Biblio
Recommender systems are typically evaluated on their ability to provide items that satisfy the needs and interests of the end user. However, in many real world applications, users are not the only stakeholders involved. There may be a variety of individuals or organizations that benefit in different ways from the delivery of recommendations. In this paper, we re-define the recommender system as a multistakeholder environment in which different stakeholders are served by delivering recommendations, and we suggest a utility-based approach to evaluating recommendations in such an environment that is capable of distinguishing among the distributions of utility delivered to different stakeholders.
Route planner systems support commuters and city visitors in finding the best route between two arbitrary points. More advanced route planners integrate different transportation modes such as private transport, public transport, car- and bicycle sharing or walking and are able combine these to multi-modal routes. Nevertheless, state-of-the-art planner systems usually do not consider the users' personal preferences or the wisdom of the crowd when suggesting multi-modal routes. Including the knowledge and experience of locals who are familiar with local transport allows identification of alternative routes which are, for example, less crowded during peak hours. Collaborative filtering (CF) is a technique that allows recommending items such as multi-modal routes based on the ratings of users with similar preferences. In this paper, we introduce RouteMe, a mobile recommender system for personalized, multi-modal routes which combines CF with knowledge-based recommendations to increase the quality of route recommendations. We present our hybrid algorithm in detail and show how we integrate it in a working prototype. The results of a user study show that our prototype combining CF, knowledge-based and popular route recommendations outperforms state-of-the-art route planners.
In order to support large volume of transactions and number of users, as estimated by the load demand modeling, a system needs to scale in order to continue to satisfy required quality attributes. In particular, for systems exposed to the Internet, scaling up may increase the attack surface susceptible to malicious intrusions. The new proactive approach based on the concept of Moving Target Defense (MTD) should be considered as a complement to current cybersecurity protection. In this paper, we analyze the scalability of the Self Cleansing Intrusion Tolerance (SCIT) MTD approach using Cloud infrastructure services. By applying the model of MTD with continuous rotation and diversity to a multi-node or multi-instance system, we argue that the effectiveness of the approach is dependent on the share-nothing architecture pattern of the large system. Furthermore, adding more resources to the MTD mechanism can compensate to achieve the desired level of secure availability.
Confidentiality concerns are important in the context of cloud databases. In this paper, the technique of vertical fragmentation is explored to break sensitive associations between columns of several database tables according to confidentiality constraints. By storing insensitive portions of the database at different non-communicating servers it is possible to overcome confidentiality concerns. In addition, visibility constraints and data dependencies are supported. Moreover, to provide some control over the distribution of columns among different servers, novel closeness constraints are introduced. Finding confidentiality-preserving fragmentations is studied in the context of mathematical optimization and a corresponding integer linear program formulation is presented. Benchmarks were performed to evaluate the suitability of our approach.
We present and explore a model of stateless and self-stabilizing distributed computation, inspired by real-world applications such as routing on today's Internet. Processors in our model do not have an internal state, but rather interact by repeatedly mapping incoming messages ("labels") to outgoing messages and output values. While seemingly too restrictive to be of interest, stateless computation encompasses both classical game-theoretic notions of strategic interaction and a broad range of practical applications (e.g., Internet protocols, circuits, diffusion of technologies in social networks). Our main technical contribution is a general impossibility result for stateless self-stabilization in our model, showing that even modest asynchrony (with wait times that are linear in the number of processors) can prevent a stateless protocol from reaching a stable global configuration. Furthermore, we present hardness results for verifying stateless self-stabilization. We also address several aspects of the computational power of stateless protocols. Most significantly, we show that short messages (of length that is logarithmic in the number of processors) yield substantial computational power, even on very poorly connected topologies.
The rapid growth of science and technology in the telecommunications world can come up with new ways for some people bent on abusing for threatening information security as hackers, crackers, carder, phreaker and so on. If the information is on the wrong side will result in losses. Information that must be considered is the security of confidential information. Steganography is a method that can be used to hide a message by using digital media. Digital Steganography using digital media as the container vessel such as images, sounds, text, and video. Hidden secret data can also include images, audio, text, and video. In this final audio steganography implemented. One method that can be used in steganography is the Least Significant Bit (LSB). Steganography implementation will be accompanied by the application of cryptography in the form of encryption and decryption. This method works is messages that have been encrypted beforehand will be hidden evenly on each region in MP3 or WAV already divided, with modify / change the LSB of the media container with the bits of information to be hidden. In making the steganography application, the author uses the Java programming language eclipse, because the program is quite easy and can be run in the Android smartphone operating system.
Cyber Physical Systems (CPS) operating in modern critical infrastructures (CIs) are increasingly being targeted by highly sophisticated cyber attacks. Threat actors have quickly learned of the value and potential impact of targeting CPS, and numerous tailored multi-stage cyber-physical attack campaigns, such as Advanced Persistent Threats (APTs), have been perpetrated in the last years. They aim at stealthily compromising systems' operations and cause severe impact on daily business operations such as shutdowns, equipment damage, reputation damage, financial loss, intellectual property theft, and health and safety risks. Protecting CIs against such threats has become as crucial as complicated. Novel distributed detection and reaction methodologies are necessary to effectively uncover these attacks, and timely mitigate their effects. Correlating large amounts of data, collected from a multitude of relevant sources, is fundamental for Security Operation Centers (SOCs) to establish cyber situational awareness, and allow to promptly adopt suitable countermeasures in case of attacks. In our previous work we introduced three methods for security information correlation. In this paper we define metrics and benchmarks to evaluate these correlation methods, we assess their accuracy, and we compare their performance. We finally demonstrate how the presented techniques, implemented within our cyber threat intelligence analysis engine called CAESAIR, can be applied to support incident handling tasks performed by SOCs.
In assessing privacy on online social networks, it is important to investigate their vulnerability to reconnaissance strategies, in which attackers lure targets into being their friends by exploiting the social graph in order to extract victims' sensitive information. As the network topology is only partially revealed after each successful friend request, attackers need to employ an adaptive strategy. Existing work only considered a simple strategy in which attackers sequentially acquire one friend at a time, which causes tremendous delay in waiting for responses before sending the next request, and which lack the ability to retry failed requests after the network has changed. In contrast, we investigate an adaptive and parallel strategy, of which attackers can simultaneously send multiple friend requests in batch and recover from failed requests by retrying after topology changes, thereby significantly reducing the time to reach the targets and greatly improving robustness. We cast this approach as an optimization problem, Max-Crawling, and show it inapproximable within (1 - 1/e + $ε$). We first design our core algorithm PM-AReST which has an approximation ratio of (1 - e-(1-1/e)) using adaptive monotonic submodular properties. We next tighten our algorithm to provide a nearoptimal solution, i.e. having a ratio of (1 - 1/e), via a two-stage stochastic programming approach. We further establish the gap bound of (1 - e-(1-1/e)2) between batch strategies versus the optimal sequential one. We experimentally validate our theoretical results, finding that our algorithm performs nearoptimally in practice and that this is robust under a variety of problem settings.
High accurate time synchronization is very important for many applications and industrial environments. In a computer network, synchronization of time for connected devices is provided by the Precision Time Protocol (PTP), which in principal allows for device time synchronization down to microsecond level. However, PTP and network infrastructures are vulnerable to cyber-attacks, which can de-synchronize an entire network, leading to potentially devastating consequences. This paper will focus on the issue of internal attacks on time synchronization networks and discuss how counter-measures based on public key infrastructures, trusted platform modules, network intrusion detection systems and time synchronization supervisors can be adopted to defeat or at least detect such internal attacks.
Transform based image steganography methods are commonly used in security applications. However, the application of several recent transforms for image steganography remains unexplored. This paper presents bit-plane based steganography method using different transforms. In this work, the bit-plane of the transform coefficients is selected to embed the secret message. The characteristics of four transforms used in the steganography have been analyzed and the results of the four transforms are compared. This has been proven in the experimental results.
Organizations are experiencing an ever-growing concern of how to identify and defend against insider threats. Those who have authorized access to sensitive organizational data are placed in a position of power that could well be abused and could cause significant damage to an organization. This could range from financial theft and intellectual property theft to the destruction of property and business reputation. Traditional intrusion detection systems are neither designed nor capable of identifying those who act maliciously within an organization. In this paper, we describe an automated system that is capable of detecting insider threats within an organization. We define a tree-structure profiling approach that incorporates the details of activities conducted by each user and each job role and then use this to obtain a consistent representation of features that provide a rich description of the user's behavior. Deviation can be assessed based on the amount of variance that each user exhibits across multiple attributes, compared against their peers. We have performed experimentation using ten synthetic data-driven scenarios and found that the system can identify anomalous behavior that may be indicative of a potential threat. We also show how our detection system can be combined with visual analytics tools to support further investigation by an analyst.
Assured Mission Delivery Network (AMDN) is a collaborative network to support data-intensive scientific collaborations in a multi-cloud environment. Each scientific collaboration group, called a mission, specifies a set of rules to handle computing and network resources. Security is an integral part of the AMDN design since the rules must be set by authorized users and the data generated by each mission may be privacy-sensitive. In this paper, we propose a CertificateLess cryptography-based Rule-management Protocol (CL-RP) for AMDN, which supports authenticated rule registrations and updates with non-repudiation. We evaluate CL-RP through test-bed experiments and compare it with other standard protocols.
We consider the problem of covert communication over a state-dependent channel, where the transmitter has non-causal knowledge of the channel states. Here, “covert” means that the probability that a warden on the channel can detect the communication must be small. In contrast with traditional models without noncausal channel-state information at the transmitter, we show that covert communication can be possible with positive rate. We derive closed-form formulas for the maximum achievable covert communication rate (“covert capacity”) in this setting for discrete memoryless channels as well as additive white Gaussian noise channels. We also derive lower bounds on the rate of the secret key that is needed for the transmitter and the receiver to achieve the covert capacity.
Ubiquitous deployment of low-cost mobile positioning devices and the widespread use of high-speed wireless networks enable massive collection of large-scale trajectory data of individuals moving on road networks. Trajectory data mining finds numerous applications including understanding users' historical travel preferences and recommending places of interest to new visitors. Privacy-preserving trajectory mining is an important and challenging problem as exposure of sensitive location information in the trajectories can directly invade the location privacy of the users associated with the trajectories. In this paper, we propose a differentially private trajectory analysis algorithm for points-of-interest recommendation to users that aims at maximizing the accuracy of the recommendation results while protecting the privacy of the exposed trajectories with differential privacy guarantees. Our algorithm first transforms the raw trajectory dataset into a bipartite graph with nodes representing the users and the points-of-interest and the edges representing the visits made by the users to the locations, and then extracts the association matrix representing the bipartite graph to inject carefully calibrated noise to meet έ-differential privacy guarantees. A post-processing of the perturbed association matrix is performed to suppress noise prior to performing a Hyperlink-Induced Topic Search (HITS) on the transformed data that generates an ordered list of recommended points-of-interest. Extensive experiments on a real trajectory dataset show that our algorithm is efficient, scalable and demonstrates high recommendation accuracy while meeting the required differential privacy guarantees.
In a number of information security scenarios, human beings can be better than technical security measures at detecting threats. This is particularly the case when a threat is based on deception of the user rather than exploitation of a specific technical flaw, as is the case of spear-phishing, application spoofing, multimedia masquerading and other semantic social engineering attacks. Here, we put the concept of the human-as-a-security-sensor to the test with a first case study on a small number of participants subjected to different attacks in a controlled laboratory environment and provided with a mechanism to report these attacks if they spot them. A key challenge is to estimate the reliability of each report, which we address with a machine learning approach. For comparison, we evaluate the ability of known technical security countermeasures in detecting the same threats. This initial proof of concept study shows that the concept is viable.
Due to the unavailability of signatures for previously unknown malware, non-signature malware detection schemes typically rely on analyzing program behavior. Prior behavior based non-signature malware detection schemes are either easily evadable by obfuscation or are very inefficient in terms of storage space and detection time. In this paper, we propose GZero, a graph theoretic approach fast and accurate non-signature malware detection at end hosts. GZero it is effective while being efficient in terms of both storage space and detection time. We conducted experiments on a large set of both benign software and malware. Our results show that GZero achieves more than 99% detection rate and a false positive rate of less than 1%, with less than 1 second of average scan time per program and is relatively robust to obfuscation attacks. Due to its low overheads, GZero can complement existing malware detection solutions at end hosts.
The heterogeneous SIS model for virus spread in any finite size graph characterizes the influence of factors of SIS model and could be analyzed by the extended N-Intertwined model introduced in [1]. We specifically focus on the heterogeneous virus spread in the star network in this paper. The epidemic threshold and the average meta-stable state fraction of infected nodes are derived for virus spread in the star network. Our results illustrate the effect of the factors of SIS model on the steady state infection.
Authentication of smartphone users is important because a lot of sensitive data is stored in the smartphone and the smartphone is also used to access various cloud data and services. However, smartphones are easily stolen or co-opted by an attacker. Beyond the initial login, it is highly desirable to re-authenticate end-users who are continuing to access security-critical services and data. Hence, this paper proposes a novel authentication system for implicit, continuous authentication of the smartphone user based on behavioral characteristics, by leveraging the sensors already ubiquitously built into smartphones. We propose novel context-based authentication models to differentiate the legitimate smartphone owner versus other users. We systematically show how to achieve high authentication accuracy with different design alternatives in sensor and feature selection, machine learning techniques, context detection and multiple devices. Our system can achieve excellent authentication performance with 98.1% accuracy with negligible system overhead and less than 2.4% battery consumption.
The principal mission of Multi-Source Multicast (MSM) is to disseminate all messages from all sources in a network to all destinations. MSM is utilized in numerous applications. In many of them, securing the messages disseminated is critical. A common secure model is to consider a network where there is an eavesdropper which is able to observe a subset of the network links, and seek a code which keeps the eavesdropper ignorant regarding all the messages. While this is solved when all messages are located at a single source, Secure MSM (SMSM) is an open problem, and the rates required are hard to characterize in general. In this paper, we consider Individual Security, which promises that the eavesdropper has zero mutual information with each message individually. We completely characterize the rate region for SMSM under individual security, and show that such a security level is achievable at the full capacity of the network, that is, the cut-set bound is the matching converse, similar to non-secure MSM. Moreover, we show that the field size is similar to non-secure MSM and does not have to be larger due to the security constraint.
This publication presents some techniques for insider threats and cryptographic protocols in secure processes. Those processes are dedicated to the information management of strategic data splitting. Strategic data splitting is dedicated to enterprise management processes as well as methods of securely storing and managing this type of data. Because usually strategic data are not enough secure and resistant for unauthorized leakage, we propose a new protocol that allows to protect data in different management structures. The presented data splitting techniques will concern cryptographic information splitting algorithms, as well as data sharing algorithms making use of cognitive data analysis techniques. The insider threats techniques will concern data reconstruction methods and cognitive data analysis techniques. Systems for the semantic analysis and secure information management will be used to conceal strategic information about the condition of the enterprise. Using the new approach, which is based on cognitive systems allow to guarantee the secure features and make the management processes more efficient.
We present work undertaken at our institutional repository to enhance metadata and re-organize digital objects according to new information architecture, in an effort to minimize administrative object management and processing, and improve object discovery and use. This work was partly motivated by the launch of a new discovery platform at our institution, which aggregates metadata and full text from our four open access repositories into a cohesive, consistent, and enhanced searching and browsing experience. The platform provides digital object identifier (DOI) assignment, metadata access via various formats, and an open metadata and full text application program interface (API) for researchers, amongst other features. Functionality of these platform features relies heavily on accurate object representation and metadata. This work facilitates and improves the discovery and engagement of the diverse digital objects available from our institution, so they can be used and analyzed in new, flexible, and innovative ways by a myriad of communities and disciplines.