Biblio
Distributed optimization is an emerging research topic. Agents in the network solve the problem by exchanging information which depicts people's consideration on a optimization problem in real lives. In this paper, we introduce two algorithms in continuous-time to solve distributed optimization problems with equality constraints where the cost function is expressed as a sum of functions and where each function is associated to an agent. We firstly construct a continuous dynamic system by utilizing the Lagrangian function and then show that the algorithm is locally convergent and globally stable under certain conditions. Then, we modify the Lagrangian function and re-construct the dynamic system to prove that the new algorithm will be convergent under more relaxed conditions. At last, we present some simulations to prove our theoretical results.
The electric network frequency (ENF) criterion is a recently developed technique for audio timestamp identification, which involves the matching between extracted ENF signal and reference data. For nearly a decade, conventional matching criterion has been based on the minimum mean squared error (MMSE) or maximum correlation coefficient. However, the corresponding performance is highly limited by low signal-to-noise ratio, short recording durations, frequency resolution problems, and so on. This paper presents a threshold-based dynamic matching algorithm (DMA), which is capable of autocorrecting the noise affected frequency estimates. The threshold is chosen according to the frequency resolution determined by the short-time Fourier transform (STFT) window size. A penalty coefficient is introduced to monitor the autocorrection process and finally determine the estimated timestamp. It is then shown that the DMA generalizes the conventional MMSE method. By considering the mainlobe width in the STFT caused by limited frequency resolution, the DMA achieves improved identification accuracy and robustness against higher levels of noise and the offset problem. Synthetic performance analysis and practical experimental results are provided to illustrate the advantages of the DMA.
The secure hash algorithm (SHA)-3 has been selected in 2012 and will be used to provide security to any application which requires hashing, pseudo-random number generation, and integrity checking. This algorithm has been selected based on various benchmarks such as security, performance, and complexity. In this paper, in order to provide reliable architectures for this algorithm, an efficient concurrent error detection scheme for the selected SHA-3 algorithm, i.e., Keccak, is proposed. To the best of our knowledge, effective countermeasures for potential reliability issues in the hardware implementations of this algorithm have not been presented to date. In proposing the error detection approach, our aim is to have acceptable complexity and performance overheads while maintaining high error coverage. In this regard, we present a low-complexity recomputing with rotated operands-based scheme which is a step-forward toward reducing the hardware overhead of the proposed error detection approach. Moreover, we perform injection-based fault simulations and show that the error coverage of close to 100% is derived. Furthermore, we have designed the proposed scheme and through ASIC analysis, it is shown that acceptable complexity and performance overheads are reached. By utilizing the proposed high-performance concurrent error detection scheme, more reliable and robust hardware implementations for the newly-standardized SHA-3 are realized.
Image inpainting is the process of filling the unwanted region in an image marked by the user. It is used for restoring old paintings and photographs, removal of red eyes from pictures, etc. In this paper, we propose an efficient inpainting algorithm which takes care of false edge propagation. We use the classical exemplar based technique to find out the priority term for each patch. To ensure that the edge content of the nearest neighbor patch found by minimizing L2 distance between patches, we impose an additional constraint that the entropy of the patches be similar. Entropy of the patch acts as a good measure of edge content. Additionally, we fill the image by considering overlapping patches to ensure smoothness in the output. We use structural similarity index as the measure of similarity between ground truth and inpainted image. The results of the proposed approach on a number of examples on real and synthetic images show the effectiveness of our algorithm in removing objects and thin scratches or text written on image. It is also shown that the proposed approach is robust to the shape of the manually selected target. Our results compare favorably to those obtained by existing techniques.
This paper presents the application of fusion meth- ods to a visual surveillance scenario. The range of relevant features for re-identifying vehicles is discussed, along with the methods for fusing probabilistic estimates derived from these estimates. In particular, two statistical parametric fusion methods are considered: Bayesian Networks and the Dempster Shafer approach. The main contribution of this paper is the development of a metric to allow direct comparison of the benefits of the two methods. This is achieved by generalising the Kelly betting strategy to accommodate a variable total stake for each sample, subject to a fixed expected (mean) stake. This metric provides a method to quantify the extra information provided by the Dempster-Shafer method, in comparison to a Bayesian Fusion approach.
This brief presents a methodology to develop recursive filters in reproducing kernel Hilbert spaces. Unlike previous approaches that exploit the kernel trick on filtered and then mapped samples, we explicitly define the model recursivity in the Hilbert space. For that, we exploit some properties of functional analysis and recursive computation of dot products without the need of preimaging or a training dataset. We illustrate the feasibility of the methodology in the particular case of the γ-filter, which is an infinite impulse response filter with controlled stability and memory depth. Different algorithmic formulations emerge from the signal model. Experiments in chaotic and electroencephalographic time series prediction, complex nonlinear system identification, and adaptive antenna array processing demonstrate the potential of the approach for scenarios where recursivity and nonlinearity have to be readily combined.
Internet into our physical world and making it present everywhere. This evolution is also raising challenges in issues such as privacy, and security. For that reason, this work is focused on the integration and lightweight adaptation of existing authentication protocols, which are able also to offer authorization and access control functionalities. In particular, this work is focused on the Extensible Authentication Protocol (EAP). EAP is widely used protocol for access control in local area networks such Wireless (802.11) and wired (802.3). This work presents an integration of the EAP frame into IEEE 802.15.4 frames, demonstrating that EAP protocol and some of its mechanisms are feasible to be applied in constrained devices, such as the devices that are populating the IoT networks.
In this paper, we propose a decomposition based multiobjective evolutionary algorithm that extracts information from an external archive to guide the evolutionary search for continuous optimization problem. The proposed algorithm used a mechanism to identify the promising regions(subproblems) through learning information from the external archive to guide evolutionary search process. In order to demonstrate the performance of the algorithm, we conduct experiments to compare it with other decomposition based approaches. The results validate that our proposed algorithm is very competitive.
Information fusion deals with the integration and merging of data and information from multiple (heterogeneous) sources. In many cases, the information that needs to be fused has security classification. The result of the fusion process is then by necessity restricted with the strictest information security classification of the inputs. This has severe drawbacks and limits the possible dissemination of the fusion results. It leads to decreased situational awareness: the organization knows information that would enable a better situation picture, but since parts of the information is restricted, it is not possible to distribute the most correct situational information. In this paper, we take steps towards defining fusion and data mining processes that can be used even when all the underlying data that was used cannot be disseminated. The method we propose here could be used to produce a classifier where all the sensitive information has been removed and where it can be shown that an antagonist cannot even in principle obtain knowledge about the classified information by using the classifier or situation picture.
This paper presents an overview of the research project “High-Performance Hybrid Simulation/Measurement-Based Tools for Proactive Operator Decision-Support”, performed under the auspices of the U.S. Department of Energy grant DE-OE0000628. The objective of this project is to develop software tools to provide enhanced real-time situational awareness to support the decision making and system control actions of transmission operators. The integrated tool will combine high-performance dynamic simulation with synchrophasor measurement data to assess in real time system dynamic performance and operation security risk. The project includes: (i) The development of high-performance dynamic simulation software; (ii) the development of new computationally effective measurement-based tools to estimate operating margins of a power system in real time using measurement data from synchrophasors and SCADA; (iii) the development a hybrid framework integrating measurement-based and simulation-based approaches, and (iv) the use of cutting-edge visualization technology to display various system quantities and to visually process the results of the hybrid measurement-base/simulation-based security-assessment tool. Parallelization and high performance computing are utilized to enable ultrafast transient stability analysis that can be used in a real-time environment to quickly perform “what-if” simulations involving system dynamics phenomena. EPRI's Extended Transient Midterm Simulation Program (ETMSP) is modified and enhanced for this work. The contingency analysis is scaled for large-scale contingency analysis using MPI-based parallelization. Simulations of thousands of contingencies on a high performance computing machine are performed, and results show that parallelization over contingencies with MPI provides good scalability and computational gains. Different ways to reduce the I/O bottleneck have been also exprored. Thread-parallelization of the sparse linear solve is explored also through use of the SuperLU_MT library. Based on performance profiling results for the implicit method, the majority of CPU time is spent on the integration steps. Hence, in order to further improve the ETMSP performance, a variable time step control scheme for the original trapezoidal integration method has been developed and implemented. The Adams-Bashforth-Moulton predictor-corrector method was introduced and designed for ETMSP. Test results show superior performance with this method.
This paper presents an overview of the research project “High-Performance Hybrid Simulation/Measurement-Based Tools for Proactive Operator Decision-Support”, performed under the auspices of the U.S. Department of Energy grant DE-OE0000628. The objective of this project is to develop software tools to provide enhanced real-time situational awareness to support the decision making and system control actions of transmission operators. The integrated tool will combine high-performance dynamic simulation with synchrophasor measurement data to assess in real time system dynamic performance and operation security risk. The project includes: (i) The development of high-performance dynamic simulation software; (ii) the development of new computationally effective measurement-based tools to estimate operating margins of a power system in real time using measurement data from synchrophasors and SCADA; (iii) the development a hybrid framework integrating measurement-based and simulation-based approaches, and (iv) the use of cutting-edge visualization technology to display various system quantities and to visually process the results of the hybrid measurement-base/simulation-based security-assessment tool. Parallelization and high performance computing are utilized to enable ultrafast transient stability analysis that can be used in a real-time environment to quickly perform “what-if” simulations involving system dynamics phenomena. EPRI's Extended Transient Midterm Simulation Program (ETMSP) is modified and enhanced for this work. The contingency analysis is scaled for large-scale contingency analysis using MPI-based parallelization. Simulations of thousands of contingencies on a high performance computing machine are performed, and results show that parallelization over contingencies with MPI provides good scalability and computational gains. Different ways to reduce the I/O bottleneck have been also exprored. Thread-parallelization of the sparse linear solve is explored also through use of the SuperLU_MT library. Based on performance profiling results for the implicit method, the majority of CPU time is spent on the integration steps. Hence, in order to further improve the ETMSP performance, a variable time step control scheme for the original trapezoidal integration method has been developed and implemented. The Adams-Bashforth-Moulton predictor-corrector method was introduced and designed for ETMSP. Test results show superior performance with this method.
This paper proposes and describes an active authentication model based on user profiles built from user-issued commands when interacting with GUI-based application. Previous behavioral models derived from user issued commands were limited to analyzing the user's interaction with the *Nix (Linux or Unix) command shell program. Human-computer interaction (HCI) research has explored the idea of building users profiles based on their behavioral patterns when interacting with such graphical interfaces. It did so by analyzing the user's keystroke and/or mouse dynamics. However, none had explored the idea of creating profiles by capturing users' usage characteristics when interacting with a specific application beyond how a user strikes the keyboard or moves the mouse across the screen. We obtain and utilize a dataset of user command streams collected from working with Microsoft (MS) Word to serve as a test bed. User profiles are first built using MS Word commands and identification takes place using machine learning algorithms. Best performance in terms of both accuracy and Area under the Curve (AUC) for Receiver Operating Characteristic (ROC) curve is reported using Random Forests (RF) and AdaBoost with random forests.
In recent years, with growing demands towards big data application, various research on context-awareness has once again become active. This paper proposes a new type of context-aware user authentication that controls the authentication level of users, using the context of “physical trust relationship” that is built between users by visual contact. In our proposal, the authentication control is carried out by two mechanisms; “i-Contact” and “k-Contact”. i-Contact is the mechanism that visually confirms the user (owner of a mobile device) using the surrounding users' eyes. The authenticity of users can be reliably assessed by the people (witnesses), even when the user exhibits ambiguous behavior. k-Contact is the mechanism that dynamically changes the authentication level of each user using the context information collected through i-Contact. Once a user is authenticated by eyewitness reports, the user is no longer prompted for a password to unlock his/her mobile device and/or to access confidential resources. Thus, by leveraging the proposed authentication system, the usability for only trusted users can be securely enhanced. At the same time, our proposal anticipates the promotion of physical social communication as face-to-face communication between users is triggered by the proposed authentication system.
Revolution in the field of technology leads to the development of cloud computing which delivers on-demand and easy access to the large shared pools of online stored data, softwares and applications. It has changed the way of utilizing the IT resources but at the compromised cost of security breaches as well such as phishing attacks, impersonation, lack of confidentiality and integrity. Thus this research work deals with the core problem of providing absolute security to the mobile consumers of public cloud to improve the mobility of user's, accessing data stored on public cloud securely using tokens without depending upon the third party to generate them. This paper presents the approach of simplifying the process of authenticating and authorizing the mobile user's by implementing middleware-centric framework called MiLAMob model with the huge online data storage system i.e. HDFS. It allows the consumer's to access the data from HDFS via mobiles or through the social networking sites eg. facebook, gmail, yahoo etc using OAuth 2.0 protocol. For authentication, the tokens are generated using one-time password generation technique and then encrypting them using AES method. By implementing the flexible user based policies and standards, this model improves the authorization process.
In the present paper, we present our approach for the transformation of workflow applications based on institution theory. The workflow application is modeled with UML Activity Diagram(UML AD). Then, for a formal verification purposes, the graphical model will be translated to an Event-B specification. Institution theory will be used in two levels. First, we defined a local semantic for UML AD and Event B specification using a categorical description of each one. Second, we defined institution comorphism to link the two defined institutions. The theoretical foundations of our approach will be studied in the same mathematical framework since the use of institution theory. The resulted Event-B specification, after applying the transformation approach, will be used for the formal verification of functional proprieties and the verification of absences of problems such deadlock. Additionally, with the institution comorphism, we define a semantic correctness and coherence of the model transformation.
Cyber intrusions to substations of a power grid are a source of vulnerability since most substations are unmanned and with limited protection of the physical security. In the worst case, simultaneous intrusions into multiple substations can lead to severe cascading events, causing catastrophic power outages. In this paper, an integrated Anomaly Detection System (ADS) is proposed which contains host- and network-based anomaly detection systems for the substations, and simultaneous anomaly detection for multiple substations. Potential scenarios of simultaneous intrusions into the substations have been simulated using a substation automation testbed. The host-based anomaly detection considers temporal anomalies in the substation facilities, e.g., user-interfaces, Intelligent Electronic Devices (IEDs) and circuit breakers. The malicious behaviors of substation automation based on multicast messages, e.g., Generic Object Oriented Substation Event (GOOSE) and Sampled Measured Value (SMV), are incorporated in the proposed network-based anomaly detection. The proposed simultaneous intrusion detection method is able to identify the same type of attacks at multiple substations and their locations. The result is a new integrated tool for detection and mitigation of cyber intrusions at a single substation or multiple substations of a power grid.
Cyber intrusions to substations of a power grid are a source of vulnerability since most substations are unmanned and with limited protection of the physical security. In the worst case, simultaneous intrusions into multiple substations can lead to severe cascading events, causing catastrophic power outages. In this paper, an integrated Anomaly Detection System (ADS) is proposed which contains host- and network-based anomaly detection systems for the substations, and simultaneous anomaly detection for multiple substations. Potential scenarios of simultaneous intrusions into the substations have been simulated using a substation automation testbed. The host-based anomaly detection considers temporal anomalies in the substation facilities, e.g., user-interfaces, Intelligent Electronic Devices (IEDs) and circuit breakers. The malicious behaviors of substation automation based on multicast messages, e.g., Generic Object Oriented Substation Event (GOOSE) and Sampled Measured Value (SMV), are incorporated in the proposed network-based anomaly detection. The proposed simultaneous intrusion detection method is able to identify the same type of attacks at multiple substations and their locations. The result is a new integrated tool for detection and mitigation of cyber intrusions at a single substation or multiple substations of a power grid.
Owing to dynamic topology changes in mobile ad hoc networks (MANETs), nodes have the freedom of movement. This characteristic necessitates the process of rekeying to secure multicast transmission. Furthermore, a secure inter cluster communication technique is also mandatory to improve the performance of multicast transmission. In this paper, we propose an inter cluster communication and rekeying technique for multicast security in MANET. The technique facilitates inter cluster communication by distributing private key shares to the nodes, which is performed by the centralised key manager. By tamper proofing the data using private key share, inter cluster communication is accomplished. Furthermore, the rekeying mechanism is invoked when a node joins the cluster. Our rekeying technique incurs low overhead and computation cost. Our technique is simulated in network simulator tool. The simulation results show the proficiency of our technique.
Although wireless communication is integral to our daily lives, there are numerous crucial questions related to coverage, energy consumption, reliability, and security when it comes to industrial deployment. The authors provide an overview of wireless machine-to-machine (M2M) technologies in the context of a smart factory.
The shrew distributed denial of service (DDoS) attack is very detrimental for many applications, since it can throttle TCP flows to a small fraction of their ideal rate at very low attack cost. Earlier works mainly focused on empirical studies of defending against the shrew DDoS, and very few of them provided analytic results about the attack itself. In this paper, we propose a mathematical model for estimating attack effect of this stealthy type of DDoS. By originally capturing the adjustment behaviors of victim TCPs congestion window, our model can comprehensively evaluate the combined impact of attack pattern (i.e., how the attack is configured) and network environment on attack effect (the existing models failed to consider the impact of network environment). Henceforth, our model has higher accuracy over a wider range of network environments. The relative error of our model remains around 10% for most attack patterns and network environments, whereas the relative error of the benchmark model in previous works has a mean value of 69.57%, and it could be more than 180% in some cases. More importantly, our model reveals some novel properties of the shrew attack from the interaction between attack pattern and network environment, such as the minimum cost formula to launch a successful attack, and the maximum effect formula of a shrew attack. With them, we are able to find out how to adaptively tune the attack parameters (e.g., the DoS burst length) to improve its attack effect in a given network environment, and how to reconfigure the network resource (e.g., the bottleneck buffer size) to mitigate the shrew DDoS with a given attack pattern. Finally, based on our theoretical results, we put forward a simple strategy to defend the shrew attack. The simulation results indicate that this strategy can remarkably increase TCP throughput by nearly half of the bottleneck bandwidth (and can be higher) for general attack patterns.
By identifying memory pages that external I/O operations have modified, a proposed scheme blocks malicious injected code activation, accurately distinguishing an attack from legitimate code injection with negligible performance impact and no changes to the user application.
One of the various features expected for a smart power distribution system - a smart grid in the power distribution level - is the possibility of the fully automated operation for certain control actions. Although this is very expected, it requires various logic, sensor and actuator technologies in a system which, historically, has a low level of automation. One of the most analyzed problems for the distribution system is the topology reconfiguration. The reconfiguration has been applied to various objectives: minimization of power losses, voltage regulation, load balancing, to name a few. The solution method in most cases is centralized and its application is not in real-time. From the new perspectives of advanced distribution systems, fast and adaptive response of the control actions are required, specially in the presence of alternative generation sources and electrical vehicles. In this context, the multi-agent system, which embeds the necessary control actions and decision making is proposed for the topology reconfiguration aiming the loss reduction. The concept of multi-agent system for distribution system is proposed and two case studies with 11-Bus and 16-Bus system are presented.
This paper presents one-layer projection neural networks based on projection operators for solving constrained variational inequalities and related optimization problems. Sufficient conditions for global convergence of the proposed neural networks are provided based on Lyapunov stability. Compared with the existing neural networks for variational inequalities and optimization, the proposed neural networks have lower model complexities. In addition, some improved criteria for global convergence are given. Compared with our previous work, a design parameter has been added in the projection neural network models, and it results in some improved performance. The simulation results on numerical examples are discussed to demonstrate the effectiveness and characteristics of the proposed neural networks.
The paradigm shift from traditional BPM to Subject-oriented BPM (S-BPM) is accounted to identifying independently acting subjects. As such, they can perform arbitrary actions on arbitrary objects. Abstract State Machines (ASMs) work on a similar basis. Exploring their capabilities with respect to representing and executing S-BPM models strengthens the theoretical foundations of S-BPM, and thus, validity of S-BPM tools. Moreover it enables coherent intertwining of business process modeling with executing of S-BPM representations. In this contribution we introduce the framework and roadmap tackling the exploration of the ASM approach in the context of S-BPM. We also report the major result, namely the implementation of an executable workflow engine with an Abstract State Machine interpreter based on an existing abstract interpreter model for S-BPM (applying the ASM refinement concept). This workflow engine serves as a baseline and reference implementation for further language and processing developments, such as simulation tools, as it has been developed within the Open-S-BPM initiative.
We propose that to address the growing problems with complexity and data volumes in HPC security wee need to refactor how we look at data by creating tools that not only select data, but analyze and represent it in a manner well suited for intuitive analysis. We propose a set of rules describing what this means, and provide a number of production quality tools that represent our current best effort in implementing these ideas.