Biblio

Found 19604 results

2017-12-04
Thayananthan, V., Abdulkader, O., Jambi, K., Bamahdi, A. M..  2017.  Analysis of Cybersecurity Based on Li-Fi in Green Data Storage Environments. 2017 IEEE 4th International Conference on Cyber Security and Cloud Computing (CSCloud). :327–332.

Industrial networking has many issues based on the type of industries, data storage, data centers, and cloud computing, etc. Green data storage improves the scientific, commercial and industrial profile of the networking. Future industries are looking for cybersecurity solution with the low-cost resources in which the energy serving is the main problem in the industrial networking. To improve these problems, green data storage will be the priority because data centers and cloud computing deals with the data storage. In this analysis, we have decided to use solar energy source and different light rays as methodologies include a prism and the Li-Fi techniques. In this approach, light rays sent through the prism which allows us to transmit the data with different frequencies. This approach provides green energy and maximum protection within the data center. As a result, we have illustrated that cloud services within the green data center in industrial networking will achieve better protection with the low-cost energy through this analysis. Finally, we have to conclude that Li-Fi enhances the use of green energy and protection which are advantages to current and future industrial networking.

2018-05-15
J. Chai, P. Casau, R. G. Sanfelice.  2017.  Analysis of Event-triggered Control Algorithms using Hybrid Systems Tools. To appear in Proceedings of the IEEE Conference on Decision and Control.
2018-05-27
2017-09-28
[Anonymous].  2017.  Analysis of SEAndroid Policies: Combining MAC and DAC in Android. Annual Computer Security Application Conference.
2018-04-11
K, S. K., Sahoo, S., Mahapatra, A., Swain, A. K., Mahapatra, K. K..  2017.  Analysis of Side-Channel Attack AES Hardware Trojan Benchmarks against Countermeasures. 2017 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). :574–579.

Hardware Trojan (HT) is one of the well known hardware security issue in research community in last one decade. HT research is mainly focused on HT detection, HT defense and designing novel HT's. HT's are inserted by an adversary for leaking secret data, denial of service attacks etc. Trojan benchmark circuits for processors, cryptography and communication protocols from Trust-hub are widely used in HT research. And power analysis based side channel attacks and designing countermeasures against side channel attacks is a well established research area. Trust-Hub provides a power based side-channel attack promoting Advanced Encryption Standard (AES) HT benchmarks for research. In this work, we analyze the strength of AES HT benchmarks in the presence well known side-channel attack countermeasures. Masking, Random delay insertion and tweaking the operating frequency of clock used in sensitive operations are applied on AES benchmarks. Simulation and power profiling studies confirm that side-channel promoting HT benchmarks are resilient against these selected countermeasures and even in the presence of these countermeasures; an adversary can get the sensitive data by triggering the HT.

2018-06-04
2018-04-11
Wang, J. K., Peng, Chunyi.  2017.  Analysis of Time Delay Attacks Against Power Grid Stability. Proceedings of the 2Nd Workshop on Cyber-Physical Security and Resilience in Smart Grids. :67–72.

The modern power grid, as a critical national infrastructure, is operated as a cyber-physical system. While the Wide-Area Monitoring, Protection and Control Systems (WAMPCS) in the power grid ensures stable dynamical responses by allowing real-time remote control and collecting measurement over across the power grid, they also expose the power grid to potential cyber-attacks. In this paper, we analyze the effects of Time Delay Attacks (TDAs), which disturb stability of the power grid by simply delaying the transfer of measurement and control demands over the grid's cyber infrastructure. Different from the existing work which simulates TDAs' impacts under specific scenarios, we come up with a generic analytical framework to derive the TDAs' effective conditions. In particular, we propose three concepts of TDA margins, TDA boundary, and TDA surface to define the insecure zones where TDAs are able to destabilize the grid. The proposed concepts and analytical results are exemplified in the context of Load Frequency Control (LFC), but can be generalized to other power control applications.

2017-04-21
2018-02-02
Zha, X., Wang, X., Ni, W., Liu, R. P., Guo, Y. J., Niu, X., Zheng, K..  2017.  Analytic model on data security in VANETs. 2017 17th International Symposium on Communications and Information Technologies (ISCIT). :1–6.

Fast-changing topologies and uncoordinated transmissions are two critical challenges of implementing data security in vehicular ad-hoc networks (VANETs). We propose a new protocol, where transmitters adaptively switch between backing off retransmissions and changing keys to improve success rate. A new 3-dimensional (3-D) Markov model, which can analyze the proposed protocol with symmetric or asymmetric keys in terms of data security and connectivity, is developed. Analytical results, validated by simulations, show that the proposed protocol achieves substantially improved resistance against collusion attacks.

2018-02-06
Choucri, N., Agarwal, G..  2017.  Analytics for Smart Grid Cybersecurity. 2017 IEEE International Symposium on Technologies for Homeland Security (HST). :1–3.

Guidelines, directives, and policy statements are usually presented in ``linear'' text form - word after word, page after page. However necessary, this practice impedes full understanding, obscures feedback dynamics, hides mutual dependencies and cascading effects and the like, - even when augmented with tables and diagrams. The net result is often a checklist response as an end in itself. All this creates barriers to intended realization of guidelines and undermines potential effectiveness. We present a solution strategy using text as ``data'', transforming text into a structured model, and generate a network views of the text(s), that we then can use for vulnerability mapping, risk assessments and control point analysis. We apply this approach using two NIST reports on cybersecurity of smart grid, more than 600 pages of text. Here we provide a synopsis of approach, methods, and tools. (Elsewhere we consider (a) system-wide level, (b) aviation e-landscape, (c) electric vehicles, and (d) SCADA for smart grid).

2018-05-24
Hummel, Oliver, Burger, Stefan.  2017.  Analyzing Source Code for Automated Design Pattern Recommendation. Proceedings of the 3rd ACM SIGSOFT International Workshop on Software Analytics. :8–14.

Mastery of the subtleties of object-oriented programming lan- guages is undoubtedly challenging to achieve. Design patterns have been proposed some decades ago in order to support soft- ware designers and developers in overcoming recurring challeng- es in the design of object-oriented software systems. However, given that dozens if not hundreds of patterns have emerged so far, it can be assumed that their mastery has become a serious chal- lenge in its own right. In this paper, we describe a proof of con- cept implementation of a recommendation system that aims to detect opportunities for the Strategy design pattern that developers have missed so far. For this purpose, we have formalized natural language pattern guidelines from the literature and quantified them for static code analysis with data mined from a significant collection of open source systems. Moreover, we present the re- sults from analyzing 25 different open source systems with this prototype as it discovered more than 200 candidates for imple- menting the Strategy pattern and the encouraging results of a pre- liminary evaluation with experienced developers. Finally, we sketch how we are currently extending this work to other patterns.

2018-05-09
Korman, Matus, Välja, Margus, Björkman, Gunnar, Ekstedt, Mathias, Vernotte, Alexandre, Lagerström, Robert.  2017.  Analyzing the Effectiveness of Attack Countermeasures in a SCADA System. Proceedings of the 2Nd Workshop on Cyber-Physical Security and Resilience in Smart Grids. :73–78.

The SCADA infrastructure is a key component for power grid operations. Securing the SCADA infrastructure against cyber intrusions is thus vital for a well-functioning power grid. However, the task remains a particular challenge, not the least since not all available security mechanisms are easily deployable in these reliability-critical and complex, multi-vendor environments that host modern systems alongside legacy ones, to support a range of sensitive power grid operations. This paper examines how effective a few countermeasures are likely to be in SCADA environments, including those that are commonly considered out of bounds. The results show that granular network segmentation is a particularly effective countermeasure, followed by frequent patching of systems (which is unfortunately still difficult to date). The results also show that the enforcement of a password policy and restrictive network configuration including whitelisting of devices contributes to increased security, though best in combination with granular network segmentation.

2018-02-27
West, Andrew G..  2017.  Analyzing the Keystroke Dynamics of Web Identifiers. Proceedings of the 2017 ACM on Web Science Conference. :181–190.

Web identifiers such as usernames, hashtags, and domain names serve important roles in online navigation, communication, and community building. Therefore the entities that choose such names must ensure that end-users are able to quickly and accurately enter them in applications. Uniqueness requirements, a desire for short strings, and an absence of delimiters often constrain this name selection process. To gain perspective on the speed and correctness of name entry, we crowdsource the typing of 51,000+ web identifiers. Surface level analysis reveals, for example, that typing speed is generally a linear function of identifier length. Examining keystroke dynamics at finer granularity proves more interesting. First, we identify features predictive of typing time/accuracy, finding: (1) the commonality of character bi-grams inside a name, and (2) the degree of ambiguity when tokenizing a name - to be most indicative. A machine-learning model built over 10 such features exhibits moderate predictive capability. Second, we evaluate our hypothesis that users subconsciously insert pauses in their typing cadence where text delimiters (e.g., spaces) would exist, if permitted. The data generally supports this claim, suggesting its application alongside algorithmic tokenization methods, and possibly in name suggestion frameworks.

2018-02-06
Eslami, M., Zheng, G., Eramian, H., Levchuk, G..  2017.  Anomaly Detection on Bipartite Graphs for Cyber Situational Awareness and Threat Detection. 2017 IEEE International Conference on Big Data (Big Data). :4741–4743.

Data from cyber logs can often be represented as a bipartite graph (e.g. internal IP-external IP, user-application, or client-server). State-of-the-art graph based anomaly detection often generalizes across all types of graphs — namely bipartite and non-bipartite. This confounds the interpretation and use of specific graph features such as degree, page rank, and eigencentrality that can provide a security analyst with rapid situational awareness of their network. Furthermore, graph algorithms applied to data collected from large, distributed enterprise scale networks require accompanying methods that allow them to scale to the data collected. In this paper, we provide a novel, scalable, directional graph projection framework that operates on cyber logs that can be represented as bipartite graphs. This framework computes directional graph projections and identifies a set of interpretable graph features that describe anomalies within each partite.

2018-07-18
Vávra, J., Hromada, M..  2017.  Anomaly Detection System Based on Classifier Fusion in ICS Environment. 2017 International Conference on Soft Computing, Intelligent System and Information Technology (ICSIIT). :32–38.

The detection of cyber-attacks has become a crucial task for highly sophisticated systems like industrial control systems (ICS). These systems are an essential part of critical information infrastructure. Therefore, we can highlight their vital role in contemporary society. The effective and reliable ICS cyber defense is a significant challenge for the cyber security community. Thus, intrusion detection is one of the demanding tasks for the cyber security researchers. In this article, we examine classification problem. The proposed detection system is based on supervised anomaly detection techniques. Moreover, we utilized classifiers algorithms in order to increase intrusion detection capabilities. The fusion of the classifiers is the way how to achieve the predefined goal.

2018-01-16
Zhou, Chong, Paffenroth, Randy C..  2017.  Anomaly Detection with Robust Deep Autoencoders. Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. :665–674.

Deep autoencoders, and other deep neural networks, have demonstrated their effectiveness in discovering non-linear features across many problem domains. However, in many real-world problems, large outliers and pervasive noise are commonplace, and one may not have access to clean training data as required by standard deep denoising autoencoders. Herein, we demonstrate novel extensions to deep autoencoders which not only maintain a deep autoencoders' ability to discover high quality, non-linear features but can also eliminate outliers and noise without access to any clean training data. Our model is inspired by Robust Principal Component Analysis, and we split the input data X into two parts, \$X = L\_\D\ + S\$, where \$L\_\D\\$ can be effectively reconstructed by a deep autoencoder and \$S\$ contains the outliers and noise in the original data X. Since such splitting increases the robustness of standard deep autoencoders, we name our model a "Robust Deep Autoencoder (RDA)". Further, we present generalizations of our results to grouped sparsity norms which allow one to distinguish random anomalies from other types of structured corruptions, such as a collection of features being corrupted across many instances or a collection of instances having more corruptions than their fellows. Such "Group Robust Deep Autoencoders (GRDA)" give rise to novel anomaly detection approaches whose superior performance we demonstrate on a selection of benchmark problems.

2018-07-18
Kreimel, Philipp, Eigner, Oliver, Tavolato, Paul.  2017.  Anomaly-Based Detection and Classification of Attacks in Cyber-Physical Systems. Proceedings of the 12th International Conference on Availability, Reliability and Security. :40:1–40:6.

Cyber-physical systems are found in industrial and production systems, as well as critical infrastructures. Due to the increasing integration of IP-based technology and standard computing devices, the threat of cyber-attacks on cyber-physical systems has vastly increased. Furthermore, traditional intrusion defense strategies for IT systems are often not applicable in operational environments. In this paper we present an anomaly-based approach for detection and classification of attacks in cyber-physical systems. To test our approach, we set up a test environment with sensors, actuators and controllers widely used in industry, thus, providing system data as close as possible to reality. First, anomaly detection is used to define a model of normal system behavior by calculating outlier scores from normal system operations. This valid behavior model is then compared with new data in order to detect anomalies. Further, we trained an attack model, based on supervised attacks against the test setup, using the naive Bayes classifier. If an anomaly is detected, the classification process tries to classify the anomaly by applying the attack model and calculating prediction confidences for trained classes. To evaluate the statistical performance of our approach, we tested the model by applying an unlabeled dataset, which contains valid and anomalous data. The results show that this approach was able to detect and classify such attacks with satisfactory accuracy.

2017-04-21
Giulia Fanti, University of Illinois at Urbana-Champaign.  2017.  Anonymity in the Bitcoin Peer-to-Peer Network.

Presented at NSA SoS Quarterly Meeting, February 2, 2017

[Anonymous].  2017.  Anonymity in the Bitcoin Peer-to-Peer Network.

Presented at ITI Joint Trust and Security/Science of Security Seminar, February 21, 2017.

2018-05-02
Zhang, P., Zhang, X., Sun, X., Liu, J. K., Yu, J., Jiang, Z. L..  2017.  Anonymous Anti-Sybil Attack Protocol for Mobile Healthcare Networks Analytics. 2017 IEEE Trustcom/BigDataSE/ICESS. :668–674.

Mobile Healthcare Networks (MHN) continuouslycollect the patients' health data sensed by wearable devices, andanalyze the collected data pre-processed by servers combinedwith medical histories, such that disease diagnosis and treatmentare improved, and the heavy burden on the existing healthservices is released. However, the network is vulnerable to Sybilattacks, which would degrade network performance, disruptproceedings, manipulate data or cheat others maliciously. What'smore, the user is reluctant to leak identity privacy, so the identityprivacy preserving makes Sybil defenses more difficult. One ofthe best choices is mutually authenticating each other with noidentity information involved. Thus, we propose a fine-grainedauthentication scheme based on Attribute-Based Signature (ABS)using lattice assumption, where a signer is authorized by an at-tribute set instead of single identity string. This ABS scheme usesFiat-Shamir framework and supports flexible threshold signaturepredicates. Moreover, to anonymously guarantee integrity andavailability of health data in MHN, we design an anonymousanti-Sybil attack protocol based on our ABS scheme, so thatSybil attacks are prevented. As there is no linkability betweenidentities and services, the users' identity privacy is protected. Finally, we have analyzed the security and simulated the runningtime for our proposed ABS scheme.

2018-06-11
Chowdhury, Muktadir, Gawande, Ashlesh, Wang, Lan.  2017.  Anonymous Authentication and Pseudonym-renewal for VANET in NDN. Proceedings of the 4th ACM Conference on Information-Centric Networking. :222–223.

Secure deployment of a vehicular network depends on the network's trust establishment and privacy-preserving capability. In this paper, we propose a scheme for anonymous pseudonym-renewal and pseudonymous authentication for vehicular ad-hoc networks over a data-centric Internet architecture called Named Data networking (NDN). We incorporated our design in a traffic information sharing demo application and deployed it on Raspberry Pi-based miniature cars for evaluation.

2017-12-12
Will, M. A., Ko, R. K. L., Schlickmann, S. J..  2017.  Anonymous Data Sharing Between Organisations with Elliptic Curve Cryptography. 2017 IEEE Trustcom/BigDataSE/ICESS. :1024–1031.

Promoting data sharing between organisations is challenging, without the added concerns over having actions traced. Even with encrypted search capabilities, the entities digital location and downloaded information can be traced, leaking information to the hosting organisation. This is a problem for law enforcement and government agencies, where any information leakage is not acceptable, especially for investigations. Anonymous routing is a technique to stop a host learning which agency is accessing information. Many related works for anonymous routing have been proposed, but are designed for Internet traffic, and are over complicated for internal usage. A streaming design for circuit creation is proposed using elliptic curve cryptography. Allowing for a simple anonymous routing solution, which provides fast performance with source and destination anonymity to other organisations.

2018-05-30
Alamaniotis, M., Tsoukalas, L. H., Bourbakis, N..  2017.  Anticipatory Driven Nodal Electricity Load Morphing in Smart Cities Enhancing Consumption Privacy. 2017 IEEE Manchester PowerTech. :1–6.

Integration of information technologies with the current power infrastructure promises something further than a smart grid: implementation of smart cities. Power efficient cities will be a significant step toward greener cities and a cleaner environment. However, the extensive use of information technologies in smart cities comes at a cost of reduced privacy. In particular, consumers' power profiles will be accessible by third parties seeking information over consumers' personal habits. In this paper, a methodology for enhancing privacy of electricity consumption patterns is proposed and tested. The proposed method exploits digital connectivity and predictive tools offered via smart grids to morph consumption patterns by grouping consumers via an optimization scheme. To that end, load anticipation, correlation and Theil coefficients are utilized synergistically with genetic algorithms to find an optimal assembly of consumers whose aggregated pattern hides individual consumption features. Results highlight the efficiency of the proposed method in enhancing privacy in the environment of smart cities.

2018-01-16
Waheed, A., Riaz, M., Wani, M. Y..  2017.  Anti-theft mobile phone security system with the help of BIOS. 2017 International Symposium on Wireless Systems and Networks (ISWSN). :1–6.

Mobile tracking is a key challenge that has been investigated from both practical and theoretical aspects. This paper proposes an anti-theft mobile phone security system using basic input/output system (BIOS). This mobile phone security system allows us to determine the position of mobile device. The proposed security system is based on hardware implementation technique in which mobile is designed in such a way that a mobile can be traced out even if battery and Subscriber Identity Module (SIM) are plug-out. Furthermore, we also consider the usage of BIOS and its importance in our daily life. Our proposed solution will help the designers in improving the device security.

2018-04-02
Leaden, G., Zimmermann, M., DeCusatis, C., Labouseur, A. G..  2017.  An API Honeypot for DDoS and XSS Analysis. 2017 IEEE MIT Undergraduate Research Technology Conference (URTC). :1–4.

Honeypots are servers or systems built to mimic critical parts of a network, distracting attackers while logging their information to develop attack profiles. This paper discusses the design and implementation of a honeypot disguised as a REpresentational State Transfer (REST) Application Programming Interface (API). We discuss the motivation for this work, design features of the honeypot, and experimental performance results under various traffic conditions. We also present analyses of both a distributed denial of service (DDoS) attack and a cross-site scripting (XSS) malware insertion attempt against this honeypot.