Biblio

Found 19604 results

2018-09-12
Sachdeva, A., Kapoor, R., Sharma, A., Mishra, A..  2017.  Categorical Classification and Deletion of Spam Images on Smartphones Using Image Processing and Machine Learning. 2017 International Conference on Machine Learning and Data Science (MLDS). :23–30.

We regularly use communication apps like Facebook and WhatsApp on our smartphones, and the exchange of media, particularly images, has grown at an exponential rate. There are over 3 billion images shared every day on Whatsapp alone. In such a scenario, the management of images on a mobile device has become highly inefficient, and this leads to problems like low storage, manual deletion of images, disorganization etc. In this paper, we present a solution to tackle these issues by automatically classifying every image on a smartphone into a set of predefined categories, thereby segregating spam images from them, allowing the user to delete them seamlessly.

2018-05-14
2018-08-06
Khan, Saad, Parkinson, Simon.  2017.  Causal Connections Mining Within Security Event Logs. Proceedings of the Knowledge Capture Conference. :38:1–38:4.
2018-06-07
Chariton, A. A., Degkleri, E., Papadopoulos, P., Ilia, P., Markatos, E. P..  2017.  CCSP: A compressed certificate status protocol. IEEE INFOCOM 2017 - IEEE Conference on Computer Communications. :1–9.

Trust in SSL-based communications is provided by Certificate Authorities (CAs) in the form of signed certificates. Checking the validity of a certificate involves three steps: (i) checking its expiration date, (ii) verifying its signature, and (iii) ensuring that it is not revoked. Currently, such certificate revocation checks are done either via Certificate Revocation Lists (CRLs) or Online Certificate Status Protocol (OCSP) servers. Unfortunately, despite the existence of these revocation checks, sophisticated cyber-attackers, may trick web browsers to trust a revoked certificate, believing that it is still valid. Consequently, the web browser will communicate (over TLS) with web servers controlled by cyber-attackers. Although frequently updated, nonced, and timestamped certificates may reduce the frequency and impact of such cyber-attacks, they impose a very large overhead to the CAs and OCSP servers, which now need to timestamp and sign on a regular basis all the responses, for every certificate they have issued, resulting in a very high overhead. To mitigate this overhead and provide a solution to the described cyber-attacks, we present CCSP: a new approach to provide timely information regarding the status of certificates, which capitalizes on a newly introduced notion called signed collections. In this paper, we present the design, preliminary implementation, and evaluation of CCSP in general, and signed collections in particular. Our preliminary results suggest that CCSP (i) reduces space requirements by more than an order of magnitude, (ii) lowers the number of signatures required by 6 orders of magnitude compared to OCSP-based methods, and (iii) adds only a few milliseconds of overhead in the overall user latency.

2018-04-11
Zeng, H., Wang, B., Deng, W., Gao, X..  2017.  CENTRA: CENtrally Trusted Routing vAlidation for IGP. 2017 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC). :21–24.

Trusted routing is a hot spot in network security. Lots of efforts have been made on trusted routing validation for Interior Gateway Protocols (IGP), e.g., using Public Key Infrastructure (PKI) to enhance the security of protocols, or routing monitoring systems. However, the former is limited by further deployment in the practical Internet, the latter depends on a complete, accurate, and fresh knowledge base-this is still a big challenge (Internet Service Providers (ISPs) are not willing to leak their routing policies). In this paper, inspired by the idea of centrally controlling in Software Defined Network (SDN), we propose a CENtrally Trusted Routing vAlidation framework, named CENTRA, which can automated collect routing information, centrally detect anomaly and deliver secure routing policy. We implement the proposed framework using NETCONF as the communication protocol and YANG as the data model. The experimental results reveal that CENTRA can detect and block anomalous routing in real time. Comparing to existing secure routing mechanism, CENTRA improves the detection efficiency and real-time significantly.

2018-03-26
Kim, Doowon, Kwon, Bum Jun, Dumitra\c s, Tudor.  2017.  Certified Malware: Measuring Breaches of Trust in the Windows Code-Signing PKI. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. :1435–1448.

Digitally signed malware can bypass system protection mechanisms that install or launch only programs with valid signatures. It can also evade anti-virus programs, which often forego scanning signed binaries. Known from advanced threats such as Stuxnet and Flame, this type of abuse has not been measured systematically in the broader malware landscape. In particular, the methods, effectiveness window, and security implications of code-signing PKI abuse are not well understood. We propose a threat model that highlights three types of weaknesses in the code-signing PKI. We overcome challenges specific to code-signing measurements by introducing techniques for prioritizing the collection of code signing certificates that are likely abusive. We also introduce an algorithm for distinguishing among different types of threats. These techniques allow us to study threats that breach the trust encoded in the Windows code signing PKI. The threats include stealing the private keys associated with benign certificates and using them to sign malware or by impersonating legitimate companies that do not develop software and, hence, do not own code-signing certificates. Finally, we discuss the actionable implications of our findings and propose concrete steps for improving the security of the code-signing ecosystem.

2018-02-14
Dou, C., Chen, W. H., Chen, Y. J., Lin, H. T., Lin, W. Y., Ho, M. S., Chang, M. F..  2017.  Challenges of emerging memory and memristor based circuits: Nonvolatile logics, IoT security, deep learning and neuromorphic computing. 2017 IEEE 12th International Conference on ASIC (ASICON). :140–143.

Emerging nonvolatile memory (NVM) devices are not limited to build nonvolatile memory macros. They can also be used in developing nonvolatile logics (nvLogics) for nonvolatile processors, security circuits for the internet of things (IoT), and computing-in-memory (CIM) for artificial intelligence (AI) chips. This paper explores the challenges in circuit designs of emerging memory devices for application in nonvolatile logics, security circuits, and CIM for deep neural networks (DNN). Several silicon-verified examples of these circuits are reviewed in this paper.

Awad, A., Matthews, A., Qiao, Y., Lee, B..  2017.  Chaotic Searchable Encryption for Mobile Cloud Storage. IEEE Transactions on Cloud Computing. PP:1–1.

This paper considers the security problem of outsourcing storage from user devices to the cloud. A secure searchable encryption scheme is presented to enable searching of encrypted user data in the cloud. The scheme simultaneously supports fuzzy keyword searching and matched results ranking, which are two important factors in facilitating practical searchable encryption. A chaotic fuzzy transformation method is proposed to support secure fuzzy keyword indexing, storage and query. A secure posting list is also created to rank the matched results while maintaining the privacy and confidentiality of the user data, and saving the resources of the user mobile devices. Comprehensive tests have been performed and the experimental results show that the proposed scheme is efficient and suitable for a secure searchable cloud storage system.

2017-12-20
Auerbach, E., Leder, N., Gider, S., Suess, D., Arthaber, H..  2017.  Characterization of dynamic nonlinear effects in MTJ-based magnetic sensors. 2017 Integrated Nonlinear Microwave and Millimetre-wave Circuits Workshop (INMMiC). :1–3.

The MgO-based magnetic tunnel junction (MTJ) is the basis of modern hard disk drives' magnetic read sensors. Within its operating bandwidth, the sensor's performance is significantly affected by nonlinear and oscillating behavior arising from the MTJ's magnetization dynamics at microwave frequencies. Static I-V curve measurements are commonly used to characterize sensor's nonlinear effects. Unfortunately, these do not sufficiently capture the MTJ's magnetization dynamics. In this paper, we demonstrate the use of the two-tone measurement technique for full treatment of the sensor's nonlinear effects in conjunction with dynamic ones. This approach is new in the field of magnetism and magnetic materials, and it has its challenges due to the nature of the device. Nevertheless, the experimental results demonstrate how the two-tone measurement technique can be used to characterize magnetic sensor nonlinear properties.

2018-06-11
Wang, Brandon, Li, Xiaoye, de Aguiar, Leandro P., Menasche, Daniel S., Shafiq, Zubair.  2017.  Characterizing and Modeling Patching Practices of Industrial Control Systems. Proceedings of the 2017 ACM SIGMETRICS / International Conference on Measurement and Modeling of Computer Systems. :9–9.

Industrial Control Systems (ICS) are widely deployed in mission critical infrastructures such as manufacturing, energy, and transportation. The mission critical nature of ICS devices poses important security challenges for ICS vendors and asset owners. In particular, the patching of ICS devices is usually deferred to scheduled production outages so as to prevent potential operational disruption of critical systems. In this paper, we present the results from our longitudinal measurement and characterization study of ICS patching behavior. Our analysis of more than 100 thousand Internet-exposed ICS devices reveals that fewer than 30% upgrade to newer patched versions within 60 days of a vulnerability disclosure. Based on our measurement and analysis, we further propose a model to forecast the patching behavior of ICS devices.

2018-05-27
2018-05-24
Malluhi, Qutaibah M., Shikfa, Abdullatif, Trinh, Viet Cuong.  2017.  A Ciphertext-Policy Attribute-Based Encryption Scheme With Optimized Ciphertext Size And Fast Decryption. Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security. :230–240.

We address the problem of ciphertext-policy attribute-based encryption with fine access control, a cryptographic primitive which has many concrete application scenarios such as Pay-TV, e-Health, Cloud Storage and so on. In this context we improve on previous LSSS based techniques by building on previous work of Hohenberger and Waters at PKC'13 and proposing a construction that achieves ciphertext size linear in the minimum between the size of the boolean access formula and the number of its clauses. Our construction also supports fast decryption. We also propose two interesting extensions: the first one aims at reducing storage and computation at the user side and is useful in the context of lightweight devices or devices using a cloud operator. The second proposes the use of multiple authorities to mitigate key escrow by the authority.

2018-05-10
Ricart, Glenn.  2017.  A city edge cloud with its economic and technical considerations. Pervasive Computing and Communications Workshops (PerCom Workshops), 2017 IEEE International Conference on. :599–604.
2018-05-16
Liu, Guanxiong, Li, Yanhua, Zhang, Zhi-Li, Luo, Jun, Zhang, Fan.  2017.  CityLines: Hybrid Hub-and-Spoke Urban Transit System. 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (SIGSPATIAL 2017). :1–4.
2018-02-06
Jain, Bhushan, Tsai, Chia-Che, Porter, Donald E..  2017.  A Clairvoyant Approach to Evaluating Software (In)Security. Proceedings of the 16th Workshop on Hot Topics in Operating Systems. :62–68.

Nearly all modern software has security flaws–-either known or unknown by the users. However, metrics for evaluating software security (or lack thereof) are noisy at best. Common evaluation methods include counting the past vulnerabilities of the program, or comparing the size of the Trusted Computing Base (TCB), measured in lines of code (LoC) or binary size. Other than deleting large swaths of code from project, it is difficult to assess whether a code change decreased the likelihood of a future security vulnerability. Developers need a practical, constructive way of evaluating security. This position paper argues that we actually have all the tools needed to design a better, empirical method of security evaluation. We discuss related work that estimates the severity and vulnerability of certain attack vectors based on code properties that can be determined via static analysis. This paper proposes a grand, unified model that can predict the risk and severity of vulnerabilities in a program. Our prediction model uses machine learning to correlate these code features of open-source applications with the history of vulnerabilities reported in the CVE (Common Vulnerabilities and Exposures) database. Based on this model, one can incorporate an analysis into the standard development cycle that predicts whether the code is becoming more or less prone to vulnerabilities.

2018-11-14
Ferrando, Roman, Stacey, Paul.  2017.  Classification of Device Behaviour in Internet of Things Infrastructures: Towards Distinguishing the Abnormal from Security Threats. Proceedings of the 1st International Conference on Internet of Things and Machine Learning. :57:1–57:7.

Increasingly Internet of Things (IoT) devices are being woven into the fabric of our physical world. With this rapidly expanding pervasive deployment of IoT devices, and supporting infrastructure, we are fast approaching the point where the problem of IoT based cyber-security attacks is a serious threat to industrial operations, business activity and social interactions that leverage IoT technologies. The number of threats and successful attacks against connected systems using IoT devices and services are increasing. The Internet of Things has several characteristics that present technological challenges to traditional cyber-security techniques. The Internet of Things requires a novel and dynamic security paradigm. This paper describes the challenges of securing the Internet of Things. A discussion detailing the state-of-the-art of IoT security is presented. A novel approach to security detection using streaming data analytics to classify and detect security threats in their early stages is proposed. Implementation methodologies and results of ongoing work to realise this new IoT cyber-security technique for threat detection are presented.

2018-06-20
Kebede, T. M., Djaneye-Boundjou, O., Narayanan, B. N., Ralescu, A., Kapp, D..  2017.  Classification of Malware programs using autoencoders based deep learning architecture and its application to the microsoft malware Classification challenge (BIG 2015) dataset. 2017 IEEE National Aerospace and Electronics Conference (NAECON). :70–75.

Distinguishing and classifying different types of malware is important to better understanding how they can infect computers and devices, the threat level they pose and how to protect against them. In this paper, a system for classifying malware programs is presented. The paper describes the architecture of the system and assesses its performance on a publicly available database (provided by Microsoft for the Microsoft Malware Classification Challenge BIG2015) to serve as a benchmark for future research efforts. First, the malicious programs are preprocessed such that they are visualized as gray scale images. We then make use of an architecture comprised of multiple layers (multiple levels of encoding) to carry out the classification process of those images/programs. We compare the performance of this approach against traditional machine learning and pattern recognition algorithms. Our experimental results show that the deep learning architecture yields a boost in performance over those conventional/standard algorithms. A hold-out validation analysis using the superior architecture shows an accuracy in the order of 99.15%.

2018-03-05
Tang, Qiang, Yung, Moti.  2017.  Cliptography: Post-Snowden Cryptography. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. :2615–2616.

This tutorial will present a systematic overview of \$\backslash$em kleptography\: stealing information subliminally from black-box cryptographic implementations; and \$\backslash$em cliptography\: defending mechanisms that clip the power of kleptographic attacks via specification re-designs (without altering the underlying algorithms). Despite the laudatory history of development of modern cryptography, applying cryptographic tools to reliably provide security and privacy in practice is notoriously difficult. One fundamental practical challenge, guaranteeing security and privacy without explicit trust in the algorithms and implementations that underlie basic security infrastructure, remains. While the dangers of entertaining adversarial implementation of cryptographic primitives seem obvious, the ramifications of such attacks are surprisingly dire: it turns out that – in wide generality – adversarial implementations of cryptographic (both deterministic and randomized) algorithms may leak private information while producing output that is statistically indistinguishable from that of a faithful implementation. Such attacks were formally studied in Kleptography. Snowden revelations has shown us how security and privacy can be lost at a very large scale even when traditional cryptography seems to be used to protect Internet communication, when Kleptography was not taken into consideration. We will first explain how the above-mentioned Kleptographic attacks can be carried out in various settings. We will then introduce several simple but rigorous immunizing strategies that were inspired by folklore practical wisdoms to protect different algorithms from implementation subversion. Those strategies can be applied to ensure security of most of the fundamental cryptographic primitives such as PRG, digital signatures, public key encryptions against kleptographic attacks when they are implemented accordingly. Our new design principles may suggest new standardization methods that help reducing the threats of subverted implementation. We also hope our tutorial to stimulate a community-wise efforts to further tackle the fundamental challenge mentioned at the beginning.

2018-05-15
2018-05-11
Nicola Paoletti, Andrea Patanè, Marta Kwiatkowska.  2017.  Closed-loop quantitative verification of rate-adaptive pacemakers. ACM Transactions on Cyber-Physical Systems, to appear.
2018-02-15
Arora, A., Khanna, A., Rastogi, A., Agarwal, A..  2017.  Cloud security ecosystem for data security and privacy. 2017 7th International Conference on Cloud Computing, Data Science Engineering - Confluence. :288–292.

In the past couple of years Cloud Computing has become an eminent part of the IT industry. As a result of its economic benefits more and more people are heading towards Cloud adoption. In present times there are numerous Cloud Service providers (CSP) allowing customers to host their applications and data onto Cloud. However Cloud Security continues to be the biggest obstacle in Cloud adoption and thereby prevents customers from accessing its services. Various techniques have been implemented by provides in order to mitigate risks pertaining to Cloud security. In this paper, we present a Hybrid Cryptographic System (HCS) that combines the benefits of both symmetric and asymmetric encryption thus resulting in a secure Cloud environment. The paper focuses on creating a secure Cloud ecosystem wherein we make use of multi-factor authentication along with multiple levels of hashing and encryption. The proposed system along with the algorithm are simulated using the CloudSim simulator. To this end, we illustrate the working of our proposed system along with the simulated results.

2018-12-03
Gorke, Christian A., Janson, Christian, Armknecht, Frederik, Cid, Carlos.  2017.  Cloud Storage File Recoverability. Proceedings of the Fifth ACM International Workshop on Security in Cloud Computing. :19–26.

Data loss is perceived as one of the major threats for cloud storage. Consequently, the security community developed several challenge-response protocols that allow a user to remotely verify whether an outsourced file is still intact. However, two important practical problems have not yet been considered. First, clients commonly outsource multiple files of different sizes, raising the question how to formalize such a scheme and in particular ensuring that all files can be simultaneously audited. Second, in case auditing of the files fails, existing schemes do not provide a client with any method to prove if the original files are still recoverable. We address both problems and describe appropriate solutions. The first problem is tackled by providing a new type of "Proofs of Retrievability" scheme, enabling a client to check all files simultaneously in a compact way. The second problem is solved by defining a novel procedure called "Proofs of Recoverability", enabling a client to obtain an assurance whether a file is recoverable or irreparably damaged. Finally, we present a combination of both schemes allowing the client to check the recoverability of all her original files, thus ensuring cloud storage file recoverability.

2018-05-02
Rjoub, G., Bentahar, J..  2017.  Cloud Task Scheduling Based on Swarm Intelligence and Machine Learning. 2017 IEEE 5th International Conference on Future Internet of Things and Cloud (FiCloud). :272–279.

Cloud computing is the expansion of parallel computing, distributed computing. The technology of cloud computing becomes more and more widely used, and one of the fundamental issues in this cloud environment is related to task scheduling. However, scheduling in Cloud environments represents a difficult issue since it is basically NP-complete. Thus, many variants based on approximation techniques, especially those inspired by Swarm Intelligence (SI) have been proposed. This paper proposes a machine learning algorithm to guide the cloud choose the scheduling technique by using multi criteria decision to optimize the performance. The main contribution of our work is to minimize the makespan of a given task set. The new strategy is simulated using the CloudSim toolkit package where the impact of the algorithm is checked with different numbers of VMs varying from 2 to 50, and different task sizes between 30 bytes and 2700 bytes. Experiment results show that the proposed algorithm minimizes the execution time and the makespan between 7% and 75%, and improves the performance of the load balancing scheduling.

2018-01-16
Diovu, R. C., Agee, J. T..  2017.  A cloud-based openflow firewall for mitigation against DDoS attacks in smart grid AMI networks. 2017 IEEE PES PowerAfrica. :28–33.

Recent architectures for the advanced metering infrastructure (AMI) have incorporated several back-end systems that handle billing and other smart grid control operations. The non-availability of metering data when needed or the untimely delivery of data needed for control operations will undermine the activities of these back-end systems. Unfortunately, there are concerns that cyber attacks such as distributed denial of service (DDoS) will manifest in magnitude and complexity in a smart grid AMI network. Such attacks will range from a delay in the availability of end user's metering data to complete denial in the case of a grounded network. This paper proposes a cloud-based (IaaS) firewall for the mitigation of DDoS attacks in a smart grid AMI network. The proposed firewall has the ability of not only mitigating the effects of DDoS attack but can prevent the attack before they are launched. Our proposed firewall system leverages on cloud computing technology which has an added advantage of reducing the burden of data computations and storage for smart grid AMI back-end systems. The openflow firewall proposed in this study is a better security solution with regards to the traditional on-premises DoS solutions which cannot cope with the wide range of new attacks targeting the smart grid AMI network infrastructure. Simulation results generated from the study show that our model can guarantee the availability of metering/control data and could be used to improve the QoS of the smart grid AMI network under a DDoS attack scenario.

2018-05-30
Lin, B., Chen, X., Wang, L..  2017.  A Cloud-Based Trust Evaluation Scheme Using a Vehicular Social Network Environment. 2017 24th Asia-Pacific Software Engineering Conference (APSEC). :120–129.

New generation communication technologies (e.g., 5G) enhance interactions in mobile and wireless communication networks between devices by supporting a large-scale data sharing. The vehicle is such kind of device that benefits from these technologies, so vehicles become a significant component of vehicular networks. Thus, as a classic application of Internet of Things (IoT), the vehicular network can provide more information services for its human users, which makes the vehicular network more socialized. A new concept is then formed, namely "Vehicular Social Networks (VSNs)", which bring both benefits of data sharing and challenges of security. Traditional public key infrastructures (PKI) can guarantee user identity authentication in the network; however, PKI cannot distinguish untrustworthy information from authorized users. For this reason, a trust evaluation mechanism is required to guarantee the trustworthiness of information by distinguishing malicious users from networks. Hence, this paper explores a trust evaluation algorithm for VSNs and proposes a cloud-based VSN architecture to implement the trust algorithm. Experiments are conducted to investigate the performance of trust algorithm in a vehicular network environment through building a three-layer VSN model. Simulation results reveal that the trust algorithm can be efficiently implemented by the proposed three-layer model.