Visible to the public Biblio

Found 3226 results

Filters: First Letter Of Last Name is C  [Clear All Filters]
2020-12-01
Craggs, B., Rashid, A..  2019.  Trust Beyond Computation Alone: Human Aspects of Trust in Blockchain Technologies. 2019 IEEE/ACM 41st International Conference on Software Engineering: Software Engineering in Society (ICSE-SEIS). :21—30.

Blockchains - with their inherent properties of transaction transparency, distributed consensus, immutability and cryptographic verifiability - are increasingly seen as a means to underpin innovative products and services in a range of sectors from finance through to energy and healthcare. Discussions, too often, make assertions that the trustless nature of blockchain technologies enables and actively promotes their suitability - there being no need to trust third parties or centralised control. Yet humans need to be able to trust systems, and others with whom the system enables transactions. In this paper, we highlight that understanding this need for trust is critical for the development of blockchain-based systems. Through an online study with 125 users of the most well-known of blockchain based systems - the cryptocurrency Bitcoin - we uncover that human and institutional aspects of trust are pervasive. Our analysis highlights that, when designing future blockchain-based technologies, we ought to not only consider computational trust but also the wider eco-system, how trust plays a part in users engaging/disengaging with such eco-systems and where design choices impact upon trust. From this, we distill a set of guidelines for software engineers developing blockchain-based systems for societal applications.

Chen, S., Hu, W., Li, Z..  2019.  High Performance Data Encryption with AES Implementation on FPGA. 2019 IEEE 5th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS). :149—153.

Nowadays big data has getting more and more attention in both the academic and the industrial research. With the development of big data, people pay more attention to data security. A significant feature of big data is the large size of the data. In order to improve the encryption speed of the large size of data, this paper uses the deep pipeline and full expansion technology to implement the AES encryption algorithm on FPGA. Achieved throughput of 31.30 Gbps with a minimum latency of 0.134 us. This design can quickly encrypt large amounts of data and provide technical support for the development of big data.

SAADI, C., kandrouch, i, CHAOUI, H..  2019.  Proposed security by IDS-AM in Android system. 2019 5th International Conference on Optimization and Applications (ICOA). :1—7.

Mobile systems are always growing, automatically they need enough resources to secure them. Indeed, traditional techniques for protecting the mobile environment are no longer effective. We need to look for new mechanisms to protect the mobile environment from malicious behavior. In this paper, we examine one of the most popular systems, Android OS. Next, we will propose a distributed architecture based on IDS-AM to detect intrusions by mobile agents (IDS-AM).

Gao, Y., Sibirtseva, E., Castellano, G., Kragic, D..  2019.  Fast Adaptation with Meta-Reinforcement Learning for Trust Modelling in Human-Robot Interaction. 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). :305—312.

In socially assistive robotics, an important research area is the development of adaptation techniques and their effect on human-robot interaction. We present a meta-learning based policy gradient method for addressing the problem of adaptation in human-robot interaction and also investigate its role as a mechanism for trust modelling. By building an escape room scenario in mixed reality with a robot, we test our hypothesis that bi-directional trust can be influenced by different adaptation algorithms. We found that our proposed model increased the perceived trustworthiness of the robot and influenced the dynamics of gaining human's trust. Additionally, participants evaluated that the robot perceived them as more trustworthy during the interactions with the meta-learning based adaptation compared to the previously studied statistical adaptation model.

Haider, C., Chebotarev, Y., Tsiourti, C., Vincze, M..  2019.  Effects of Task-Dependent Robot Errors on Trust in Human-Robot Interaction: A Pilot Study. 2019 IEEE SmartWorld, Ubiquitous Intelligence Computing, Advanced Trusted Computing, Scalable Computing Communications, Cloud Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). :172—177.

The growing diffusion of robotics in our daily life demands a deeper understanding of the mechanisms of trust in human-robot interaction. The performance of a robot is one of the most important factors influencing the trust of a human user. However, it is still unclear whether the circumstances in which a robot fails to affect the user's trust. We investigate how the perception of robot failures may influence the willingness of people to cooperate with the robot by following its instructions in a time-critical task. We conducted an experiment in which participants interacted with a robot that had previously failed in a related or an unrelated task. We hypothesized that users' observed and self-reported trust ratings would be higher in the condition where the robot has previously failed in an unrelated task. A proof-of-concept study with nine participants timidly confirms our hypothesis. At the same time, our results reveal some flaws in the design experimental, and encourage a future large scale study.

2020-11-30
Chen, Z., Bai, B., Chen, D., Chai, W..  2018.  Design of Distribution Devices for Smart Grid Based on Magnetically Tunable Nanocomposite. IEEE Transactions on Power Electronics. 33:2083–2099.
This paper designs three distribution devices for the smart grid, which are, respectively, novel transformer with dc bias restraining ability, energy-saving contactor, and controllable reactor with adjustable intrinsic magnetic state based on the magnetically tunable nanocomposite material core. First, the magnetic performance of this magnetic material was analyzed and the magnetic properties processing method was put forward. One kind of nanocomposite which is close to the semihard magnetic state with low coercivity and high remanence was attained. Nanocomposite with four magnetic properties was processed and prepared using the distribution devices design. Second, in order to adjust the magnetic state better, the magnetization and demagnetization control circuit based on the single-phase supply power of rectification and inverter for the nanocomposite magnetic performance adjustment has been designed, which can mutual transform the material's soft and hard magnetic phases. Finally, based on the nanocomposite and the control circuit, a novel power transformer, an energy-saving contactor, and a magnetically controllable reactor were manufactured for the smart grid. The maintained remanence of the nanocomposite core after the magnetization could neutralize the dc bias magnetic flux in the transformer main core without changing the transformer neutral point connection mode, could pull in the contactor movable core instead of the traditional electromagnetic-type fixed core, and could adjust the reactor core saturation degree instead of the traditional electromagnetic coil. The simulation and experimental results verify the correctness of the design, which provides reliable, intelligent, interactive, and energy-saving power equipment for the smart power grids safe operation.
Wang, Y., Huang, F., Hu, Y., Cao, R., Shi, T., Liu, Q., Bi, L., Liu, M..  2018.  Proton Radiation Effects on Y-Doped HfO2-Based Ferroelectric Memory. IEEE Electron Device Letters. 39:823–826.
In this letter, ferroelectric memory performance of TiN/Y-doped-HfO2 (HYO)/TiN capacitors is investigated under proton radiation with 3-MeV energy and different fluence (5e13, 1e14, 5e14, and 1e15 ions/cm2). X-ray diffraction patterns confirm that the orthorhombic phase Pbc21 of HYOfilm has no obvious change after proton radiation. Electrical characterization results demonstrate slight variations of the permittivity and ferroelectric hysteresis loop after proton radiation. The remanent polarization (2Pr) of the capacitor decreases with increasing proton fluence. But the decreasing trend of 2Pr is suppressed under high electric fields. Furthermore, the 2Pr degradation with cycling is abated by proton radiation. These results show that the HYO-based ferroelectric memory is highly resistive to proton radiation, which is potentially useful for space applications.
Chen, Z., Bai, B., Chen, D., Chai, W..  2018.  Direct-Current and Alternate-Decay-Current Hybrid Integrative Power Supplies Design Applied to DC Bias Treatment. IEEE Transactions on Power Electronics. 33:10251–10264.
This paper proposes a novel kind of direct-current and alternate-decay-current hybrid integrative magnetization and demagnetization power supplies applied to transformer dc bias treatment based on a nanocomposite magnetic material. First, according to the single-phase transformer structure, one dc bias magnetic compensation mechanism was provided. The dc bias flux in the transformer main core could be eliminated directionally by utilizing the material remanence. Second, for the rapid response characteristic of the magnetic material to an external magnetic field, one positive and negative dc magnetization superimposed decaying ac demagnetization hybrid integrative power supplies based on single-phase rectifier circuit and inverter circuit was designed. In order to accurately control the magnetic field strength by which a good de/-magnetization effect could be achieved, this paper adopts the double-loop control technology of the magnetic field strength and magnetizing current for the nanocomposite magnetic state adjustment. Finally, two 10 kVA transformers and the experiment module of the hybrid integrative power supplies were manufactured and built. Experimental results showed that the integrated power supplies have good de/-magnetization effect and practicability, proving the validity and feasibility of the proposed scheme.
Coey, M., Stamenov, P. S., Venkatesan, M., Porter, S. B., Iriyama, T..  2018.  Remanence enhancement melt-spun Nitroquench Sm2Fe17N3. M.. 2018 IEEE International Magnetics Conference (INTERMAG). :1–1.
The discovery of the interstitial rare earth nitride Sm2Fe17N3 came about seven years after the discovery of the rare earth iron boride Nd2Fe [1],[2], and the nitride initially seemed to offer intrinsic magnetic properties that were superior (Curie temperature TC, magnetocrystalline anisotropy K1 or comparable (spontaneous magnetization Ms to those of its illustrious predecessor. However, the promise of the new material to seriously challenge Nd2Fe14B was not realized. The 2:17 nitride powder, prepared by a low-temperature gas-phase interstitial modification process proved difficult to orient and worse still, it lost its nitrogen at the temperatures needed to process dense sintered magnets [3]. Attempts at explosive compaction [4] or spark sintering [5] failed to yield material with good enough coercivity. Nevertheless, work continued in Japan and China to develop a coercive powder that could be used for bonded magnets. An early realization was zinc-bonded Sm2Fe17N3 [6] with an energy product of 84 kJm3 but a rather low coercivity of 480 kAm-1, less than 5 % of the anisotropy field (Ha = 2K1/Ms ≈ 11 MAm-1). The anisotropy field of Nd2Fe14B is significantly less (6 MAm-1) yet several decades of intensive development have led to higher values and continuous improvements of the coercivity, even in unsubstituted material. Historical experience with permanent magnets shows that a long period of materials development is needed to arrive at the best composition and processing conditions for a microstructure that allows the hard magnetism to be optimized. Coercivities of about 25% of the anisotropy field are ultimately achieved. Here we compare the magnetic properties of melt-spun material. Our Nitroquench powder, produced by Daido Steel, was in the form of flakes 10 μm thick and up to 100 μm in diameter. A crystal-lite size of approximately 15 nm deduced from Scherrer broadening of the X-ray reflections. Composition was checked by EDX microprobe analysis. Hysteresis loops have been measured in applied fields of up to 14 T, at room temperature and at 4 K.The material exhibits a room-temperature coercivity of 690 kAm-1 after saturation in 14 T, with a remanence of 700 kAm-1 in zero applied field and an extrapolated saturation magnetization of 1230 kAm-1. The remanence ratio Mr/Ms of 63% when the remanence is corrected to zero internal field, is reflected in a preferred orientation seen in the X-ray powder diffraction patterns and in 57Fe Mössbauer spectra of magnetized powder. Spectra obtained after saturation of an immobilized powder absorber either in-plane or perpendicular to the sample plane exhibit distinctly different relative intensities of the ΔM=0 absorption lines. The maximum energy product for the powder, assuming full density, is 162 kJm-3. The remanence enhancement is attributed to fact that the nanocrystallite size is not much greater than the exchange length. Melt-spun Sm-Fe-N powder has superior corrosion resistance and thermal stability compared to melt-spun Nd-Fe-B. The Nitroquench powder may be used to produce polymer-bonded magnets with an energy product in excess of 100 kJm-3.
Chai, W. K., Pavlou, G., Kamel, G., Katsaros, K. V., Wang, N..  2019.  A Distributed Interdomain Control System for Information-Centric Content Delivery. IEEE Systems Journal. 13:1568–1579.
The Internet, the de facto platform for large-scale content distribution, suffers from two issues that limit its manageability, efficiency, and evolution. First, the IP-based Internet is host-centric and agnostic to the content being delivered and, second, the tight coupling of the control and data planes restrict its manageability, and subsequently the possibility to create dynamic alternative paths for efficient content delivery. Here, we present the CURLING system that leverages the emerging Information-Centric Networking paradigm for enabling cost-efficient Internet-scale content delivery by exploiting multicasting and in-network caching. Following the software-defined networking concept that decouples the control and data planes, CURLING adopts an interdomain hop-by-hop content resolution mechanism that allows network operators to dynamically enforce/change their network policies in locating content sources and optimizing content delivery paths. Content publishers and consumers may also control content access according to their preferences. Based on both analytical modeling and simulations using real domain-level Internet subtopologies, we demonstrate how CURLING supports efficient Internet-scale content delivery without the necessity for radical changes to the current Internet.
Cheng, D., Zhou, X., Ding, Z., Wang, Y., Ji, M..  2019.  Heterogeneity Aware Workload Management in Distributed Sustainable Datacenters. IEEE Transactions on Parallel and Distributed Systems. 30:375–387.
The tremendous growth of cloud computing and large-scale data analytics highlight the importance of reducing datacenter power consumption and environmental impact of brown energy. While many Internet service operators have at least partially powered their datacenters by green energy, it is challenging to effectively utilize green energy due to the intermittency of renewable sources, such as solar or wind. We find that the geographical diversity of internet-scale services can be carefully scheduled to improve the efficiency of applying green energy in datacenters. In this paper, we propose a holistic heterogeneity-aware cloud workload management approach, sCloud, that aims to maximize the system goodput in distributed self-sustainable datacenters. sCloud adaptively places the transactional workload to distributed datacenters, allocates the available resource to heterogeneous workloads in each datacenter, and migrates batch jobs across datacenters, while taking into account the green power availability and QoS requirements. We formulate the transactional workload placement as a constrained optimization problem that can be solved by nonlinear programming. Then, we propose a batch job migration algorithm to further improve the system goodput when the green power supply varies widely at different locations. Finally, we extend sCloud by integrating a flexible batch job manager to dynamically control the job execution progress without violating the deadlines. We have implemented sCloud in a university cloud testbed with real-world weather conditions and workload traces. Experimental results demonstrate sCloud can achieve near-to-optimal system performance while being resilient to dynamic power availability. sCloud with the flexible batch job management approach outperforms a heterogeneity-oblivious approach by 37 percent in improving system goodput and 33 percent in reducing QoS violations.
Xu, Y., Chen, H., Zhao, Y., Zhang, W., Shen, Q., Zhang, X., Ma, Z..  2019.  Neural Adaptive Transport Framework for Internet-scale Interactive Media Streaming Services. 2019 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB). :1–6.
Network dynamics, such as bandwidth fluctuation and unexpected latency, hurt users' quality of experience (QoE) greatly for media services over the Internet. In this work, we propose a neural adaptive transport (NAT) framework to tackle the network dynamics for Internet-scale interactive media services. The entire NAT system has three major components: a learning based cloud overlay routing (COR) scheme for the best delivery path to bypass the network bottlenecks while offering the minimal end-to-end latency simultaneously; a residual neural network based collaborative video processing (CVP) system to trade the computational capability at client-end for QoE improvement via learned resolution scaling; and a deep reinforcement learning (DRL) based adaptive real-time streaming (ARS) strategy to select the appropriate video bitrate for maximal QoE. We have demonstrated that COR could improve the user satisfaction from 5% to 43%, CVP could reduce the bandwidth consumption more than 30% at the same quality, and DRL-based ARS can maintain the smooth streaming with \textbackslashtextless; 50% QoE improvement, respectively.
2020-11-23
Gwak, B., Cho, J., Lee, D., Son, H..  2018.  TARAS: Trust-Aware Role-Based Access Control System in Public Internet-of-Things. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :74–85.
Due to the proliferation of Internet-of-Things (IoT) environments, humans working with heterogeneous, smart objects in public IoT environments become more popular than ever before. This situation often requires to establish trust relationships between a user and a smart object for their secure interactions, but without the presence of prior interactions. In this work, we are interested in how a smart object can grant an access right to a human user in the absence of any prior knowledge in which some users may be malicious aiming to breach security goals of the IoT system. To solve this problem, we propose a trust-aware, role-based access control system, namely TARAS, which provides adaptive authorization to users based on dynamic trust estimation. In TARAS, for the initial trust establishment, we take a multidisciplinary approach by adopting the concept of I-sharing from psychology. The I-sharing follows the rationale that people with similar roles and traits are more likely to respond in a similar way. This theory provides a powerful tool to quickly establish trust between a smart object and a new user with no prior interactions. In addition, TARAS can adaptively filter malicious users out by revoking their access rights based on adaptive, dynamic trust estimation. Our experimental results show that the proposed TARAS mechanism can maximize system integrity in terms of correctly detecting malicious or benign users while maximizing service availability to users particularly when the system is fine-tuned based on the identified optimal setting in terms of an optimal trust threshold.
Awaysheh, F., Cabaleiro, J. C., Pena, T. F., Alazab, M..  2019.  Big Data Security Frameworks Meet the Intelligent Transportation Systems Trust Challenges. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :807–813.
Many technological cases exploiting data science have been realized in recent years; machine learning, Internet of Things, and stream data processing are examples of this trend. Other advanced applications have focused on capturing the value from streaming data of different objects of transport and traffic management in an Intelligent Transportation System (ITS). In this context, security control and trust level play a decisive role in the sustainable adoption of this trend. However, conceptual work integrating the security approaches of different disciplines into one coherent reference architecture is limited. The contribution of this paper is a reference architecture for ITS security (called SITS). In addition, a classification of Big Data technologies, products, and services to address the ITS trust challenges is presented. We also proposed a novel multi-tier ITS security framework for validating the usability of SITS with business intelligence development in the enterprise domain.
2020-11-20
Han, H., Wang, Q., Chen, C..  2019.  Policy Text Analysis Based on Text Mining and Fuzzy Cognitive Map. 2019 15th International Conference on Computational Intelligence and Security (CIS). :142—146.
With the introduction of computer methods, the amount of material and processing accuracy of policy text analysis have been greatly improved. In this paper, Text mining(TM) and latent semantic analysis(LSA) were used to collect policy documents and extract policy elements from them. Fuzzy association rule mining(FARM) technique and partial association test (PA) were used to discover the causal relationships and impact degrees between elements, and a fuzzy cognitive map (FCM) was developed to deduct the evolution of elements through a soft computing method. This non-interventionist approach avoids the validity defects caused by the subjective bias of researchers and provides policy makers with more objective policy suggestions from a neutral perspective. To illustrate the accuracy of this method, this study experimented by taking the state-owned capital layout adjustment related policies as an example, and proved that this method can effectively analyze policy text.
Demjaha, A., Caulfield, T., Sasse, M. Angela, Pym, D..  2019.  2 Fast 2 Secure: A Case Study of Post-Breach Security Changes. 2019 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :192—201.
A security breach often makes companies react by changing their attitude and approach to security within the organization. This paper presents an in-depth case study of post-breach security changes made by a company and the consequences of those changes. We employ the principles of participatory action research and humble inquiry to conduct a long-term study with employee interviews while embedded in the organization's security division. Despite an extremely high level of financial investment in security, and consistent attention and involvement from the board, the interviews indicate a significant level of friction between employees and security. In the main themes that emerged from our data analysis, a number of factors shed light on the friction: fear of another breach leading to zero risk appetite, impossible security controls making non-compliance a norm, security theatre underminining the purpose of security policies, employees often trading-off security with productivity, and as such being treated as children in detention rather than employees trying to finish their paid jobs. This paper shows that post-breach security changes can be complex and sometimes risky due to emotions often being involved. Without an approach considerate of how humans and security interact, even with high financial investment, attempts to change an organization's security behaviour may be ineffective.
Wang, X., Herwono, I., Cerbo, F. D., Kearney, P., Shackleton, M..  2018.  Enabling Cyber Security Data Sharing for Large-scale Enterprises Using Managed Security Services. 2018 IEEE Conference on Communications and Network Security (CNS). :1—7.
Large enterprises and organizations from both private and public sectors typically outsource a platform solution, as part of the Managed Security Services (MSSs), from 3rd party providers (MSSPs) to monitor and analyze their data containing cyber security information. Sharing such data among these large entities is believed to improve their effectiveness and efficiency at tackling cybercrimes, via improved analytics and insights. However, MSS platform customers currently are not able or not willing to share data among themselves because of multiple reasons, including privacy and confidentiality concerns, even when they are using the same MSS platform. Therefore any proposed mechanism or technique to address such a challenge need to ensure that sharing is achieved in a secure and controlled way. In this paper, we propose a new architecture and use case driven designs to enable confidential, flexible and collaborative data sharing among such organizations using the same MSS platform. MSS platform is a complex environment where different stakeholders, including authorized MSSP personnel and customers' own users, have access to the same platform but with different types of rights and tasks. Hence we make every effort to improve the usability of the platform supporting sharing while keeping the existing rights and tasks intact. As an innovative and pioneering attempt to address the challenge of data sharing in the MSS platform, we hope to encourage further work to follow so that confidential and collaborative sharing eventually happens among MSS platform customers.
Antoniadis, I. I., Chatzidimitriou, K. C., Symeonidis, A. L..  2019.  Security and Privacy for Smart Meters: A Data-Driven Mapping Study. 2019 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe). :1—5.
Smart metering systems have been gaining popularity as a vital part of the general smart grid paradigm. Naturally, as new technologies arise to cover this emerging field, so do security and privacy related issues regarding the energy consumer's personal data. These challenges impose the need for the development of new methods through a better understanding of the state-of-the-art. This paper aims at identifying the main categories of security and privacy techniques utilized in smart metering systems from a three-point perspective: i) a field research survey, ii) EU initiatives and findings towards the same direction and iii) a data-driven analysis of the state-of-the-art and the identification of its main topics (or themes) using topic modeling techniques. Detailed quantitative results of this analysis, such as semantic interpretation of the identified topics and a graph representation of the topic trends over time, are presented.
Chin, J., Zufferey, T., Shyti, E., Hug, G..  2019.  Load Forecasting of Privacy-Aware Consumers. 2019 IEEE Milan PowerTech. :1—6.

The roll-out of smart meters (SMs) in the electric grid has enabled data-driven grid management and planning techniques. SM data can be used together with short-term load forecasts (STLFs) to overcome polling frequency constraints for better grid management. However, the use of SMs that report consumption data at high spatial and temporal resolutions entails consumer privacy risks, motivating work in protecting consumer privacy. The impact of privacy protection schemes on STLF accuracy is not well studied, especially for smaller aggregations of consumers, whose load profiles are subject to more volatility and are, thus, harder to predict. In this paper, we analyse the impact of two user demand shaping privacy protection schemes, model-distribution predictive control (MDPC) and load-levelling, on STLF accuracy. Support vector regression is used to predict the load profiles at different consumer aggregation levels. Results indicate that, while the MDPC algorithm marginally affects forecast accuracy for smaller consumer aggregations, this diminishes at higher aggregation levels. More importantly, the load-levelling scheme significantly improves STLF accuracy as it smoothens out the grid visible consumer load profile.

Zhu, S., Chen, H., Xi, W., Chen, M., Fan, L., Feng, D..  2019.  A Worst-Case Entropy Estimation of Oscillator-Based Entropy Sources: When the Adversaries Have Access to the History Outputs. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :152—159.
Entropy sources are designed to provide unpredictable random numbers for cryptographic systems. As an assessment of the sources, Shannon entropy is usually adopted to quantitatively measure the unpredictability of the outputs. In several related works about the entropy evaluation of ring oscillator-based (RO-based) entropy sources, authors evaluated the unpredictability with the average conditional Shannon entropy (ACE) of the source, moreover provided a lower bound of the ACE (LBoACE). However, in this paper, we have demonstrated that when the adversaries have access to the history outputs of the entropy source, for example, by some intrusive attacks, the LBoACE may overestimate the actual unpredictability of the next output for the adversaries. In this situation, we suggest to adopt the specific conditional Shannon entropy (SCE) which exactly measures the unpredictability of the future output with the knowledge of previous output sequences and so is more consistent with the reality than the ACE. In particular, to be conservative, we propose to take the lower bound of the SCE (LBoSCE) as an estimation of the worst-case entropy of the sources. We put forward a detailed method to estimate this worst-case entropy of RO-based entropy sources, which we have also verified by experiment on an FPGA device. We recommend to adopt this method to provide a conservative assessment of the unpredictability when the entropy source works in a vulnerable environment and the adversaries might obtain the previous outputs.
Yogarathinam, A., Chaudhuri, N. R..  2019.  Wide-Area Damping Control Using Multiple DFIG-Based Wind Farms Under Stochastic Data Packet Dropouts. 2019 IEEE Power Energy Society General Meeting (PESGM). :1—1.
Data dropouts in communication network can have a significant impact on wide-area oscillation damping control of a smart power grid with large-scale deployment of distributed and networked phasor measurement units and wind energy resources. Remote feedback signals sent through communication channels encounter data dropout, which is represented by the Gilbert-Elliott model. An observer-driven reduced copy (ORC) approach is presented, which uses the knowledge of the nominal system dynamics during data dropouts to improve the damping performance where conventional feedback would suffer. An expression for the expectation of the bound on the error norm between the actual and the estimated states relating uncertainties in the cyber system due to data dropout and physical system due to change in operating conditions is also derived. The key contribution comes from the analytical derivation of the impact of coupling between the cyber and the physical layer on ORC performance. Monte Carlo simulation is performed to calculate the dispersion of the error bound. Nonlinear time-domain simulations demonstrate that the ORC produces significantly better performance compared to conventional feedback under higher data drop situations.
Dung, L. T., Tran, H. T. K., Hoa, N. T. T., Choi, S..  2019.  Analysis of Local Secure Connectivity of Legitimate User in Stochastic Wireless Networks. 2019 3rd International Conference on Recent Advances in Signal Processing, Telecommunications Computing (SigTelCom). :155—159.
In this paper, we investigate the local secure connectivity in terms of the probability of existing a secure wireless connection between two legitimate users and the isolated security probability of a legitimate user in stochastic wireless networks. Specifically, the closed-form expressions of the probability that there is a secure wireless communication between two legitimate users are derived first. Then, based on these equations, the corresponding isolated secure probability are given. The characteristics of local secure connectivity are examined in four scenarios combined from two wireless channel conditions (deterministic/Rayleigh fading) and two eavesdropper configurations (non-colluding/colluding). All the derived mathematical equations are validated by the Monte-Carlo simulation. The obtained numerical results in this paper reveal some interesting features of the impact of eavesdropper collusion, wireless channel fading, and density ratio on the secure connection probability and the isolated security probability of legitimate user in stochastic networks.
2020-11-17
Conway, A. E., Wang, M., Ljuca, E., Lebling, P. D..  2019.  A Dynamic Transport Overlay System for Mission-Oriented Dispersed Computing Over IoBT. MILCOM 2019 - 2019 IEEE Military Communications Conference (MILCOM). :815—820.

A dynamic overlay system is presented for supporting transport service needs of dispersed computing applications for moving data and/or code between network computation points and end-users in IoT or IoBT. The Network Backhaul Layered Architecture (Nebula) system combines network discovery and QoS monitoring, dynamic path optimization, online learning, and per-hop tunnel transport protocol optimization and synthesis over paths, to carry application traffic flows transparently over overlay tunnels. An overview is provided of Nebula's overlay system, software architecture, API, and implementation in the NRL CORE network emulator. Experimental emulation results demonstrate the performance benefits that Nebula provides under challenging networking conditions.

Agadakos, I., Ciocarlie, G. F., Copos, B., George, J., Leslie, N., Michaelis, J..  2019.  Security for Resilient IoBT Systems: Emerging Research Directions. IEEE INFOCOM 2019 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :1—6.

Continued advances in IoT technology have prompted new investigation into its usage for military operations, both to augment and complement existing military sensing assets and support next-generation artificial intelligence and machine learning systems. Under the emerging Internet of Battlefield Things (IoBT) paradigm, a multitude of operational conditions (e.g., diverse asset ownership, degraded networking infrastructure, adversary activities) necessitate the development of novel security techniques, centered on establishment of trust for individual assets and supporting resilience of broader systems. To advance current IoBT efforts, a set of research directions are proposed that aim to fundamentally address the issues of trust and trustworthiness in contested battlefield environments, building on prior research in the cybersecurity domain. These research directions focus on two themes: (1) Supporting trust assessment for known/unknown IoT assets; (2) Ensuring continued trust of known IoBT assets and systems.

Agadakos, I., Ciocarlie, G. F., Copos, B., Emmi, M., George, J., Leslie, N., Michaelis, J..  2019.  Application of Trust Assessment Techniques to IoBT Systems. MILCOM 2019 - 2019 IEEE Military Communications Conference (MILCOM). :833—840.

Continued advances in IoT technology have prompted new investigation into its usage for military operations, both to augment and complement existing military sensing assets and support next-generation artificial intelligence and machine learning systems. Under the emerging Internet of Battlefield Things (IoBT) paradigm, current operational conditions necessitate the development of novel security techniques, centered on establishment of trust for individual assets and supporting resilience of broader systems. To advance current IoBT efforts, a collection of prior-developed cybersecurity techniques is reviewed for applicability to conditions presented by IoBT operational environments (e.g., diverse asset ownership, degraded networking infrastructure, adversary activities) through use of supporting case study examples. The research techniques covered focus on two themes: (1) Supporting trust assessment for known/unknown IoT assets; (2) ensuring continued trust of known IoT assets and IoBT systems.