Biblio

Found 19604 results

2018-03-05
Kim, Hyunsoo, Jeon, Youngbae, Yoon, Ji Won.  2017.  Construction of a National Scale ENF Map Using Online Multimedia Data. Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. :19–28.

The frequency of power distribution networks in a power grid is called electrical network frequency (ENF). Because it provides the spatio-temporal changes of the power grid in a particular location, ENF is used in many application domains including the prediction of grid instability and blackouts, detection of system breakup, and even digital forensics. In order to build high performing applications and systems, it is necessary to capture a large-scale nationwide or worldwide ENF map. Consequently, many studies have been conducted on the distribution of specialized physical devices that capture the ENF signals. However, this approach is not practical because it requires significant effort from design to setup, moreover, it has a limitation in its efficiency to monitor and stably retain the collection equipment distributed throughout the world. Furthermore, this approach requires a significant budget. In this paper, we proposed a novel approach to constructing the worldwide ENF map by analyzing streaming data obtained by online multimedia services, such as "Youtube", "Earthcam", and "Ustream" instead of expensive specialized hardware. However, extracting accurate ENF from the streaming data is not a straightforward process because multimedia has its own noise and uncertainty. By applying several signal processing techniques, we can reduce noise and uncertainty, and improve the quality of the restored ENF. For the evaluation of this process, we compared the performance between the ENF signals restored by our proposed approach and collected by the frequency disturbance recorder (FDR) from FNET/GridEye. The experimental results show that our proposed approach outperforms in stable acquisition and management of the ENF signals compared to the conventional approach.

2018-12-10
Castiglione, A., Choo, K. Raymond, Nappi, M., Ricciardi, S..  2017.  Context Aware Ubiquitous Biometrics in Edge of Military Things. IEEE Cloud Computing. 4:16–20.

Edge computing can potentially play a crucial role in enabling user authentication and monitoring through context-aware biometrics in military/battlefield applications. For example, in Internet of Military Things (IoMT) or Internet of Battlefield Things (IoBT),an increasing number of ubiquitous sensing and computing devices worn by military personnel and embedded within military equipment (combat suit, instrumented helmets, weapon systems, etc.) are capable of acquiring a variety of static and dynamic biometrics (e.g., face, iris, periocular, fingerprints, heart-rate, gait, gestures, and facial expressions). Such devices may also be capable of collecting operational context data. These data collectively can be used to perform context-adaptive authentication in-the-wild and continuous monitoring of soldier's psychophysical condition in a dedicated edge computing architecture.

2018-01-16
Kamaldeep, Malik, M., Dutta, M..  2017.  Contiki-based mitigation of UDP flooding attacks in the Internet of things. 2017 International Conference on Computing, Communication and Automation (ICCCA). :1296–1300.

As Internet of things (IoT) continue to ensconce into our homes, offices, hospitals, electricity grids and other walks of life, the stakes are too high to leave security to chance. IoT devices are resource constrained devices and hence it is very easy to exhaust them of their resources or deny availability. One of the most prominent attacks on the availability is the Distributed Denial of service (DDoS) attack. Although, DDoS is not a new Internet attack but a large number of new, constrained and globally accessible IoT devices have escalated the attack surface beyond imagination. This paper provides a broad anatomy of IoT protocols and their inherent weaknesses that can enable attackers to launch successful DDoS attacks. One of the major contributions of this paper is the implementation and demonstration of UDP (User Datagram Protocol) flood attack in the Contiki operating system, an open-source operating system for the IoT. This attack has been implemented and demonstrated in Cooja simulator, an inherent feature of the Contiki operating system. Furthermore, in this paper, a rate limiting mechanism is proposed that must be incorporated in the Contiki OS to mitigate UDP flood attacks. This proposed scheme reduces CPU power consumption of the victim by 9% and saves the total transmission power of the victim by 55%.

2018-05-24
Molina-Markham, Andres, Rowe, Paul D..  2017.  Continuous Verification for Cryptographic Protocol Development. Proceedings of the 1st ACM Workshop on the Internet of Safe Things. :51–56.

The proliferation of connected devices has motivated a surge in the development of cryptographic protocols to support a diversity of devices and use cases. To address this trend, we propose continuous verification, a methodology for secure cryptographic protocol design that consists of three principles: (1) repeated use of verification tools; (2) judicious use of common message components; and (3) inclusion of verifiable model specifications in standards. Our recommendations are derived from previous work in the formal methods community, as well as from our past experiences applying verification tools to improve standards. Through a case study of IETF protocols for the IoT, we illustrate the power of continuous verification by (i) discovering flaws in the protocols using the Cryptographic Protocol Shapes Analyzer (CPSA); (ii) identifying the corresponding fixes based on the feedback provided by CPSA; and (iii) demonstrating that verifiable models can be intuitive, concise and suitable for inclusion in standards to enable third-party verification and future modifications.

2018-05-15
2018-09-12
Damodaran, Suresh K., Mittal, Saurabh.  2017.  Controlled Environments for Cyber Risk Assessment of Cyber-physical Systems. Proceedings of the Summer Simulation Multi-Conference. :3:1–3:12.

Cyber risk assessment of a Cyber-Physical System (CPS) without damaging it and without contaminating it with malware is an important and hard problem. Previous work developed a solution to this problem using a control component for simulating cyber effects in a CPS model to mimic a cyber attack. This paper extends the previous work by presenting an algorithm for semi-automated insertion of control components into a CPS model based on Discrete Event Systems (DEVS) formalism. We also describe how to use this algorithm to insert a control component into Live, Virtual, Constructive (LVC) environments that may have non-DEVS models, thereby extending our solution to other systems in general.

2018-11-28
Zou, Shuai, Kuzushima, Kento, Mitake, Hironori, Hasegawa, Shoichi.  2017.  Conversational Agent Learning Natural Gaze and Motion of Multi-Party Conversation from Example. Proceedings of the 5th International Conference on Human Agent Interaction. :405–409.

Recent developments in robotics and virtual reality (VR) are making embodied agents familiar, and social behaviors of embodied conversational agents are essential to create mindful daily lives with conversational agents. Especially, natural nonverbal behaviors are required, such as gaze and gesture movement. We propose a novel method to create an agent with human-like gaze as a listener in multi-party conversation, using Hidden Markov Model (HMM) to learn the behavior from real conversation examples. The model can generate gaze reaction according to users' gaze and utterance. We implemented an agent with proposed method, and created VR environment to interact with the agent. The proposed agent reproduced several features of gaze behavior in example conversations. Impression survey result showed that there is at least a group who felt the proposed agent is similar to human and better than conventional methods.

2018-05-15
2018-03-05
Xu, Y., Wang, H. M., Yang, Q., Huang, K. W., Zheng, T. X..  2017.  Cooperative Transmission for Physical Layer Security by Exploring Social Awareness. 2017 IEEE Globecom Workshops (GC Wkshps). :1–6.

Social awareness and social ties are becoming increasingly fashionable with emerging mobile and handheld devices. Social trust degree describing the strength of the social ties has drawn lots of research interests in many fields including secure cooperative communications. Such trust degree reflects the users' willingness for cooperation, which impacts the selection of the cooperative users in the practical networks. In this paper, we propose a cooperative relay and jamming selection scheme to secure communication based on the social trust degree under a stochastic geometry framework. We aim to analyze the involved secrecy outage probability (SOP) of the system's performance. To achieve this target, we propose a double Gamma ratio (DGR) approach through Gamma approximation. Based on this, the SOP is tractably obtained in closed form. The simulation results verify our theoretical findings, and validate that the social trust degree has dramatic influences on the network's secrecy performance.

2018-05-25
2018-01-16
Chevalier, Ronny, Villatel, Maugan, Plaquin, David, Hiet, Guillaume.  2017.  Co-processor-based Behavior Monitoring: Application to the Detection of Attacks Against the System Management Mode. Proceedings of the 33rd Annual Computer Security Applications Conference. :399–411.

Highly privileged software, such as firmware, is an attractive target for attackers. Thus, BIOS vendors use cryptographic signatures to ensure firmware integrity at boot time. Nevertheless, such protection does not prevent an attacker from exploiting vulnerabilities at runtime. To detect such attacks, we propose an event-based behavior monitoring approach that relies on an isolated co-processor. We instrument the code executed on the main CPU to send information about its behavior to the monitor. This information helps to resolve the semantic gap issue. Our approach does not depend on a specific model of the behavior nor on a specific target. We apply this approach to detect attacks targeting the System Management Mode (SMM), a highly privileged x86 execution mode executing firmware code at runtime. We model the behavior of SMM using invariants of its control-flow and relevant CPU registers (CR3 and SMBASE). We instrument two open-source firmware implementations: EDKII and coreboot. We evaluate the ability of our approach to detect state-of-the-art attacks and its runtime execution overhead by simulating an x86 system coupled with an ARM Cortex A5 co-processor. The results show that our solution detects intrusions from the state of the art, without any false positives, while remaining acceptable in terms of performance overhead in the context of the SMM (i.e., less than the 150 us threshold defined by Intel).

2018-01-10
Higuchi, K., Yoshida, M., Tsuji, T., Miyamoto, N..  2017.  Correctness of the routing algorithm for distributed key-value store based on order preserving linear hashing and skip graph. 2017 18th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD). :459–464.

In this paper, the correctness of the routing algorithm for the distributed key-value store based on order preserving linear hashing and Skip Graph is proved. In this system, data are divided by linear hashing and Skip Graph is used for overlay network. The routing table of this system is very uniform. Then, short detours can exist in the route of forwarding. By using these detours, the number of hops for the query forwarding is reduced.

2018-03-05
Sultana, K. Z., Deo, A., Williams, B. J..  2017.  Correlation Analysis among Java Nano-Patterns and Software Vulnerabilities. 2017 IEEE 18th International Symposium on High Assurance Systems Engineering (HASE). :69–76.

Ensuring software security is essential for developing a reliable software. A software can suffer from security problems due to the weakness in code constructs during software development. Our goal is to relate software security with different code constructs so that developers can be aware very early of their coding weaknesses that might be related to a software vulnerability. In this study, we chose Java nano-patterns as code constructs that are method-level patterns defined on the attributes of Java methods. This study aims to find out the correlation between software vulnerability and method-level structural code constructs known as nano-patterns. We found the vulnerable methods from 39 versions of three major releases of Apache Tomcat for our first case study. We extracted nano-patterns from the affected methods of these releases. We also extracted nano-patterns from the non-vulnerable methods of Apache Tomcat, and for this, we selected the last version of three major releases (6.0.45 for release 6, 7.0.69 for release 7 and 8.0.33 for release 8) as the non-vulnerable versions. Then, we compared the nano-pattern distributions in vulnerable versus non-vulnerable methods. In our second case study, we extracted nano-patterns from the affected methods of three vulnerable J2EE web applications: Blueblog 1.0, Personalblog 1.2.6 and Roller 0.9.9, all of which were deliberately made vulnerable for testing purpose. We found that some nano-patterns such as objCreator, staticFieldReader, typeManipulator, looper, exceptions, localWriter, arrReader are more prevalent in affected methods whereas some such as straightLine are more vivid in non-affected methods. We conclude that nano-patterns can be used as the indicator of vulnerability-proneness of code.

2018-06-07
Matt, J., Waibel, P., Schulte, S..  2017.  Cost- and Latency-Efficient Redundant Data Storage in the Cloud. 2017 IEEE 10th Conference on Service-Oriented Computing and Applications (SOCA). :164–172.

With the steady increase of offered cloud storage services, they became a popular alternative to local storage systems. Beside several benefits, the usage of cloud storage services can offer, they have also some downsides like potential vendor lock-in or unavailability. Different pricing models, storage technologies and changing storage requirements are further complicating the selection of the best fitting storage solution. In this work, we present a heuristic optimization approach that optimizes the placement of data on cloud-based storage services in a redundant, cost- and latency-efficient way while considering user-defined Quality of Service requirements. The presented approach uses monitored data access patterns to find the best fitting storage solution. Through extensive evaluations, we show that our approach saves up to 30% of the storage cost and reduces the upload and download times by up to 48% and 69% in comparison to a baseline that follows a state-of-the-art approach.

2018-05-17
2018-03-26
Azzedin, F., Suwad, H., Alyafeai, Z..  2017.  Countermeasureing Zero Day Attacks: Asset-Based Approach. 2017 International Conference on High Performance Computing Simulation (HPCS). :854–857.

There is no doubt that security issues are on the rise and defense mechanisms are becoming one of the leading subjects for academic and industry experts. In this paper, we focus on the security domain and envision a new way of looking at the security life cycle. We utilize our vision to propose an asset-based approach to countermeasure zero day attacks. To evaluate our proposal, we built a prototype. The initial results are promising and indicate that our prototype will achieve its goal of detecting zero-day attacks.

Assaf, Eran, Basat, Ran Ben, Einziger, Gil, Friedman, Roy, Kassner, Yaron.  2017.  Counting Distinct Elements over Sliding Windows. Proceedings of the 10th ACM International Systems and Storage Conference. :22:1–22:1.

In Distributed Denial of Service (DDoS) attacks, an attacker tries to disable a service with a flood of seemingly legitimate requests from multiple devices; this is usually accompanied by a sharp spike in the number of distinct IP addresses / flows accessing the system in a short time frame. Hence, the number of distinct elements over sliding windows is a fundamental signal in DDoS identification. Additionally, assessing whether a specific flow has recently accessed the system, known as the Set Membership problem, can help us identify the attacking parties. Here, we show how to extend the functionality of a state of the art algorithm for set membership over a W elements sliding window. We now also support estimation of the distinct flow count, using as little as log2 (W) additional bits.

2018-05-11
2018-03-05
Ameri, Aidin, Johnson, Daryl.  2017.  Covert Channel over Network Time Protocol. Proceedings of the 2017 International Conference on Cryptography, Security and Privacy. :62–65.

In this paper, we scrutinize a way through which covert messages are sent and received using the Network Time Protocol (NTP), which is not easily detected since NTP should be present in most environment to synchronize the clock between clients and servers using at least one time server. We also present a proof of concept and investigate the throughput and robustness of this covert channel. This channel will use the 32 bits of fraction of seconds in timestamp to send the covert message. It also uses "Peer Clock Precision" field to track the messages between sender and receiver.

2017-12-12
Shahzad, K., Zhou, X., Yan, S..  2017.  Covert Communication in Fading Channels under Channel Uncertainty. 2017 IEEE 85th Vehicular Technology Conference (VTC Spring). :1–5.

A covert communication system under block fading channels is considered, where users experience uncertainty about their channel knowledge. The transmitter seeks to hide the covert communication to a private user by exploiting a legitimate public communication link, while the warden tries to detect this covert communication by using a radiometer. We derive the exact expression for the radiometer's optimal threshold, which determines the performance limit of the warden's detector. Furthermore, for given transmission outage constraints, the achievable rates for legitimate and covert users are analyzed, while maintaining a specific level of covertness. Our numerical results illustrate how the achievable performance is affected by the channel uncertainty and required level of covertness.

2018-03-26
Afshar, Ardavan, Ho, Joyce C., Dilkina, Bistra, Perros, Ioakeim, Khalil, Elias B., Xiong, Li, Sunderam, Vaidy.  2017.  CP-ORTHO: An Orthogonal Tensor Factorization Framework for Spatio-Temporal Data. Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. :67:1–67:4.

Extracting patterns and deriving insights from spatio-temporal data finds many target applications in various domains, such as in urban planning and computational sustainability. Due to their inherent capability of simultaneously modeling the spatial and temporal aspects of multiple instances, tensors have been successfully used to analyze such spatio-temporal data. However, standard tensor factorization approaches often result in components that are highly overlapping, which hinders the practitioner's ability to interpret them without advanced domain knowledge. In this work, we tackle this challenge by proposing a tensor factorization framework, called CP-ORTHO, to discover distinct and easily-interpretable patterns from multi-modal, spatio-temporal data. We evaluate our approach on real data reflecting taxi drop-off activity. CP-ORTHO provides more distinct and interpretable patterns than prior art, as measured via relevant quantitative metrics, without compromising the solution's accuracy. We observe that CP-ORTHO is fast, in that it achieves this result in 5x less time than the most accurate competing approach.

2018-05-25
2018-01-10
Chen, Chen, Tong, Hanghang, Xie, Lei, Ying, Lei, He, Qing.  2017.  Cross-Dependency Inference in Multi-Layered Networks: A Collaborative Filtering Perspective. ACM Trans. Knowl. Discov. Data. 11:42:1–42:26.
The increasingly connected world has catalyzed the fusion of networks from different domains, which facilitates the emergence of a new network model—multi-layered networks. Examples of such kind of network systems include critical infrastructure networks, biological systems, organization-level collaborations, cross-platform e-commerce, and so forth. One crucial structure that distances multi-layered network from other network models is its cross-layer dependency, which describes the associations between the nodes from different layers. Needless to say, the cross-layer dependency in the network plays an essential role in many data mining applications like system robustness analysis and complex network control. However, it remains a daunting task to know the exact dependency relationships due to noise, limited accessibility, and so forth. In this article, we tackle the cross-layer dependency inference problem by modeling it as a collective collaborative filtering problem. Based on this idea, we propose an effective algorithm F\textbackslashtextlessscp;\textbackslashtextgreaterascinate\textbackslashtextless/scp;\textbackslashtextgreater that can reveal unobserved dependencies with linear complexity. Moreover, we derive F\textbackslashtextlessscp;\textbackslashtextgreaterascinate\textbackslashtextless/scp;\textbackslashtextgreater-ZERO, an online variant of F\textbackslashtextlessscp;\textbackslashtextgreaterascinate\textbackslashtextless/scp;\textbackslashtextgreater that can respond to a newly added node timely by checking its neighborhood dependencies. We perform extensive evaluations on real datasets to substantiate the superiority of our proposed approaches.
2017-12-28
Tane, E., Fujigaki, Y..  2017.  Cross-Disciplinary Survey on \#34;Data Science \#34; Field Development: Historical Analysis from 1600s-2000s. 2017 Portland International Conference on Management of Engineering and Technology (PICMET). :1–10.

For the last several decades, the rapid development of information technology and computer performance accelerates generation, transportation and accumulation of digital data, it came to be called "Big Data". In this context, researchers and companies are eager to utilize the data to create new values or manage a wide range of issues, and much focus is being placed on "Data Science" to extract useful information (knowledge) from digital data. Data Science has been developed from several independent fields such as Mathematics/Operations Research, Computer Science, Data Engineering, Visualization and Statistics since 1800s. In addition, Artificial Intelligence converges on this stream recent years. On the other hand, the national projects have been established to utilize data for society with concerns surrounding the security and privacy. In this paper, through detailed analysis on history of this field, processes of development and integration among related fields are discussed as well as comparative aspects between Japan and the United States. This paper also includes a brief discussion of future directions.

2018-02-21
Zhang, Yuexin, Xiang, Yang, Huang, Xinyi.  2017.  A Cross-Layer Key Establishment Model for Wireless Devices in Cyber-Physical Systems. Proceedings of the 3rd ACM Workshop on Cyber-Physical System Security. :43–53.

Wireless communications in Cyber-Physical Systems (CPS) are vulnerable to many adversarial attacks such as eavesdropping. To secure the communications, secret session keys need to be established between wireless devices. In existing symmetric key establishment protocols, it is assumed that devices are pre-loaded with secrets. In the CPS, however, wireless devices are produced by different companies. It is not practical to assume that the devices are pre-loaded with certain secrets when they leave companies. As a consequence, existing symmetric key establishment protocols cannot be directly implemented in the CPS. Motivated by these observations, this paper presents a cross-layer key establishment model for heterogeneous wireless devices in the CPS. Specifically, by implementing our model, wireless devices extract master keys (shared with the system authority) at the physical layer using ambient wireless signals. Then, the system authority distributes secrets for devices (according to an existing symmetric key establishment protocol) by making use of the extracted master keys. Completing these operations, wireless devices can establish secret session keys at higher layers by calling the employed key establishment protocol. Additionally, we prove the security of the proposed model. We analyse the performance of the new model by implementing it and converting existing symmetric key establishment protocols into cross-layer key establishment protocols.