Edge Computing in IoT Systems. 2021 IEEE 4th International Conference on Computer and Communication Engineering Technology (CCET). :332–335.
As edge computing has been widely used in IoT (Internet of Things) systems, the security has become one of important issues for IoT. Because of a large amount of private information stored in edge computing devices, it makes edge computing devices attractive to various kinds attacks. To deal with this challenge, this paper proposes a security awareness scheme for edge computing devices in IoT system. Test results show that the proposed approach can improve services-oriented security situation of IoT systems based on edge computing.
2022-08-26
Doynikova, Elena V., Fedorchenko, Andrei V., Novikova, Evgenia S., U shakov, Igor A., Krasov, Andrey V..  2021.  Security Decision Support in the Control Systems based on Graph Models. 2021 IV International Conference on Control in Technical Systems (CTS). :224—227.
An effective response against information security violations in the technical systems remains relevant challenge nowadays, when their number, complexity, and the level of possible losses are growing. The violation can be caused by the set of the intruder's consistent actions. In the area of countermeasure selection for a proactive and reactive response against security violations, there are a large number of techniques. The techniques based on graph models seem to be promising. These models allow representing the set of actions caused the violation. Their advantages include the ability to forecast violations for timely decision-making on the countermeasures, as well as the ability to analyze and consider the coverage of countermeasures in terms of steps caused the violation. The paper proposes and describes a decision support method for responding against information security violations in the technical systems based on the graph models, as well as the developed models, including the countermeasure model and the graph representing the set of actions caused the information security violation.
2022-01-10
Liu, Fuwen, Su, Li, Yang, Bo, Du, Haitao, Qi, Minpeng, He, Shen.  2021.  Security Enhancements to Subscriber Privacy Protection Scheme in 5G Systems. 2021 International Wireless Communications and Mobile Computing (IWCMC). :451–456.
Subscription permanent identifier has been concealed in the 5G systems by using the asymmetric encryption scheme as specified in standard 3GPP TS 33.501 to protect the subscriber privacy. The standardized scheme is however subject to the SUPI guess attack as the public key of the home network is publicly available. Moreover, it lacks the inherent mechanism to prevent SUCI replay attacks. In this paper, we propose three methods to enhance the security of the 3GPP scheme to thwart the SUPI guess attack and replay attack. One of these methods is suggested to be used to strengthen the security of the current subscriber protection scheme.
2022-07-01
Pham-Thi-Dan, Ngoc, Ho-Van, Khuong, Do-Dac, Thiem, Vo-Que, Son, Pham-Ngoc, Son.  2021.  Security for Jamming-Aided Energy Harvesting Cognitive Radio Networks. 2021 International Symposium on Electrical and Electronics Engineering (ISEE). :125—128.
We investigate cognitive radio networks where the unlicensed sender operates in the overlay mode to relay the information of the licensed transmitter as well as send its individual information. To secure information broadcasted by the unlicensed sender against the wire-tapper, we invoke jammers to limit eavesdropping. Also, to exploit efficiently radio frequency energy in licensed signals, we propose the unlicensed sender and all jammers to scavenge this energy source. To assess the security measures of both licensed and unlicensed networks, we first derive rigorous closed-form formulas of licensed/unlicensed secrecy outage probabilities. Next, we validate these formulas with Monte-Carlo simulations before using them to achieve insights into the security capability of the proposed jamming-aided energy harvesting cognitive radio networks in crucial system parameters.
2022-09-30
Kumar, Vinod, Jha, Rakesh Kumar, Jain, Sanjeev.  2021.  Security Issues in Narrowband-IoT: Towards Green Communication. 2021 International Conference on COMmunication Systems & NETworkS (COMSNETS). :369–371.
In the security platform of Internet of Things (IoT), a licensed Low Power Wide Area Network (LPWAN) technology, named Narrowband Internet of Things (NB-IoT) is playing a vital role in transferring the information between objects. This technology is preferable for applications having a low data rate. As the number of subscribers increases, attack possibilities raise simultaneously. So securing the transmission between the objects becomes a big task. Bandwidth spoofing is one of the most sensitive attack that can be performed on the communication channel that lies between the access point and user equipment. This research proposal objective is to secure the system from the attack based on Unmanned Aerial vehicles (UAVs) enabled Small Cell Access (SCA) device which acts as an intruder between the user and valid SCA and investigating the scenario when any intruder device comes within the communication range of the NB-IoT enabled device. Here, this article also proposed a mathematical solution for the proposed scenario.
2022-10-20
Al-Haija, Qasem Abu.  2021.  On the Security of Cyber-Physical Systems Against Stochastic Cyber-Attacks Models. 2021 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS). :1—6.
Cyber Physical Systems (CPS) are widely deployed and employed in many recent real applications such as automobiles with sensing technology for crashes to protect passengers, automated homes with various smart appliances and control units, and medical instruments with sensing capability of glucose levels in blood to keep track of normal body function. In spite of their significance, CPS infrastructures are vulnerable to cyberattacks due to the limitations in the computing, processing, memory, power, and transmission capabilities for their endpoint/edge appliances. In this paper, we consider a short systematic investigation for the models and techniques of cyberattacks and threats rate against Cyber Physical Systems with multiple subsystems and redundant elements such as, network of computing devices or storage modules. The cyberattacks are assumed to be externally launched against the Cyber Physical System during a prescribed operational time unit following stochastic distribution models such as Poisson probability distribution, negative-binomial probability distribution and other that have been extensively employed in the literature and proved their efficiency in modeling system attacks and threats.
2022-05-20
Kodwani, Gaurav, Arora, Shashank, Atrey, Pradeep K..  2021.  On Security of Key Derivation Functions in Password-based Cryptography. 2021 IEEE International Conference on Cyber Security and Resilience (CSR). :109–114.
Most common user authentication methods use some form of password or a combination of passwords. However, encryption schemes are generally not directly compatible with user passwords and thus, Password-Based Key Derivation Functions (PBKDFs) are used to convert user passwords into cryptographic keys. In this paper, we analyze the theoretical security of PBKDF2 and present two vulnerabilities, γ-collision and δ-collision. Using AES-128 as our exemplar, we show that due to γ-collision, text encrypted with one user password can be decrypted with γ 1 different passwords. We also provide a proof that finding− a collision in the derived key for AES-128 requires δ lesser calls to PBKDF2 than the known Birthday attack. Due to this, it is possible to break password-based AES-128 in O(264) calls, which is equivalent to brute-forcing DES.
2022-07-29
Ismaeel, Khaled, Naumchev, Alexandr, Sadovykh, Andrey, Truscan, Dragos, Enoiu, Eduard Paul, Seceleanu, Cristina.  2021.  Security Requirements as Code: Example from VeriDevOps Project. 2021 IEEE 29th International Requirements Engineering Conference Workshops (REW). :357–363.
This position paper presents and illustrates the concept of security requirements as code – a novel approach to security requirements specification. The aspiration to minimize code duplication and maximize its reuse has always been driving the evolution of software development approaches. Object-Oriented programming (OOP) takes these approaches to the state in which the resulting code conceptually maps to the problem that the code is supposed to solve. People nowadays start learning to program in the primary school. On the other hand, requirements engineers still heavily rely on natural language based techniques to specify requirements. The key idea of this paper is: artifacts produced by the requirements process should be treated as input to the regular object-oriented analysis. Therefore, the contribution of this paper is the presentation of the major concepts for the security requirements as the code method that is illustrated with a real industry example from the VeriDevOps project.
2022-08-26
Li, Kai, Yang, Dawei, Bai, Liang, Wang, Tianjun.  2021.  Security Risk Assessment Method of Edge Computing Container Based on Dynamic Game. 2021 IEEE 6th International Conference on Cloud Computing and Big Data Analytics (ICCCBDA). :195—199.
Compared with other virtualization technologies, container technology is widely used in edge computing because of its low cost, high reliability, high flexibility and fast portability. However, the use of container technology can alleviate the pressure of massive data, but also bring complex and diverse security problems. Reliable information security risk assessment method is the key to ensure the smooth application of container technology. According to the risk assessment theory, a security risk assessment method for edge computing containers based on dynamic game theory is proposed. Aiming at the complex container security attack and defense process, the container system's security model is constructed based on dynamic game theory. By combining the attack and defense matrix, the Nash equilibrium solution of the model is calculated, and the dynamic process of the mutual game between security defense and malicious attackers is analyzed. By solving the feedback Nash equilibrium solution of the model, the optimal strategies of the attackers are calculated. Finally, the simulation tool is used to solve the feedback Nash equilibrium solution of the two players in the proposed model, and the experimental environment verifies the usability of the risk assessment method.
2022-11-18
Cha, Shi-Cho, Shiung, Chuang-Ming, Lin, Gwan-Yen, Hung, Yi-Hsuan.  2021.  A Security Risk Management Framework for Permissioned Blockchain Applications. 2021 IEEE International Conference on Smart Internet of Things (SmartIoT). :301—310.
As permissioned blockchain becomes a common foundation of blockchain-based applications for current organizations, related stakeholders need a means to assess the security risks of the applications. Therefore, this study proposes a security risk management framework for permissioned blockchain applications. The framework divides itself into different implementation stacks and provides guidelines to control the security risks of permissioned blockchain applications. According to the best of our knowledge, this study is the first research that provides a means to evaluate the security risks of permissioned blockchain applications from a holistic point of view. If users can trust the applications that adopted this framework, this study can hopefully contribute to the adoption of permissioned blockchain technologies.
2022-02-03
Vijayasundara, S.M., Udayangani, N.K.S., Camillus, P.E., Jayatunga, E.H..  2021.  Security Robot for Real-time Monitoring and Capturing. 2021 10th International Conference on Information and Automation for Sustainability (ICIAfS). :434—439.
Autonomous navigation of a robot is more challenging in an uncontrolled environment owing to the necessity of coordination among several activities. This includes, creating a map of the surrounding, localizing the robot inside the map, generating a motion plan consistent with the map, executing the plan with control and all other tasks involved concurrently. Moreover, autonomous navigation problems are significant for future robotics applications such as package delivery, security, cleaning, agriculture, surveillance, search and rescue, construction, and transportation which take place in uncontrolled environments. Therefore, an attempt has been made in this research to develop a robot which could function as a security agent for a house to address the aforesaid particulars. This robot has the capability to navigate autonomously in the prescribed map of the operating zone by the user. The desired map can be generated using a Light Detection and Ranging (LiDAR) sensor. For robot navigation, it requires to pick out the robot location accurately itself, otherwise robot will not move autonomously to a particular target. Therefore, Adaptive Monte Carlo Localization (AMCL) method was used to validate the accuracy of robot localization process. Moreover, additional sensors were placed around the building to sense the prevailing security threats from intruders with the aid of the robot.
2022-08-26
Chen, Xi, Qiao, Lei, Liu, Hongbiao, Ma, Zhi, Jiang, Jingjing.  2021.  Security Verification Method of Embedded Operating System Semaphore Mechanism based on Coq. 2021 2nd International Conference on Big Data & Artificial Intelligence & Software Engineering (ICBASE). :392–395.
The semaphore mechanism is an important part of the embedded operating system. Therefore, it is very necessary to ensure its safety. Traditional software testing methods are difficult to ensure 100% coverage of the program. Therefore, it is necessary to adopt a formal verfication method which proves the correctness of the program theoretically. This paper proposes a proof framework based on the theorem proof tool Coq: modeling the semaphore mechanism, extracting important properties from the requirement documents, and finally verifying that the semaphore mechanism can meet these properties, which means the correctness of the semaphore mechanism is proved and also illustrates the feasibility of the verification framework proposed in this paper, which lays a foundation for the verification of other modules of operating systems.