Visible to the public Biblio

Found 3226 results

Filters: First Letter Of Last Name is C  [Clear All Filters]
2021-01-11
Wang, W.-C., Ho, C.-C., Chang, Y.-M., Chang, Y.-H..  2020.  Challenges and Designs for Secure Deletion in Storage Systems. 2020 Indo – Taiwan 2nd International Conference on Computing, Analytics and Networks (Indo-Taiwan ICAN). :181–189.
Data security has risen to be one of the most critical concerns of computer professionals. Tighter legal requirements now exist for the purpose of protecting user data from unauthorized uses and for both preserving and erasing/sanitizing data records to meet legal compliance requirements. To meet the data security requirement, many secure (data) deletion techniques have been proposed to deal with the data security concerns from different system layers. This paper surveys the state-of-the-art secure deletion techniques that have been designed to pursue higher efficiency, verifiability, and portability for emerging types of hard disk drives and flash-based solid-state drives. Meanwhile, the pros and cons of implementing secure deletion in different system layers are also discussed, so as to assist in pursuing better secure deletion designs for future storage systems.
2020-12-28
Temurnikar, A., Verma, P., Choudhary, J..  2020.  Securing Vehicular Adhoc Network against Malicious Vehicles using Advanced Clustering Technique. 2nd International Conference on Data, Engineering and Applications (IDEA). :1—9.

VANET is one of most emerging and unique topics among the scientist and researcher. Due to its mobility, high dynamic nature and frequently changing topology not predictable, mobility attracts too much to researchers academic and industry person. In this paper, characteristics of VANET ate discussed along with its architecture, proposed work and its ends simulation with results. There are many nodes in VANET and to avoid the load on every node, clustering is applied in VANET. VANET possess the high dynamic network having continuous changing in the topology. For stability of network, a good clustering algorithm is required for enhancing the network productivity. In proposed work, a novel approach has been proposed to make cluster in VANET network and detect malicious node of network for security network.

Slavic, G., Campo, D., Baydoun, M., Marin, P., Martin, D., Marcenaro, L., Regazzoni, C..  2020.  Anomaly Detection in Video Data Based on Probabilistic Latent Space Models. 2020 IEEE Conference on Evolving and Adaptive Intelligent Systems (EAIS). :1—8.

This paper proposes a method for detecting anomalies in video data. A Variational Autoencoder (VAE) is used for reducing the dimensionality of video frames, generating latent space information that is comparable to low-dimensional sensory data (e.g., positioning, steering angle), making feasible the development of a consistent multi-modal architecture for autonomous vehicles. An Adapted Markov Jump Particle Filter defined by discrete and continuous inference levels is employed to predict the following frames and detecting anomalies in new video sequences. Our method is evaluated on different video scenarios where a semi-autonomous vehicle performs a set of tasks in a closed environment.

Hynek, K., Čejka, T., Žádník, M., Kubátová, H..  2020.  Evaluating Bad Hosts Using Adaptive Blacklist Filter. 2020 9th Mediterranean Conference on Embedded Computing (MECO). :1—5.

Publicly available blacklists are popular tools to capture and spread information about misbehaving entities on the Internet. In some cases, their straight-forward utilization leads to many false positives. In this work, we propose a system that combines blacklists with network flow data while introducing automated evaluation techniques to avoid reporting unreliable alerts. The core of the system is formed by an Adaptive Filter together with an Evaluator module. The assessment of the system was performed on data obtained from a national backbone network. The results show the contribution of such a system to the reduction of unreliable alerts.

Lee, H., Cho, S., Seong, J., Lee, S., Lee, W..  2020.  De-identification and Privacy Issues on Bigdata Transformation. 2020 IEEE International Conference on Big Data and Smart Computing (BigComp). :514—519.

As the number of data in various industries and government sectors is growing exponentially, the `7V' concept of big data aims to create a new value by indiscriminately collecting and analyzing information from various fields. At the same time as the ecosystem of the ICT industry arrives, big data utilization is treatened by the privacy attacks such as infringement due to the large amount of data. To manage and sustain the controllable privacy level, there need some recommended de-identification techniques. This paper exploits those de-identification processes and three types of commonly used privacy models. Furthermore, this paper presents use cases which can be adopted those kinds of technologies and future development directions.

Cuzzocrea, A., Maio, V. De, Fadda, E..  2020.  Experimenting and Assessing a Distributed Privacy-Preserving OLAP over Big Data Framework: Principles, Practice, and Experiences. 2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC). :1344—1350.
OLAP is an authoritative analytical tool in the emerging big data analytics context, with particular regards to the target distributed environments (e.g., Clouds). Here, privacy-preserving OLAP-based big data analytics is a critical topic, with several amenities in the context of innovative big data application scenarios like smart cities, social networks, bio-informatics, and so forth. The goal is that of providing privacy preservation during OLAP analysis tasks, with particular emphasis on the privacy of OLAP aggregates. Following this line of research, in this paper we provide a deep contribution on experimenting and assessing a state-of-the-art distributed privacy-preserving OLAP framework, named as SPPOLAP, whose main benefit is that of introducing a completely-novel privacy notion for OLAP data cubes.
Chaves, A., Moura, Í, Bernardino, J., Pedrosa, I..  2020.  The privacy paradigm : An overview of privacy in Business Analytics and Big Data. 2020 15th Iberian Conference on Information Systems and Technologies (CISTI). :1—6.
In this New Age where information has an indispensable value for companies and data mining technologies are growing in the area of Information Technology, privacy remains a sensitive issue in the approach to the exploitation of the large volume of data generated and processed by companies. The way data is collected, handled and destined is not yet clearly defined and has been the subject of constant debate by several areas of activity. This literature review gives an overview of privacy in the era of Business Analytics and Big Data in different timelines, the opportunities and challenges faced, aiming to broaden discussions on a subject that deserves extreme attention and aims to show that, despite measures for data protection have been created, there is still a need to discuss the subject among the different parties involved in the process to achieve a positive ideal for both users and companies.
Cominelli, M., Gringoli, F., Patras, P., Lind, M., Noubir, G..  2020.  Even Black Cats Cannot Stay Hidden in the Dark: Full-band De-anonymization of Bluetooth Classic Devices. 2020 IEEE Symposium on Security and Privacy (SP). :534—548.

Bluetooth Classic (BT) remains the de facto connectivity technology in car stereo systems, wireless headsets, laptops, and a plethora of wearables, especially for applications that require high data rates, such as audio streaming, voice calling, tethering, etc. Unlike in Bluetooth Low Energy (BLE), where address randomization is a feature available to manufactures, BT addresses are not randomized because they are largely believed to be immune to tracking attacks. We analyze the design of BT and devise a robust de-anonymization technique that hinges on the apparently benign information leaking from frame encoding, to infer a piconet's clock, hopping sequence, and ultimately the Upper Address Part (UAP) of the master device's physical address, which are never exchanged in clear. Used together with the Lower Address Part (LAP), which is present in all frames transmitted, this enables tracking of the piconet master, thereby debunking the privacy guarantees of BT. We validate this attack by developing the first Software-defined Radio (SDR) based sniffer that allows full BT spectrum analysis (79 MHz) and implements the proposed de-anonymization technique. We study the feasibility of privacy attacks with multiple testbeds, considering different numbers of devices, traffic regimes, and communication ranges. We demonstrate that it is possible to track BT devices up to 85 meters from the sniffer, and achieve more than 80% device identification accuracy within less than 1 second of sniffing and 100% detection within less than 4 seconds. Lastly, we study the identified privacy attack in the wild, capturing BT traffic at a road junction over 5 days, demonstrating that our system can re-identify hundreds of users and infer their commuting patterns.

2020-12-21
Cheng, Z., Chow, M.-Y..  2020.  An Augmented Bayesian Reputation Metric for Trustworthiness Evaluation in Consensus-based Distributed Microgrid Energy Management Systems with Energy Storage. 2020 2nd IEEE International Conference on Industrial Electronics for Sustainable Energy Systems (IESES). 1:215–220.
Consensus-based distributed microgrid energy management system is one of the most used distributed control strategies in the microgrid area. To improve its cybersecurity, the system needs to evaluate the trustworthiness of the participating agents in addition to the conventional cryptography efforts. This paper proposes a novel augmented reputation metric to evaluate the agents' trustworthiness in a distributed fashion. The proposed metric adopts a novel augmentation method to substantially improve the trust evaluation and attack detection performance under three typical difficult-to-detect attack patterns. The proposed metric is implemented and validated on a real-time HIL microgrid testbed.
Leff, D., Maskay, A., Cunha, M. P. da.  2020.  Wireless Interrogation of High Temperature Surface Acoustic Wave Dynamic Strain Sensor. 2020 IEEE International Ultrasonics Symposium (IUS). :1–4.
Dynamic strain sensing is necessary for high-temperature harsh-environment applications, including powerplants, oil wells, aerospace, and metal manufacturing. Monitoring dynamic strain is important for structural health monitoring and condition-based maintenance in order to guarantee safety, increase process efficiency, and reduce operation and maintenance costs. Sensing in high-temperature (HT), harsh-environments (HE) comes with challenges including mounting and packaging, sensor stability, and data acquisition and processing. Wireless sensor operation at HT is desirable because it reduces the complexity of the sensor connection, increases reliability, and reduces costs. Surface acoustic wave resonators (SAWRs) are compact, can operate wirelessly and battery-free, and have been shown to operate above 1000°C, making them a potential option for HT HE dynamic strain sensing. This paper presents wirelessly interrogated SAWR dynamic strain sensors operating around 288.8MHz at room temperature and tested up to 400°C. The SAWRs were calibrated with a high-temperature wired commercial strain gauge. The sensors were mounted onto a tapered-type Inconel constant stress beam and the assembly was tested inside a box furnace. The SAWR sensitivity to dynamic strain excitation at 25°C, 100°C, and 400°C was .439 μV/με, 0.363μV/με, and .136 μV/με, respectively. The experimental outcomes verified that inductive coupled wirelessly interrogated SAWRs can be successfully used for dynamic strain sensing up to 400°C.
Ayers, H., Crews, P., Teo, H., McAvity, C., Levy, A., Levis, P..  2020.  Design Considerations for Low Power Internet Protocols. 2020 16th International Conference on Distributed Computing in Sensor Systems (DCOSS). :103–111.
Low-power wireless networks provide IPv6 connectivity through 6LoWPAN, a set of standards to aggressively compress IPv6 packets over small maximum transfer unit (MTU) links such as 802.15.4.The entire purpose of IP was to interconnect different networks, but we find that different 6LoWPAN implementations fail to reliably communicate with one another. These failures are due to stacks implementing different subsets of the standard out of concern for code size. We argue that this failure stems from 6LoWPAN's design, not implementation, and is due to applying traditional Internet protocol design principles to low- power networks.We propose three design principles for Internet protocols on low-power networks, designed to prevent similar failures in the future. These principles are based around the importance of providing flexible tradeoffs between code size and energy efficiency. We apply these principles to 6LoWPAN and show that the modified protocol provides a wide range of implementation strategies while allowing implementations with different strategies to reliably communicate.
2020-12-17
Lee, J., Chen, H., Young, J., Kim, H..  2020.  RISC-V FPGA Platform Toward ROS-Based Robotics Application. 2020 30th International Conference on Field-Programmable Logic and Applications (FPL). :370—370.

RISC-V is free and open standard instruction set architecture following reduced instruction set computer principle. Because of its openness and scalability, RISC-V has been adapted not only for embedded CPUs such as mobile and IoT market, but also for heavy-workload CPUs such as the data center or super computing field. On top of it, Robotics is also a good application of RISC-V because security and reliability become crucial issues of robotics system. These problems could be solved by enthusiastic open source community members as they have shown on open source operating system. However, running RISC-V on local FPGA becomes harder than before because now RISC-V foundation are focusing on cloud-based FPGA environment. We have experienced that recently released OS and toolchains for RISC-V are not working well on the previous CPU image for local FPGA. In this paper we design the local FPGA platform for RISC-V processor and run the robotics application on mainstream Robot Operating System on top of the RISC-V processor. This platform allow us to explore the architecture space of RISC-V CPU for robotics application, and get the insight of the RISC-V CPU architecture for optimal performance and the secure system.

charan, S. S., karuppaiah, D..  2020.  Operating System Process Using Message Passing Concept in Military. 2020 International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE). :1—4.

In Robotics Operating System Process correspondence is the instrument given by the working framework that enables procedures to speak with one another Message passing model enables different procedures to peruse and compose information to the message line without being associated with one another, messages going between Robots. ROS is intended to be an inexactly coupled framework where a procedure is known as a hub and each hub ought to be answerable for one assignment. In the military application robots will go to go about as an officer and going ensure nation. In the referenced idea robot solider will give the message passing idea then the officers will go caution and start assaulting on the foes.

Zong, Y., Guo, Y., Chen, X..  2019.  Policy-Based Access Control for Robotic Applications. 2019 IEEE International Conference on Service-Oriented System Engineering (SOSE). :368—3685.

With the wide application of modern robots, more concerns have been raised on security and privacy of robotic systems and applications. Although the Robot Operating System (ROS) is commonly used on different robots, there have been few work considering the security aspects of ROS. As ROS does not employ even the basic permission control mechanism, applications can access any resources without limitation, which could result in equipment damage, harm to human, as well as privacy leakage. In this paper we propose an access control mechanism for ROS based on an extended policy-based access control (PBAC) model. Specifically, we extend ROS to add an additional node dedicated for access control so that it can provide user identity and permission management services. The proposed mechanism also allows the administrator to revoke a permission dynamically. We implemented the proposed method in ROS and demonstrated its applicability and performance through several case studies.

Mukhandi, M., Portugal, D., Pereira, S., Couceiro, M. S..  2019.  A novel solution for securing robot communications based on the MQTT protocol and ROS. 2019 IEEE/SICE International Symposium on System Integration (SII). :608—613.

With the growing use of the Robot Operating System (ROS), it can be argued that it has become a de-facto framework for developing robotic solutions. ROS is used to build robotic applications for industrial automation, home automation, medical and even automatic robotic surveillance. However, whenever ROS is utilized, security is one of the main concerns that needs to be addressed in order to ensure a secure network communication of robots. Cyber-attacks may hinder evolution and adaptation of most ROS-enabled robotic systems for real-world use over the Internet. Thus, it is important to address and prevent security threats associated with the use of ROS-enabled applications. In this paper, we propose a novel approach for securing ROS-enabled robotic system by integrating ROS with the Message Queuing Telemetry Transport (MQTT) protocol. We manage to secure robots' network communications by providing authentication and data encryption, therefore preventing man-in-the-middle and hijacking attacks. We also perform real-world experiments to assess how the performance of a ROS-enabled robotic surveillance system is affected by the proposed approach.

Lagraa, S., Cailac, M., Rivera, S., Beck, F., State, R..  2019.  Real-Time Attack Detection on Robot Cameras: A Self-Driving Car Application. 2019 Third IEEE International Conference on Robotic Computing (IRC). :102—109.

The Robot Operating System (ROS) are being deployed for multiple life critical activities such as self-driving cars, drones, and industries. However, the security has been persistently neglected, especially the image flows incoming from camera robots. In this paper, we perform a structured security assessment of robot cameras using ROS. We points out a relevant number of security flaws that can be used to take over the flows incoming from the robot cameras. Furthermore, we propose an intrusion detection system to detect abnormal flows. Our defense approach is based on images comparisons and unsupervised anomaly detection method. We experiment our approach on robot cameras embedded on a self-driving car.

2020-12-15
Chen, Z., Jia, Z., Wang, Z., Jafar, S. A..  2020.  GCSA Codes with Noise Alignment for Secure Coded Multi-Party Batch Matrix Multiplication. 2020 IEEE International Symposium on Information Theory (ISIT). :227—232.

A secure multi-party batch matrix multiplication problem (SMBMM) is considered, where the goal is to allow a master to efficiently compute the pairwise products of two batches of massive matrices, by distributing the computation across S servers. Any X colluding servers gain no information about the input, and the master gains no additional information about the input beyond the product. A solution called Generalized Cross Subspace Alignment codes with Noise Alignment (GCSA- NA) is proposed in this work, based on cross-subspace alignment codes. The state of art solution to SMBMM is a coding scheme called polynomial sharing (PS) that was proposed by Nodehi and Maddah-Ali. GCSA-NA outperforms PS codes in several key aspects - more efficient and secure inter-server communication, lower latency, flexible inter-server network topology, efficient batch processing, and tolerance to stragglers.

Boche, H., Cai, M., Wiese, M., Deppe, C., Ferrara, R..  2020.  Semantic Security for Quantum Wiretap Channels. 2020 IEEE International Symposium on Information Theory (ISIT). :1990—1995.

We determine the semantic security capacity for quantum wiretap channels. We extend methods for classical channels to quantum channels to demonstrate that a strongly secure code guarantees a semantically secure code with the same secrecy rate. Furthermore, we show how to transform a non-secure code into a semantically secure code by means of biregular irreducible functions (BRI functions). We analyze semantic security for classical-quantum channels and for quantum channels.

Cribbs, M., Romero, R., Ha, T..  2020.  Orthogonal STBC Set Building and Physical Layer Security Application. 2020 IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). :1—5.
Given a selected complex orthogonal space-time block code (STBC), transformation algorithms are provided to build a set, S, of unique orthogonal STBCs with cardinality equal to \textbackslashtextbarS\textbackslashtextbar = 2r+c+k-1·r!·c!, where r, c, and k are the number of rows, columns, and data symbols in the STBC matrix, respectively. A communications link is discussed that encodes data symbols with a chosen STBC from the set known only to the transmitter and intended receiver as a means of providing physical layer security (PLS). Expected bit error rate (BER) and informationtheoretic results for an eavesdropper with a priori knowledge of the communications link parameters with the exception of the chosen STBC are presented. Monte Carlo simulations are provided to confirm the possible BER results expected when decoding the communications link with alternative STBCs from the set. Application of the transformation algorithms provided herein are shown to significantly increase the brute force decoding complexity of an eavesdropper compared to a related work in the literature.
2020-12-14
Cai, Y., Fragkos, G., Tsiropoulou, E. E., Veneris, A..  2020.  A Truth-Inducing Sybil Resistant Decentralized Blockchain Oracle. 2020 2nd Conference on Blockchain Research Applications for Innovative Networks and Services (BRAINS). :128–135.
Many blockchain applications use decentralized oracles to trustlessly retrieve external information as those platforms are agnostic to real-world information. Some existing decentralized oracle protocols make use of majority-voting schemes to determine the outcomes and/or rewards to participants. In these cases, the awards (or penalties) grow linearly to the participant stakes, therefore voters are indifferent between voting through a single or multiple identities. Furthermore, the voters receive a reward only when they agree with the majority outcome, a tactic that may lead to herd behavior. This paper proposes an oracle protocol based on peer prediction mechanisms with non-linear staking rules. In the proposed approach, instead of being rewarded when agreeing with a majority outcome, a voter receives awards when their report achieves a relatively high score based on a peer prediction scoring scheme. The scoring scheme is designed to be incentive compatible so that the maximized expected score is achieved only with honest reporting. A non-linear stake scaling rule is proposed to discourage Sybil attacks. This paper also provides a theoretical analysis and guidelines for implementation as reference.
Quevedo, C. H. O. O., Quevedo, A. M. B. C., Campos, G. A., Gomes, R. L., Celestino, J., Serhrouchni, A..  2020.  An Intelligent Mechanism for Sybil Attacks Detection in VANETs. ICC 2020 - 2020 IEEE International Conference on Communications (ICC). :1–6.
Vehicular Ad Hoc Networks (VANETs) have a strategic goal to achieve service delivery in roads and smart cities, considering the integration and communication between vehicles, sensors and fixed road-side components (routers, gateways and services). VANETs have singular characteristics such as fast mobile nodes, self-organization, distributed network and frequently changing topology. Despite the recent evolution of VANETs, security, data integrity and users privacy information are major concerns, since attacks prevention is still open issue. One of the most dangerous attacks in VANETs is the Sybil, which forges false identities in the network to disrupt compromise the communication between the network nodes. Sybil attacks affect the service delivery related to road safety, traffic congestion, multimedia entertainment and others. Thus, VANETs claim for security mechanism to prevent Sybil attacks. Within this context, this paper proposes a mechanism, called SyDVELM, to detect Sybil attacks in VANETs based on artificial intelligence techniques. The SyDVELM mechanism uses Extreme Learning Machine (ELM) with occasional features of vehicular nodes, minimizing the identification time, maximizing the detection accuracy and improving the scalability. The results suggest that the suitability of SyDVELM mechanism to mitigate Sybil attacks and to maintain the service delivery in VANETs.
Cai, L., Hou, Y., Zhao, Y., Wang, J..  2020.  Application research and improvement of particle swarm optimization algorithm. 2020 IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS). :238–241.
Particle swarm optimization (PSO), as a kind of swarm intelligence algorithm, has the advantages of simple algorithm principle, less programmable parameters and easy programming. Many scholars have applied particle swarm optimization (PSO) to various fields through learning it, and successfully solved linear problems, nonlinear problems, multiobjective optimization and other problems. However, the algorithm also has obvious problems in solving problems, such as slow convergence speed, too early maturity, falling into local optimization in advance, etc., which makes the convergence speed slow, search the optimal value accuracy is not high, and the optimization effect is not ideal. Therefore, many scholars have improved the particle swarm optimization algorithm. Taking into account the improvement ideas proposed by scholars in the early stage and the shortcomings still existing in the improvement, this paper puts forward the idea of improving particle swarm optimization algorithm in the future.
Lee, M.-F. R., Chien, T.-W..  2020.  Artificial Intelligence and Internet of Things for Robotic Disaster Response. 2020 International Conference on Advanced Robotics and Intelligent Systems (ARIS). :1–6.
After the Fukushima nuclear disaster and the Wenchuan earthquake, the relevant government agencies recognized the urgency of disaster-straining robots. There are many natural or man-made disasters in Taiwan, and it is usually impossible to dispatch relevant personnel to search or explore immediately. The project proposes to use the architecture of Intelligent Internet of Things (AIoT) (Artificial Intelligence + Internet of Things) to coordinate with ground, surface and aerial and underwater robots, and apply them to disaster response, ground, surface and aerial and underwater swarm robots to collect environmental big data from the disaster site, and then through the Internet of Things. From the field workstation to the cloud for “training” deep learning model and “model verification”, the trained deep learning model is transmitted to the field workstation via the Internet of Things, and then transmitted to the ground, surface and aerial and underwater swarm robots for on-site continuing objects classification. Continuously verify the “identification” with the environment and make the best decisions for the response. The related tasks include monitoring, search and rescue of the target.
Dong, D., Ye, Z., Su, J., Xie, S., Cao, Y., Kochan, R..  2020.  A Malware Detection Method Based on Improved Fireworks Algorithm and Support Vector Machine. 2020 IEEE 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET). :846–851.
The increasing of malwares has presented a serious threat to the security of computer systems in recent years. Traditional signature-based anti-virus systems are not able to detect metamorphic and previously unseen malwares and it inspires people to use machine learning methods such as Naive Bayes and Decision Tree to identity malicious executables. Among these methods, detecting malwares by using Support Vector Machine (SVM) is one of the most effective approaches. However, the parameters of SVM have serious impacts on its classification performance. In order to find the optimal parameter combination and avoid the problem of falling into local optimal solution, many methods based on evolutionary algorithms are proposed, including Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Differential Evolution (DE) and others. But these algorithms still face the problem of being trapped into local solution spaces in different degree. In this paper, an improved fireworks algorithm is presented and applied to search parameters of SVM: penalty factor c and kernel function parameter g. To research the performance of the proposed algorithm, numeric experiments are made and compared with some typical algorithms, the experimental results demonstrate it outperforms other algorithms.
Yu, L., Chen, L., Dong, J., Li, M., Liu, L., Zhao, B., Zhang, C..  2020.  Detecting Malicious Web Requests Using an Enhanced TextCNN. 2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC). :768–777.
This paper proposes an approach that combines a deep learning-based method and a traditional machine learning-based method to efficiently detect malicious requests Web servers received. The first few layers of Convolutional Neural Network for Text Classification (TextCNN) are used to automatically extract powerful semantic features and in the meantime transferable statistical features are defined to boost the detection ability, specifically Web request parameter tampering. The semantic features from TextCNN and transferable statistical features from artificially-designing are grouped together to be fed into Support Vector Machine (SVM), replacing the last layer of TextCNN for classification. To facilitate the understanding of abstract features in form of numerical data in vectors extracted by TextCNN, this paper designs trace-back functions that map max-pooling outputs back to words in Web requests. After investigating the current available datasets for Web attack detection, HTTP Dataset CSIC 2010 is selected to test and verify the proposed approach. Compared with other deep learning models, the experimental results demonstrate that the approach proposed in this paper is competitive with the state-of-the-art.