Biblio
Filters: First Letter Of Last Name is C [Clear All Filters]
Low-complexity Forward Error Correction For 800G Unamplified Campus Link. 2022 20th International Conference on Optical Communications and Networks (ICOCN). :1—3.
.
2022. The discussion about forward error correction (FEC) used for 800G unamplified link (800LR) is ongoing. Aiming at two potential options for FEC bit error ratio (BER) threshold, we propose two FEC schemes, respectively based on channel-polarized (CP) multilevel coding (MLC) and bit interleaved coded modulation (BICM), with the same inner FEC code. The field-programmable gate array (FPGA) verification results indicate that with the same FEC overhead (OH), proposed CP-MLC outperforms BICM scheme with less resource and power consumption.
Fuzzy Logic based Static Synchronous Series Compensator (SSSC) to enhance Power System Security. 2022 IEEE IAS Global Conference on Emerging Technologies (GlobConET). :667—672.
.
2022. In today's power market, it's vital to keep electrical energy affordable to the vast majority of people while maintaining the highest degree of dependability. Due to which, the transmission network must operate beyond transfer limitations, generating congestion on transmission lines. These transmission line difficulties can be alleviated with the use of reactive power adjustment based on FACTS devices. Using a fuzzy tuned Static Synchronous Series Compensator [SSSC], this research proposes a novel method for calculating the effective damping oscillation control signals. The performance of the SSSC is compared to that of fuzzy logic-based controllers using PI controllers. According to the simulation results, the SSSC with fuzzy logic control effectively improves power flow under disrupted conditions
Enhancement of Power System Security by Fuzzy based Unified Power Flow Controller. 2022 2nd International Conference on Intelligent Technologies (CONIT). :1—4.
.
2022. The paper presents the design of fuzzy logic controller based unified power flow controller (UPFC) to improve power system security performance during steady state as well as fault conditions. Fuzzy interference has been design with two inputs Vref and Vm for the shunt voltage source Converter and two inputs for Series Id, Idref, Iq, Iqref at the series voltage source converter location. The coordination of shunt and series VSC has been achieved by using fuzzy logic controller (FLC). The comparative performance of PI based UPFC and fuzzy based UPFC under abnormal condition has been validated in MATLB domain. The combination of fuzzy with a UPFC is tested on multi machine system in MATLAB domain. The results shows that the power system security enhancement as well as oscillations damping.
A Co-regularization Facial Emotion Recognition Based on Multi-Task Facial Action Unit Recognition. 2022 41st Chinese Control Conference (CCC). :6806—6810.
.
2022. Facial emotion recognition helps feed the growth of the future artificial intelligence with the development of emotion recognition, learning, and analysis of different angles of a human face and head pose. The world's recent pandemic gave rise to the rapid installment of facial recognition for fewer applications, while emotion recognition is still within the experimental boundaries. The current challenges encountered with facial emotion recognition (FER) are the difference between background noises. Since today's world shows us that humans soon need robotics in the most significant role of human perception, attention, memory, decision-making, and human-robot interaction (HRI) needs employees. By merging the head pose as a combination towards the FER to boost the robustness in understanding emotions using the convolutional neural networks (CNN). The stochastic gradient descent with a comprehensive model is adopted by applying multi-task learning capable of implicit parallelism, inherent and better global optimizer in finding better network weights. After executing a multi-task learning model using two independent datasets, the experiment with the FER and head pose learning multi-views co-regularization frameworks were subsequently merged with validation accuracy.
Multi-user facial emotion recognition in video based on user-dependent neural network adaptation. 2022 VIII International Conference on Information Technology and Nanotechnology (ITNT). :1—5.
.
2022. In this paper, the multi-user video-based facial emotion recognition is examined in the presence of a small data set with the emotions of end users. By using the idea of speaker-dependent speech recognition, we propose a novel approach to solve this task if labeled video data from end users is available. During the training stage, a deep convolutional neural network is trained for user-independent emotion classification. Next, this classifier is adapted (fine-tuned) on the emotional video of a concrete person. During the recognition stage, the user is identified based on face recognition techniques, and an emotional model of the recognized user is applied. It is experimentally shown that this approach improves the accuracy of emotion recognition by more than 20% for the RAVDESS dataset.
MHSnet: Multi-head and Spatial Attention Network with False-Positive Reduction for Lung Nodule Detection. 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). :1108—1114.
.
2022. Mortality from lung cancer has ranked high among cancers for many years. Early detection of lung cancer is critical for disease prevention, cure, and mortality rate reduction. Many existing detection methods on lung nodules can achieve high sensitivity but meanwhile introduce an excessive number of false-positive proposals, which is clinically unpractical. In this paper, we propose the multi-head detection and spatial attention network, shortly MHSnet, to address this crucial false-positive issue. Specifically, we first introduce multi-head detectors and skip connections to capture multi-scale features so as to customize for the variety of nodules in sizes, shapes, and types. Then, inspired by how experienced clinicians screen CT images, we implemented a spatial attention module to enable the network to focus on different regions, which can successfully distinguish nodules from noisy tissues. Finally, we designed a lightweight but effective false-positive reduction module to cut down the number of false-positive proposals, without any constraints on the front network. Compared with the state-of-the-art models, our extensive experimental results show the superiority of this MHSnet not only in the average FROC but also in the false discovery rate (2.64% improvement for the average FROC, 6.39% decrease for the false discovery rate). The false-positive reduction module takes a further step to decrease the false discovery rate by 14.29%, indicating its very promising utility of reducing distracted proposals for the downstream tasks relied on detection results.
Adaptive control of bilateral teleoperation systems with false data injection attacks and attacks detection. 2022 41st Chinese Control Conference (CCC). :4407—4412.
.
2022. This paper studies adaptive control of bilateral teleoperation systems with false data injection attacks. The model of bilateral teleoperation system with false data injection attacks is presented. An off-line identification approach based on the least squares is used to detect whether false data injection attacks occur or not in the communication channel. Two Bernoulli distributed variables are introduced to describe the packet dropouts and false data injection attacks in the network. An adaptive controller is proposed to deal stability of the system with false data injection attacks. Some sufficient conditions are proposed to ensure the globally asymptotical stability of the system under false data injection attacks by using Lyapunov functional methods. A bilateral teleoperation system with two degrees of freedom is used to show the effectiveness of gained results.
A System Dynamics Model of False News on Social Networking Sites. 2022 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM). :0786—0790.
.
2022. Over the years, false news has polluted the online media landscape across the world. In this “post-truth” era, the narratives created by false news have now come into fruition through dismantled democracies, disbelief in science, and hyper-polarized societies. Despite increased efforts in fact-checking & labeling, strengthening detection systems, de-platforming powerful users, promoting media literacy and awareness of the issue, false news continues to be spread exponentially. This study models the behaviors of both the victims of false news and the platform in which it is spread— through the system dynamics methodology. The model was used to develop a policy design by evaluating existing and proposed solutions. The results recommended actively countering confirmation bias, restructuring social networking sites’ recommendation algorithms, and increasing public trust in news organizations.
False Data Injection Attack Detection in a Platoon of CACC in RSU. 2022 IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1324—1329.
.
2022. Intelligent connected vehicle platoon technology can reduce traffic congestion and vehicle fuel. However, attacks on the data transmitted by the platoon are one of the primary challenges encountered by the platoon during its travels. The false data injection (FDI) attack can lead to road congestion and even vehicle collisions, which can impact the platoon. However, the complexity of the cellular - vehicle to everything (C-V2X) environment, the single source of the message and the poor data processing capability of the on board unit (OBU) make the traditional detection methods’ success rate and response time poor. This study proposes a platoon state information fusion method using the communication characteristics of the platoon in C-V2X and proposes a novel platoon intrusion detection model based on this fusion method combined with sequential importance sampling (SIS). The SIS is a measured strategy of Monte Carlo integration sampling. Specifically, the method takes the status information of the platoon members as the predicted value input. It uses the leader vehicle status information as the posterior probability of the observed value to the current moment of the platoon members. The posterior probabilities of the platoon members and the weights of the platoon members at the last moment are used as input to update the weights of the platoon members at the current moment and obtain the desired platoon status information at the present moment. Moreover, it compares the status information of the platoon members with the desired status information to detect attacks on the platoon. Finally, the effectiveness of the method is demonstrated by simulation.
Challenges and future directions for security and privacy in vehicular fog computing. 2022 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT). :693—699.
.
2022. Cooperative Intelligent Transportation System (CITS) has been introduced recently to increase road safety, traffic efficiency, and to enable various infotainment and comfort applications and services. To this end, a bunch technologies have been deployed to maintain and promote ITS. In essence, ITS is composed of vehicles, roadside infrastructure, and the environment that includes pedestrians, and other entities. Recently, several solutions were suggested to handle with the challenges faced by the vehicular networks (VN) using future internet architectures. One of the promising solutions proposed recently is Vehicular Fog computing (VFC), an attractive solution that supports sensitive service requests considering factors such as latency, mobility, localization, and scalability. VFC also provides a virtual platform for real-time big data analytic using servers or vehicles as a fog infrastructure. This paper surveys the general fog computing (FC) concept, the VFC architectures, and the key characteristics of several intelligent computing applications. We mainly focus on trust and security challenges in VFC deployment and real-time BD analytic in vehicular environment. We identify the faced challenges and future research directions in VFC and we highlight the research gap that can be exploited by researchers and vehicular manufactures while designing a new secure VFC architecture.
Location-Based Reliable Sharding in Blockchain-Enabled Fog Computing Networks. 2022 14th International Conference on Wireless Communications and Signal Processing (WCSP). :12—16.
.
2022. With the explosive growth of the internet of things (IoT) devices, there are amount of data requirements and computing tasks. Fog computing network that could provide computing, caching and communication resources closer to IoT devices (ID) is considered as a potential solution to deal with the vast computing tasks. To improve the performance of the fog computing network while ensuring data security, blockchain technology is enabled and a location-based reliable sharding (LRS) algorithm is proposed, which jointly considers the optimal number of shards, the geographical location of fog nodes (FNs), and the number of nodes in each shard. Firstly, the reliable sharding result is based on the reputation values of FNs, which are related to the decision information and historical reputation value of FNs in the consensus process. Moreover, a reputation based PBFT consensus algorithm is adopted to accelerate the consensus process. Furthermore, the normalized entropy is used to estimate the proportion of malicious nodes and optimize the number of shards. Finally, simulation results show the effectiveness of the proposed scheme.
A Deep Learning-Based Fog Computing and cloud computing for Orchestration. 2022 2nd International Conference on Innovative Sustainable Computational Technologies (CISCT). :1—5.
.
2022. Fog computing is defined as a decentralized infrastructure that locations storage and processing aspects at the side of the cloud, the place records sources such as software customers and sensors exist. The Fog Computing is the time period coined via Cisco that refers to extending cloud computing to an area of the enterprise’s network. Thus, it is additionally recognized as Edge Computing or Fogging. It allows the operation of computing, storage, and networking offerings between give up units and computing facts centers. Fog computing is defined as a decentralized infrastructure that locations storage and processing aspects at the side of the cloud, the place records sources such as software customers and sensors exist. The fog computing Intelligence as Artificial Intelligence (AI) is furnished by way of Fog Nodes in cooperation with Clouds. In Fog Nodes several sorts of AI studying can be realized - such as e.g., Machine Learning (ML), Deep Learning (DL). Thanks to the Genius of Fog Nodes, for example, we communicate of Intelligent IoT.
Expert Assessment of Information Protection in Complex Energy Systems. 2022 IEEE 4th International Conference on Modern Electrical and Energy System (MEES). :1—6.
.
2022. The paper considers the important problem of information protection in complex energy systems. The expert assessment of information protection in complex energy systems method has been developed. Based on the conducted research and data processing, a method of forming the analytical basis for decision-making aimed at ensuring the competitiveness of complex information protection systems has been developed.
Software design for recording and playback of multi-source heterogeneous data. 2022 3rd International Conference on Computer Science and Management Technology (ICCSMT). :225—228.
.
2022. The development of marine environment monitoring equipment has been improved by leaps and bounds in recent years. Numerous types of marine environment monitoring equipment have mushroomed with a wide range of high-performance capabilities. However, the existing data recording software cannot meet the demands of real-time and comprehensive data recording in view of the growing data types and the exponential data growth rate generated by various types of marine environment monitoring equipment. Based on the above-mentioned conundrum, this paper proposes a multi-source heterogeneous marine environmental data acquisition and storage method, which can record and replay multi-source heterogeneous data based upon the needs of real-time and accurate performance and also possess good compatibility and expandability.
Design of Information Management System for Students' Innovation Activities Based on B/S Architecture. 2022 International Symposium on Advances in Informatics, Electronics and Education (ISAIEE). :142—145.
.
2022. Under the background of rapid development of campus informatization, the information management of college students' innovative activities is slightly outdated, and the operation of the traditional innovative activity record system has gradually become rigid. In response to this situation, this paper proposes a B/S architecture-based information management system for college students' innovative activities based on the current situation that the network and computers are widely used, which is designed for the roles of relevant managers of students on campus, such as class teachers, teachers and counselors, and has developed various functions to meet the needs of such users as class teachers, including user The system is designed to meet the needs of classroom teachers, classroom teachers and tutors. In order to meet the requirements of generality, expandability and ease of development, the overall architecture of the system is based on the javaEE platform, with JSP technology as the main development technology.
The Fast Paillier Decryption with Montgomery Modular Multiplication Based on OpenMP. 2022 IEEE 13th International Symposium on Parallel Architectures, Algorithms and Programming (PAAP). :1—6.
.
2022. With the increasing awareness of privacy protection and data security, people’s concerns over the confidentiality of sensitive data still limit the application of distributed artificial intelligence. In fact, a new encryption form, called homomorphic encryption(HE), has achieved a balance between security and operability. In particular, one of the HE schemes named Paillier has been adopted to protect data privacy in distributed artificial intelligence. However, the massive computation of modular multiplication in Paillier greatly affects the speed of encryption and decryption. In this paper, we propose a fast CRT-Paillier scheme to accelerate its decryption process. We first introduce the Montgomery algorithm to the CRT-Paillier to improve the process of the modular exponentiation, and then compute the modular exponentiation in parallel by using OpenMP. The experimental results show that our proposed scheme has greatly heightened its decryption speed while preserving the same security level. Especially, when the key length is 4096-bit, its speed of decryption is about 148 times faster than CRT-Paillier.
CDEdit: Redactable Blockchain with Cross-audit and Diversity Editing. 2022 IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :945–952.
.
2022. Redactable blockchain allows modifiers or voting committees with modification privileges to edit the data on the chain. Among them, trapdoor holders in chameleon-based hash redactable blockchains can quickly compute hash collisions for arbitrary data without breaking the link of the hash-chain. However, chameleon-based hash redactable blockchain schemes have difficulty solving issues such as editing operations with different granularity or conflicts and auditing modifiers that abuse editing privileges. To address the above challenges, we propose a redactable blockchain with Cross-audit and Diversity Editing (CDEdit). The proposed scheme distributes subdivided transaction-level and block-level tokens to the matching modifier committee to weaken the influence of central power. A number of modifiers are unpredictably selected based on reputation value proportions and the mapping of the consistent hash ring to enable diversity editing operations, and resist Sybil attacks. Meanwhile, an adaptive cross-auditing protocol is proposed to adjust the roles of modifiers and auditors dynamically. This protocol imposes a reputation penalty on the modifiers of illegal edits and solves the problems of abuse of editing privileges and collusion attacks. In addition, We used ciphertext policy attribute-based encryption (CP-ABE) and chameleon hashes with ephemeral trapdoor (CHET) for data modification, and present a system steps and security analysis of CDEdit. Finally, the extensive comparisons and evaluations show that our scheme costs less time overhead than other schemes and is suitable for complex application scenarios, e.g. IoT data management.
ISSN: 2324-9013
Unified Lightweight Authenticated Encryption for Resource-Constrained Electronic Control Unit. 2022 29th IEEE International Conference on Electronics, Circuits and Systems (ICECS). :1–4.
.
2022. Electronic control units (ECU) have been widely used in modern resource-constrained automotive systems, com-municating through the controller area network (CAN) bus. However, they are still facing man-in-the-middle attacks in CAN bus due to the absence of a more effective authenti-cation/encryption mechanism. In this paper, to defend against the attacks more effectively, we propose a unified lightweight authenticated encryption that integrates recent prevalent cryp-tography standardization Isap and Ascon.First, we reuse the common permutation block of ISAP and Asconto support authenticated encryption and encryption/decryption. Second, we provide a flexible and independent switch between authenticated encryption and encryption/decryption to support specific application requirements. Third, we adopt standard CAESAR hardware API as the interface standard to support compatibility between different interfaces or platforms. Experimental results show that our proposed unified lightweight authenticated encryption can reduce 26.09% area consumption on Xilinx Artix-7 FPGA board compared with the state-of-the-arts. In addition, the encryption overhead of the proposed design for transferring one CAN data frame is \textbackslashmathbf10.75 \textbackslashmu s using Asconand \textbackslashmathbf72.25 \textbackslashmu s using ISAP at the frequency of 4 MHz on embedded devices.
An Efficient Randomly-Selective Video Encryption Algorithm. 2022 IEEE 8th International Conference on Computer and Communications (ICCC). :1287–1293.
.
2022. A randomly-selective encryption (RSE) algorithm is proposed for HEVC video bitstream in this paper. It is a pioneer algorithm with high efficiency and security. The encryption process is completely independent of video compression process. A randomly-selective sequence (RSS) based on the RC4 algorithm is designed to determine the extraction position in the video bitstream. The extracted bytes are encrypted by AES-CTR to obtain the encrypted video. Based on the high efficiency video coding (HEV C) bitstream, the simulation and analysis results show that the proposed RSE algorithm has low time complexity and high security, which is a promising tool for video cryptographic applications.
OUTFS+. An Efficient User-Side Encrypted File System Using IBE With Parallel Encryption. 2022 6th International Conference on Trends in Electronics and Informatics (ICOEI). :760–766.
.
2022. Cloud computing is a fast growing field that provides the user with resources like software, infrastructure and virtual hardware processing power. The steady rise of cloud computing in recent times allowed large companies and even individual users to move towards working with cloud storage systems. However, the risks of leakage of uploaded data in the cloud storage and the questions about the privacy of such systems are becoming a huge problem. Security incidents occur frequently everywhere around the world. Sometimes, data leak may occur at the server side by hackers for their own profit. Data being shared must be encrypted before outsourcing it to the cloud storage. Existing encryption/decryption systems utilize large computational power and have troubles managing the files. This paper introduces a file system that is a more efficient, virtual, with encryption/decryption scheme using parallel encryption. To make encryption and decryption of files easier, Parallel encryption is used in place of serial encryption which is integrated with Identity-Based Encryption in the file system. The proposed file system aims to secure files, reduce the chances of file stored in cloud storage getting leaked thus providing better security. The proposed file system, OutFS+, is more robust and secure than its predecessor, OutFS. Cloud outsourcing takes place faster and the files can be downloaded to the OutFS+ instance on the other side. Moreover, OutFS+ is secure since it is a virtual layer on the operating system and can be unmounted whenever the user wants to.
Secure Wireless Sensor Network Design Using a New Method of High-Speed Lightweight Encryption. 2022 6th International Conference On Computing, Communication, Control And Automation (ICCUBEA. :1–8.
.
2022. Data streaming over a wireless network such as Wireless Sensor Networks, where wireless terminals (like PDAs, mobile phones, palmtops) access in data conferencing system, new challenges will be brought about. goal for this paper is to propose a high-speed lightweight encryption (HSLE) for low computational capability controller of WSN, HSLE scheme which reduces latency overhead by modifying existing approaches in order to encrypting data using a probabilistic encryption of data blocks. Proposed work is also useful when we communicate our confidential data on WSN or IoT it should be secure, we just have to save an encrypted data on cloud servers. proposed work is a new key-based algorithm and uses HSLE encryption instead for high end AES. Proposed methods cause significant speed enhancement for data encryption with similar security, in addition, it is best suited in order to communication between hand-held devices such as mobile phones, palmtops etc. algorithm may be used between sites where processing capacity and battery power are limited and efficient encryption is main necessity. This work is implemented on MATLAB and a wireless sensor network of maximum 100 nodes developed for testing the proposed network node encryption system, the time delay observed for the communication in 100 nodes WSN is less in compare with the other available works.
ISSN: 2771-1358
Efficiently Constructing Topology of Dynamic Networks. 2022 IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :44—51.
.
2022. Accurately constructing dynamic network topology is one of the core tasks to provide on-demand security services to the ubiquitous network. Existing schemes cannot accurately construct dynamic network topologies in time. In this paper, we propose a novel scheme to construct the ubiquitous network topology. Firstly, ubiquitous network nodes are divided into three categories: terminal node, sink node, and control node. On this basis, we propose two operation primitives (i.e., addition and subtraction) and three atomic operations (i.e., intersection, union, and fusion), and design a series of algorithms to describe the network change and construct the network topology. We further use our scheme to depict the specific time-varying network topologies, including Satellite Internet and Internet of things. It demonstrates that their communication and security protection modes can be efficiently and accurately constructed on our scheme. The simulation and theoretical analysis also prove that the efficiency of our scheme, and effectively support the orchestration of protection capabilities.
D-ViNE: Dynamic Virtual Network Embedding in Non-Terrestrial Networks. 2022 IEEE Wireless Communications and Networking Conference (WCNC). :166—171.
.
2022. In this paper, we address the virtual network embedding (VNE) problem in non-terrestrial networks (NTNs) enabling dynamic changes in the virtual network function (VNF) deployment to maximize the service acceptance rate and service revenue. NTNs such as satellite networks involve highly dynamic topology and limited resources in terms of rate and power. VNE in NTNs is a challenge because a static strategy under-performs when new service requests arrive or the network topology changes unexpectedly due to failures or other events. Existing solutions do not consider the power constraint of satellites and rate limitation of inter-satellite links (ISLs) which are essential parameters for dynamic adjustment of existing VNE strategy in NTNs. In this work, we propose a dynamic VNE algorithm that selects a suitable VNE strategy for new and existing services considering the time-varying network topology. The proposed scheme, D-ViNE, increases the service acceptance ratio by 8.51% compared to the benchmark scheme TS-MAPSCH.
AEaaS: Artificial Intelligence Edge-of-Things as a Service for Intelligent Remote Farm Security and Intrusion Detection Pre-alarm System. 2022 IEEE 14th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM). :1—6.
.
2022. With the continues growth of our technology, majority in our sectors are becoming smart and one of its great applications is in agriculture, which we call it as smart farming. The application of sensors, IoT, artificial intelligence, networking in the agricultural setting with the main purpose of increasing crop production and security level. With this advancement in farming, this provides a lot of privileges like remote monitoring, optimization of produce and too many to mention. In light of the thorough systematic analysis performed in this study, it was discovered that Edge-of-things is a potential computing scheme that could boost an artificial intelligence for intelligent remote farm security and intrusion detection pre-alarm system over other computing schemes. Again, the purpose of this study is not to replace existing cloud computing, but rather to highlight the potential of the Edge. The Edge architecture improves end-user experience by improving the time-related response of the system. response time of the system. One of the strengths of this system is to provide time-critical response service to make a decision with almost no delay, making it ideal for a farm security setting. Moreover, this study discussed the comparative analysis of Cloud, Fog and Edge in relation to farm security, the demand for a farm security system and the tools needed to materialize an Edge computing in a farm environment.
Neural Network-Based DDoS Detection on Edge Computing Architecture. 2022 4th International Conference on Applied Machine Learning (ICAML). :1—4.
.
2022. The safety of the power system is inherently vital, due to the high risk of the electronic power system. In the wave of digitization in recent years, many power systems have been digitized to a certain extent. Under this circumstance, network security is particularly important, in order to ensure the normal operation of the power system. However, with the development of the Internet, network security issues are becoming more and more serious. Among all kinds of network attacks, the Distributed Denial of Service (DDoS) is a major threat. Once, attackers used huge volumes of traffic in short time to bring down the victim server. Now some attackers just use low volumes of traffic but for a long time to create trouble for attack detection. There are many methods for DDoS detection, but no one can fully detect it because of the huge volumes of traffic. In order to better detect DDoS and make sure the safety of electronic power system, we propose a novel detection method based on neural network. The proposed model and its service are deployed to the edge cloud, which can improve the real-time performance for detection. The experiment results show that our model can detect attacks well and has good real-time performance.