Biblio
The availability of commercial fully immersive virtual reality systems allows the proposal and development of new applications that offer novel ways to visualize and interact with multidimensional neuroimaging data. We propose a system for the visualization and interaction with Magnetic Resonance Imaging (MRI) scans in a fully immersive learning environment in virtual reality. The system extracts the different slices from a DICOM file and presents the slices in a 3D environment where the user can display and rotate the MRI scan, and select the clipping plane in all the possible orientations. The 3D environment includes two parts: 1) a cube that displays the MRI scan in 3D and 2) three panels that include the axial, sagittal, and coronal views, where it is possible to directly access a desired slice. In addition, the environment includes a representation of the brain where it is possible to access and browse directly through the slices with the controller. This application can be used both for educational purposes as an immersive learning tool, and by neuroscience researchers as a more convenient way to browse through an MRI scan to better analyze 3D data.
This article describes the development of two mobile applications for learning Digital Electronics. The first application is an interactive app for iOS where you can study the different digital circuits, and which will serve as the basis for the second: a game of questions in augmented reality.
Blockchain technology is the cornerstone of digital trust and systems' decentralization. The necessity of eliminating trust in computing systems has triggered researchers to investigate the applicability of Blockchain to decentralize the conventional security models. Specifically, researchers continuously aim at minimizing trust in the well-known Public Key Infrastructure (PKI) model which currently requires a trusted Certificate Authority (CA) to sign digital certificates. Recently, the Automated Certificate Management Environment (ACME) was standardized as a certificate issuance automation protocol. It minimizes the human interaction by enabling certificates to be automatically requested, verified, and installed on servers. ACME only solved the automation issue, but the trust concerns remain as a trusted CA is required. In this paper we propose decentralizing the ACME protocol by using the Blockchain technology to enhance the current trust issues of the existing PKI model and to eliminate the need for a trusted CA. The system was implemented and tested on Ethereum Blockchain, and the results showed that the system is feasible in terms of cost, speed, and applicability on a wide range of devices including Internet of Things (IoT) devices.
E- Health systems, specifically, Telecare Medical Information Systems (TMIS), are deployed in order to provide patients with specific diseases with healthcare services that are usually based on remote monitoring. Therefore, making an efficient, convenient and secure connection between users and medical servers over insecure channels within medical services is a rather major issue. In this context, because of the biometrics' characteristics, many biometrics-based three factor user authentication schemes have been proposed in the literature to secure user/server communication within medical services. In this paper, we make a brief study of the most interesting proposals. Then, we propose a new three-factor authentication and key agreement scheme for TMIS. Our scheme tends not only to fix the security drawbacks of some studied related work, but also, offers additional significant features while minimizing resource consumption. In addition, we perform a formal verification using the widely accepted formal security verification tool AVISPA to demonstrate that our proposed scheme is secure. Also, our comparative performance analysis reveals that our proposed scheme provides a lower resource consumption compared to other related work's proposals.
In the current world, day by day the data growth and the investigation about that information increased due to the pervasiveness of computing devices, but people are reluctant to share their information on online portals or surveys fearing safety because sensitive information such as credit card information, medical conditions and other personal information in the wrong hands can mean danger to the society. These days privacy preserving has become a setback for storing data in data repository so for that reason data in the repository should be made undistinguishable, data is encrypted while storing and later decrypted when needed for analysis purpose in data mining. While storing the raw data of the individuals it is important to remove person-identifiable information such as name, employee id. However, the other attributes pertaining to the person should be encrypted so the methodologies used to implement. These methodologies can make data in the repository secure and PPDM task can made easier.
The existing anonymized differential privacy model adopts a unified anonymity method, ignoring the difference of personal privacy, which may lead to the problem of excessive or insufficient protection of the original data [1]. Therefore, this paper proposes a personalized k-anonymity model for tuples (PKA) and proposes a differential privacy data publishing algorithm (DPPA) based on personalized anonymity, firstly based on the tuple personality factor set by the user in the original data set. The values are classified and the corresponding privacy protection relevance is calculated. Then according to the tuple personality factor classification value, the data set is clustered by clustering method with different anonymity, and the quasi-identifier attribute of each cluster is aggregated and noise-added to realize anonymized differential privacy; finally merge the subset to get the data set that meets the release requirements. In this paper, the correctness of the algorithm is analyzed theoretically, and the feasibility and effectiveness of the proposed algorithm are verified by comparison with similar algorithms.
This paper describes a realisation of a ResNet face recognition method through Zigbee-based wireless protocol. The system uses a CC2530 Zigbee-based radio frequency chip with connected VC0706 camera on it. The Arduino Nano had been used for organisation of data compression and effective division of Zigbee packets. The proposed solution also simplifies a data transmission within a strict bandwidth of Zigbee protocol and reliable packet forwarding in case of frequency distortion. The following investigation model uses Raspberry Pi 3 with connected Zigbee End Device (ZED) for successful receiving of important images and acceleration of deep learning interfaces. The model is integrated into a smart security system based on Zigbee modules, MySQL database, Android application and works in the background by using daemons procedures. To protect data, all wireless connections had been encrypted by the 128-bit Advanced Encryption Standard (AES-128) algorithm. Experimental results show a possibility to implement complex systems under restricted requirements of available transmission protocols.
Traffic identification becomes more important yet more challenging as related encryption techniques are rapidly developing nowadays. In difference to recent deep learning methods that apply image processing to solve such encrypted traffic problems, in this paper, we propose a method named Payload Encoding Representation from Transformer (PERT) to perform automatic traffic feature extraction using a state-of-the-art dynamic word embedding technique. Based on this, we further provide a traffic classification framework in which unlabeled traffic is utilized to pre-train an encoding network that learns the contextual distribution of traffic payload bytes. Then, the downward classification reuses the pre-trained network to obtain an enhanced classification result. By implementing experiments on a public encrypted traffic data set and our captured Android HTTPS traffic, we prove the proposed method can achieve an obvious better effectiveness than other compared baselines. To the best of our knowledge, this is the first time the encrypted traffic classification with the dynamic word embedding alone with its pre-training strategy has been addressed.
The purpose of the General Data Protection Regulation (GDPR) is to provide improved privacy protection. If an app controls personal data from users, it needs to be compliant with GDPR. However, GDPR lists general rules rather than exact step-by-step guidelines about how to develop an app that fulfills the requirements. Therefore, there may exist GDPR compliance violations in existing apps, which would pose severe privacy threats to app users. In this paper, we take mobile health applications (mHealth apps) as a peephole to examine the status quo of GDPR compliance in Android apps. We first propose an automated system, named HPDROID, to bridge the semantic gap between the general rules of GDPR and the app implementations by identifying the data practices declared in the app privacy policy and the data relevant behaviors in the app code. Then, based on HPDROID, we detect three kinds of GDPR compliance violations, including the incompleteness of privacy policy, the inconsistency of data collections, and the insecurity of data transmission. We perform an empirical evaluation of 796 mHealth apps. The results reveal that 189 (23.7%) of them do not provide complete privacy policies. Moreover, 59 apps collect sensitive data through different measures, but 46 (77.9%) of them contain at least one inconsistent collection behavior. Even worse, among the 59 apps, only 8 apps try to ensure the transmission security of collected data. However, all of them contain at least one encryption or SSL misuse. Our work exposes severe privacy issues to raise awareness of privacy protection for app users and developers.
The evolving of context-aware applications are becoming more readily available as a major driver of the growth of future connected smart, autonomous environments. However, with the increasing of security risks in critical shared massive data capabilities and the increasing regulation requirements on privacy, there is a significant need for new paradigms to manage security and privacy compliances. These challenges call for context-aware and fine-grained security policies to be enforced in such dynamic environments in order to achieve efficient real-time authorization between applications and connected devices. We propose in this work a novel solution that aims to provide context-aware security model for Android applications. Specifically, our proposition provides automated context-aware access control model and leverages Attribute-Based Encryption (ABE) to secure data communications. Thorough experiments have been performed and the evaluation results demonstrate that the proposed solution provides an effective lightweight adaptable context-aware encryption model.
In recent years, persistent cyber adversaries have developed increasingly sophisticated techniques to evade detection. Once adversaries have established a foothold within the target network, using seemingly-limited passive reconnaissance techniques, they can develop significant network reconnaissance capabilities. Cyber deception has been recognized as a critical capability to defend against such adversaries, but, without an accurate model of the adversary's reconnaissance behavior, current approaches are ineffective against advanced adversaries. To address this gap, we propose a novel model to capture how advanced, stealthy adversaries acquire knowledge about the target network and establish and expand their foothold within the system. This model quantifies the cost and reward, from the adversary's perspective, of compromising and maintaining control over target nodes. We evaluate our model through simulations in the CyberVAN testbed, and indicate how it can guide the development and deployment of future defensive capabilities, including high-interaction honeypots, so as to influence the behavior of adversaries and steer them away from critical resources.
How does information regarding an adversary's intentions affect optimal system design? This paper addresses this question in the context of graphical coordination games where an adversary can indirectly influence the behavior of agents by modifying their payoffs. We study a situation in which a system operator must select a graph topology in anticipation of the action of an unknown adversary. The designer can limit her worst-case losses by playing a security strategy, effectively planning for an adversary which intends maximum harm. However, fine-grained information regarding the adversary's intention may help the system operator to fine-tune the defenses and obtain better system performance. In a simple model of adversarial behavior, this paper asks how much a system operator can gain by fine-tuning a defense for known adversarial intent. We find that if the adversary is weak, a security strategy is approximately optimal for any adversary type; however, for moderately-strong adversaries, security strategies are far from optimal.
In the past decade we have seen an active research community proposing attacks and defenses to Cyber-Physical Systems (CPS). Most of these attacks and defenses have been heuristic in nature, limiting the attacker to a set of predefined operations, and proposing defenses with unclear security guarantees. In this paper, we propose a generic adversary model that can capture any type of attack (our attacker is not constrained to follow specific attacks such as replay, delay, or bias) and use it to design security mechanisms with provable security guarantees. In particular, we propose a new secure design paradigm we call DARIA: Designing Actuators to Resist arbItrary Attacks. The main idea behind DARIA is the design of physical limits to actuators in order to prevent attackers from arbitrarily manipulating the system, irrespective of their point of attack (sensors or actuators) or the specific attack algorithm (bias, replay, delays, etc.). As far as we are aware, we are the first research team to propose the design of physical limits to actuators in a control loop in order to keep the system secure against attacks. We demonstrate the generality of our proposal on simulations of vehicular platooning and industrial processes.