Visible to the public Biblio

Found 3226 results

Filters: First Letter Of Last Name is C  [Clear All Filters]
2021-01-25
Zhang, J., Ji, X., Xu, W., Chen, Y.-C., Tang, Y., Qu, G..  2020.  MagView: A Distributed Magnetic Covert Channel via Video Encoding and Decoding. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications. :357—366.

Air-gapped networks achieve security by using the physical isolation to keep the computers and network from the Internet. However, magnetic covert channels based on CPU utilization have been proposed to help secret data to escape the Faraday-cage and the air-gap. Despite the success of such cover channels, they suffer from the high risk of being detected by the transmitter computer and the challenge of installing malware into such a computer. In this paper, we propose MagView, a distributed magnetic cover channel, where sensitive information is embedded in other data such as video and can be transmitted over the air-gapped internal network. When any computer uses the data such as playing the video, the sensitive information will leak through the magnetic covert channel. The "separation" of information embedding and leaking, combined with the fact that the covert channel can be created on any computer, overcomes these limitations. We demonstrate that CPU utilization for video decoding can be effectively controlled by changing the video frame type and reducing the quantization parameter without video quality degradation. We prototype MagView and achieve up to 8.9 bps throughput with BER as low as 0.0057. Experiments under different environment are conducted to show the robustness of MagView. Limitations and possible countermeasures are also discussed.

2021-01-22
Chen, P., Liu, X., Zhang, J., Yu, C., Pu, H., Yao, Y..  2019.  Improvement of PRIME Protocol Based on Chaotic Cryptography. 2019 22nd International Conference on Electrical Machines and Systems (ICEMS). :1–5.

PRIME protocol is a narrowband power line communication protocol whose security is based on Advanced Encryption Standard. However, the key expansion process of AES algorithm is not unidirectional, and each round of keys are linearly related to each other, it is less difficult for eavesdroppers to crack AES encryption algorithm, leading to threats to the security of PRIME protocol. To solve this problem, this paper proposes an improvement of PRIME protocol based on chaotic cryptography. The core of this method is to use Chebyshev chaotic mapping and Logistic chaotic mapping to generate each round of key in the key expansion process of AES algorithm, In this way, the linear correlation between the key rounds can be reduced, making the key expansion process unidirectional, increasing the crack difficulty of AES encryption algorithm, and improving the security of PRIME protocol.

Zhang, H., Liu, H., Liang, J., Li, T., Geng, L., Liu, Y., Chen, S..  2020.  Defense Against Advanced Persistent Threats: Optimal Network Security Hardening Using Multi-stage Maze Network Game. 2020 IEEE Symposium on Computers and Communications (ISCC). :1—6.

Advanced Persistent Threat (APT) is a stealthy, continuous and sophisticated method of network attacks, which can cause serious privacy leakage and millions of dollars losses. In this paper, we introduce a new game-theoretic framework of the interaction between a defender who uses limited Security Resources(SRs) to harden network and an attacker who adopts a multi-stage plan to attack the network. The game model is derived from Stackelberg games called a Multi-stage Maze Network Game (M2NG) in which the characteristics of APT are fully considered. The possible plans of the attacker are compactly represented using attack graphs(AGs), but the compact representation of the attacker's strategies presents a computational challenge and reaching the Nash Equilibrium(NE) is NP-hard. We present a method that first translates AGs into Markov Decision Process(MDP) and then achieves the optimal SRs allocation using the policy hill-climbing(PHC) algorithm. Finally, we present an empirical evaluation of the model and analyze the scalability and sensitivity of the algorithm. Simulation results exhibit that our proposed reinforcement learning-based SRs allocation is feasible and efficient.

2021-01-20
Chaudhary, H., Sharma, A. K..  2020.  Hybrid Technique of Genetic Algorithm and Extended Diffie-Hellman Algorithm used for Intrusion Detection in Cloud. 2020 International Conference on Electrical and Electronics Engineering (ICE3). :513—516.

It is a well-known fact that the use of Cloud Computing is becoming very common all over the world for data storage and analysis. But the proliferation of the threats in cloud is also their; threats like Information breaches, Data thrashing, Cloud account or Service traffic hijacking, Insecure APIs, Denial of Service, Malicious Insiders, Abuse of Cloud services, Insufficient due Diligence and Shared Technology Vulnerable. This paper tries to come up with the solution for the threat (Denial of Service) in cloud. We attempt to give our newly proposed model by the hybridization of Genetic algorithm and extension of Diffie Hellman algorithm and tries to make cloud transmission secure from upcoming intruders.

Li, M., Chang, H., Xiang, Y., An, D..  2020.  A Novel Anti-Collusion Audio Fingerprinting Scheme Based on Fourier Coefficients Reversing. IEEE Signal Processing Letters. 27:1794—1798.

Most anti-collusion audio fingerprinting schemes are aiming at finding colluders from the illegal redistributed audio copies. However, the loss caused by the redistributed versions is inevitable. In this letter, a novel fingerprinting scheme is proposed to eliminate the motivation of collusion attack. The audio signal is transformed to the frequency domain by the Fourier transform, and the coefficients in frequency domain are reversed in different degrees according to the fingerprint sequence. Different from other fingerprinting schemes, the coefficients of the host media are excessively modified by the proposed method in order to reduce the quality of the colluded version significantly, but the imperceptibility is well preserved. Experiments show that the colluded audio cannot be reused because of the poor quality. In addition, the proposed method can also resist other common attacks. Various kinds of copyright risks and losses caused by the illegal redistribution are effectively avoided, which is significant for protecting the copyright of audio.

Shi, F., Chen, Z., Cheng, X..  2020.  Behavior Modeling and Individual Recognition of Sonar Transmitter for Secure Communication in UASNs. IEEE Access. 8:2447—2454.

It is necessary to improve the safety of the underwater acoustic sensor networks (UASNs) since it is mostly used in the military industry. Specific emitter identification is the process of identifying different transmitters based on the radio frequency fingerprint extracted from the received signal. The sonar transmitter is a typical low-frequency radiation source and is an important part of the UASNs. Class D power amplifier, a typical nonlinear amplifier, is usually used in sonar transmitters. The inherent nonlinearity of power amplifiers provides fingerprint features that can be distinguished without transmitters for specific emitter recognition. First, the nonlinearity of the sonar transmitter is studied in-depth, and the nonlinearity of the power amplifier is modeled and its nonlinearity characteristics are analyzed. After obtaining the nonlinear model of an amplifier, a similar amplifier in practical application is obtained by changing its model parameters as the research object. The output signals are collected by giving the same input of different models, and, then, the output signals are extracted and classified. In this paper, the memory polynomial model is used to model the amplifier. The power spectrum features of the output signals are extracted as fingerprint features. Then, the dimensionality of the high-dimensional features is reduced. Finally, the classifier is used to recognize the amplifier. The experimental results show that the individual sonar transmitter can be well identified by using the nonlinear characteristics of the signal. By this way, this method can enhance the communication safety of the UASNs.

Lei, M., Jin, M., Huang, T., Guo, Z., Wang, Q., Wu, Z., Chen, Z., Chen, X., Zhang, J..  2020.  Ultra-wideband Fingerprinting Positioning Based on Convolutional Neural Network. 2020 International Conference on Computer, Information and Telecommunication Systems (CITS). :1—5.

The Global Positioning System (GPS) can determine the position of any person or object on earth based on satellite signals. But when inside the building, the GPS cannot receive signals, the indoor positioning system will determine the precise position. How to achieve more precise positioning is the difficulty of an indoor positioning system now. In this paper, we proposed an ultra-wideband fingerprinting positioning method based on a convolutional neural network (CNN), and we collect the dataset in a room to test the model, then compare our method with the existing method. In the experiment, our method can reach an accuracy of 98.36%. Compared with other fingerprint positioning methods our method has a great improvement in robustness. That results show that our method has good practicality while achieves higher accuracy.

Jiang, M., Lundgren, J., Pasha, S., Carratù, M., Liguori, C., Thungström, G..  2020.  Indoor Silent Object Localization using Ambient Acoustic Noise Fingerprinting. 2020 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). :1—6.

Indoor localization has been a popular research subject in recent years. Usually, object localization using sound involves devices on the objects, acquiring data from stationary sound sources, or by localizing the objects with external sensors when the object generates sounds. Indoor localization systems using microphones have traditionally also used systems with several microphones, setting the limitations on cost efficiency and required space for the systems. In this paper, the goal is to investigate whether it is possible for a stationary system to localize a silent object in a room, with only one microphone and ambient noise as information carrier. A subtraction method has been combined with a fingerprint technique, to define and distinguish the noise absorption characteristic of the silent object in the frequency domain for different object positions. The absorption characteristics of several positions of the object is taken as comparison references, serving as fingerprints of known positions for an object. With the experiment result, the tentative idea has been verified as feasible, and noise signal based lateral localization of silent objects can be achieved.

2021-01-18
Zhu, L., Chen, C., Su, Z., Chen, W., Li, T., Yu, Z..  2020.  BBS: Micro-Architecture Benchmarking Blockchain Systems through Machine Learning and Fuzzy Set. 2020 IEEE International Symposium on High Performance Computer Architecture (HPCA). :411–423.
Due to the decentralization, irreversibility, and traceability, blockchain has attracted significant attention and has been deployed in many critical industries such as banking and logistics. However, the micro-architecture characteristics of blockchain programs still remain unclear. What's worse, the large number of micro-architecture events make understanding the characteristics extremely difficult. We even lack a systematic approach to identify the important events to focus on. In this paper, we propose a novel benchmarking methodology dubbed BBS to characterize blockchain programs at micro-architecture level. The key is to leverage fuzzy set theory to identify important micro-architecture events after the significance of them is quantified by a machine learning based approach. The important events for single programs are employed to characterize the programs while the common important events for multiple programs form an importance vector which is used to measure the similarity between benchmarks. We leverage BBS to characterize seven and six benchmarks from Blockbench and Caliper, respectively. The results show that BBS can reveal interesting findings. Moreover, by leveraging the importance characterization results, we improve that the transaction throughput of Smallbank from Fabric by 70% while reduce the transaction latency by 55%. In addition, we find that three of seven and two of six benchmarks from Blockbench and Caliper are redundant, respectively.
Bentahar, A., Meraoumia, A., Bendjenna, H., Chitroub, S., Zeroual, A..  2020.  Fuzzy Extractor-Based Key Agreement for Internet of Things. 020 1st International Conference on Communications, Control Systems and Signal Processing (CCSSP). :25–29.
The emergence of the Internet of Things with its constraints obliges researchers in this field to find light and accurate solutions to secure the data exchange. This document presents secure authentication using biometrics coupled with an effective key agreement scheme to save time and energy. In our scheme, the agreed key is used to encrypt transmission data between different IoT actors. While the fuzzy extractor based on the fuzzy vault principle, is used as authentication and as key agreement scheme. Besides, our system incorporates the Reed Solomon and Hamming codes to give some tolerance to errors. The experimental results have been discussed according to several recognition rates and computation times. Indeed, the recognition rate results have been compared to other works to validate our system. Also, we clarify how our system resists to specific transmission attacks without affecting lightness and accuracy.
2021-01-15
Pete, I., Hughes, J., Chua, Y. T., Bada, M..  2020.  A Social Network Analysis and Comparison of Six Dark Web Forums. 2020 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :484—493.

With increasing monitoring and regulation by platforms, communities with criminal interests are moving to the dark web, which hosts content ranging from whistle-blowing and privacy, to drugs, terrorism, and hacking. Using post discussion data from six dark web forums we construct six interaction graphs and use social network analysis tools to study these underground communities. We observe the structure of each network to highlight structural patterns and identify nodes of importance through network centrality analysis. Our findings suggest that in the majority of the forums some members are highly connected and form hubs, while most members have a lower number of connections. When examining the posting activities of central nodes we found that most of the central nodes post in sub-forums with broader topics, such as general discussions and tutorials. These members play different roles in the different forums, and within each forum we identified diverse user profiles.

Ebrahimi, M., Samtani, S., Chai, Y., Chen, H..  2020.  Detecting Cyber Threats in Non-English Hacker Forums: An Adversarial Cross-Lingual Knowledge Transfer Approach. 2020 IEEE Security and Privacy Workshops (SPW). :20—26.

The regularity of devastating cyber-attacks has made cybersecurity a grand societal challenge. Many cybersecurity professionals are closely examining the international Dark Web to proactively pinpoint potential cyber threats. Despite its potential, the Dark Web contains hundreds of thousands of non-English posts. While machine translation is the prevailing approach to process non-English text, applying MT on hacker forum text results in mistranslations. In this study, we draw upon Long-Short Term Memory (LSTM), Cross-Lingual Knowledge Transfer (CLKT), and Generative Adversarial Networks (GANs) principles to design a novel Adversarial CLKT (A-CLKT) approach. A-CLKT operates on untranslated text to retain the original semantics of the language and leverages the collective knowledge about cyber threats across languages to create a language invariant representation without any manual feature engineering or external resources. Three experiments demonstrate how A-CLKT outperforms state-of-the-art machine learning, deep learning, and CLKT algorithms in identifying cyber-threats in French and Russian forums.

Zhang, N., Ebrahimi, M., Li, W., Chen, H..  2020.  A Generative Adversarial Learning Framework for Breaking Text-Based CAPTCHA in the Dark Web. 2020 IEEE International Conference on Intelligence and Security Informatics (ISI). :1—6.

Cyber threat intelligence (CTI) necessitates automated monitoring of dark web platforms (e.g., Dark Net Markets and carding shops) on a large scale. While there are existing methods for collecting data from the surface web, large-scale dark web data collection is commonly hindered by anti-crawling measures. Text-based CAPTCHA serves as the most prohibitive type of these measures. Text-based CAPTCHA requires the user to recognize a combination of hard-to-read characters. Dark web CAPTCHA patterns are intentionally designed to have additional background noise and variable character length to prevent automated CAPTCHA breaking. Existing CAPTCHA breaking methods cannot remedy these challenges and are therefore not applicable to the dark web. In this study, we propose a novel framework for breaking text-based CAPTCHA in the dark web. The proposed framework utilizes Generative Adversarial Network (GAN) to counteract dark web-specific background noise and leverages an enhanced character segmentation algorithm. Our proposed method was evaluated on both benchmark and dark web CAPTCHA testbeds. The proposed method significantly outperformed the state-of-the-art baseline methods on all datasets, achieving over 92.08% success rate on dark web testbeds. Our research enables the CTI community to develop advanced capabilities of large-scale dark web monitoring.

Liu, Y., Lin, F. Y., Ahmad-Post, Z., Ebrahimi, M., Zhang, N., Hu, J. L., Xin, J., Li, W., Chen, H..  2020.  Identifying, Collecting, and Monitoring Personally Identifiable Information: From the Dark Web to the Surface Web. 2020 IEEE International Conference on Intelligence and Security Informatics (ISI). :1—6.

Personally identifiable information (PII) has become a major target of cyber-attacks, causing severe losses to data breach victims. To protect data breach victims, researchers focus on collecting exposed PII to assess privacy risk and identify at-risk individuals. However, existing studies mostly rely on exposed PII collected from either the dark web or the surface web. Due to the wide exposure of PII on both the dark web and surface web, collecting from only the dark web or the surface web could result in an underestimation of privacy risk. Despite its research and practical value, jointly collecting PII from both sources is a non-trivial task. In this paper, we summarize our effort to systematically identify, collect, and monitor a total of 1,212,004,819 exposed PII records across both the dark web and surface web. Our effort resulted in 5.8 million stolen SSNs, 845,000 stolen credit/debit cards, and 1.2 billion stolen account credentials. From the surface web, we identified and collected over 1.3 million PII records of the victims whose PII is exposed on the dark web. To the best of our knowledge, this is the largest academic collection of exposed PII, which, if properly anonymized, enables various privacy research inquiries, including assessing privacy risk and identifying at-risk populations.

Amerini, I., Galteri, L., Caldelli, R., Bimbo, A. Del.  2019.  Deepfake Video Detection through Optical Flow Based CNN. 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW). :1205—1207.
Recent advances in visual media technology have led to new tools for processing and, above all, generating multimedia contents. In particular, modern AI-based technologies have provided easy-to-use tools to create extremely realistic manipulated videos. Such synthetic videos, named Deep Fakes, may constitute a serious threat to attack the reputation of public subjects or to address the general opinion on a certain event. According to this, being able to individuate this kind of fake information becomes fundamental. In this work, a new forensic technique able to discern between fake and original video sequences is given; unlike other state-of-the-art methods which resorts at single video frames, we propose the adoption of optical flow fields to exploit possible inter-frame dissimilarities. Such a clue is then used as feature to be learned by CNN classifiers. Preliminary results obtained on FaceForensics++ dataset highlight very promising performances.
2021-01-11
Shin, H. C., Chang, J., Na, K..  2020.  Anomaly Detection Algorithm Based on Global Object Map for Video Surveillance System. 2020 20th International Conference on Control, Automation and Systems (ICCAS). :793—795.

Recently, smart video security systems have been active. The existing video security system is mainly a method of detecting a local abnormality of a unit camera. In this case, it is difficult to obtain the characteristics of each local region and the situation for the entire watching area. In this paper, we developed an object map for the entire surveillance area using a combination of surveillance cameras, and developed an algorithm to detect anomalies by learning normal situations. The surveillance camera in each area detects and tracks people and cars, and creates a local object map and transmits it to the server. The surveillance server combines each local maps to generate a global map for entire areas. Probability maps were automatically calculated from the global maps, and normal and abnormal decisions were performed through trained data about normal situations. For three reporting status: normal, caution, and warning, and the caution report performance shows that normal detection 99.99% and abnormal detection 86.6%.

YE, X., JI, B., Chen, X., QIAN, D., Zhao, Z..  2020.  Probability Boltzmann Machine Network for Face Detection on Video. 2020 13th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI). :138—147.

By the multi-layer nonlinear mapping and the semantic feature extraction of the deep learning, a deep learning network is proposed for video face detection to overcome the challenge of detecting faces rapidly and accurately in video with changeable background. Particularly, a pre-training procedure is used to initialize the network parameters to avoid falling into the local optimum, and the greedy layer-wise learning is introduced in the pre-training to avoid the training error transfer in layers. Key to the network is that the probability of neurons models the status of human brain neurons which is a continuous distribution from the most active to the least active and the hidden layer’s neuron number decreases layer-by-layer to reduce the redundant information of the input data. Moreover, the skin color detection is used to accelerate the detection speed by generating candidate regions. Experimental results show that, besides the faster detection speed and robustness against face rotation, the proposed method possesses lower false detection rate and lower missing detection rate than traditional algorithms.

Zhang, X., Chandramouli, K., Gabrijelcic, D., Zahariadis, T., Giunta, G..  2020.  Physical Security Detectors for Critical Infrastructures Against New-Age Threat of Drones and Human Intrusion. 2020 IEEE International Conference on Multimedia Expo Workshops (ICMEW). :1—4.

Modern critical infrastructures are increasingly turning into distributed, complex Cyber-Physical systems that need proactive protection and fast restoration to mitigate physical or cyber incidents or attacks. Addressing the need for early stage threat detection against physical intrusion, the paper presents two physical security sensors developed within the DEFENDER project for detecting the intrusion of drones and humans using video analytics. The continuous stream of media data obtained from the region of vulnerability and proximity is processed using Region based Fully Connected Neural Network deep-learning model. The novelty of the pro-posed system relies in the processing of multi-threaded media input streams for achieving real-time threat identification. The video analytics solution has been validated using NVIDIA GeForce GTX 1080 for drone detection and NVIDIA GeForce RTX 2070 Max-Q Design for detecting human intruders. The experimental test bed for the validation of the proposed system has been constructed to include environments and situations that are commonly faced by critical infrastructure operators such as the area of protection, tradeoff between angle of coverage against distance of coverage.

Li, Y., Chang, T.-H., Chi, C.-Y..  2020.  Secure Federated Averaging Algorithm with Differential Privacy. 2020 IEEE 30th International Workshop on Machine Learning for Signal Processing (MLSP). :1–6.
Federated learning (FL), as a recent advance of distributed machine learning, is capable of learning a model over the network without directly accessing the client's raw data. Nevertheless, the clients' sensitive information can still be exposed to adversaries via differential attacks on messages exchanged between the parameter server and clients. In this paper, we consider the widely used federating averaging (FedAvg) algorithm and propose to enhance the data privacy by the differential privacy (DP) technique, which obfuscates the exchanged messages by properly adding Gaussian noise. We analytically show that the proposed secure FedAvg algorithm maintains an O(l/T) convergence rate, where T is the total number of stochastic gradient descent (SGD) updates for local model parameters. Moreover, we demonstrate how various algorithm parameters can impact on the algorithm communication efficiency. Experiment results are presented to justify the obtained analytical results on the performance of the proposed algorithm in terms of testing accuracy.
Xin, B., Yang, W., Geng, Y., Chen, S., Wang, S., Huang, L..  2020.  Private FL-GAN: Differential Privacy Synthetic Data Generation Based on Federated Learning. ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :2927–2931.
Generative Adversarial Network (GAN) has already made a big splash in the field of generating realistic "fake" data. However, when data is distributed and data-holders are reluctant to share data for privacy reasons, GAN's training is difficult. To address this issue, we propose private FL-GAN, a differential privacy generative adversarial network model based on federated learning. By strategically combining the Lipschitz limit with the differential privacy sensitivity, the model can generate high-quality synthetic data without sacrificing the privacy of the training data. We theoretically prove that private FL-GAN can provide strict privacy guarantee with differential privacy, and experimentally demonstrate our model can generate satisfactory data.
Bhat, P., Batakurki, M., Chari, M..  2020.  Classifier with Deep Deviation Detection in PoE-IoT Devices. 2020 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT). :1–3.
With the rapid growth in diversity of PoE-IoT devices and concept of "Edge intelligence", PoE-IoT security and behavior analysis is the major concern. These PoE-IoT devices lack visibility when the entire network infrastructure is taken into account. The IoT devices are prone to have design faults in their security capabilities. The entire network may be put to risk by attacks on vulnerable IoT devices or malware might get introduced into IoT devices even by routine operations such as firmware upgrade. There have been various approaches based on machine learning(ML) to classify PoE-IoT devices based on network traffic characteristics such as Deep Packet Inspection(DPI). In this paper, we propose a novel method for PoE-IoT classification where ML algorithm, Decision Tree is used. In addition to classification, this method provides useful insights to the network deployment, based on the deviations detected. These insights can further be used for shaping policies, troubleshooting and behavior analysis of PoE-IoT devices.
Chekashev, A., Demianiuk, V., Kogan, K..  2020.  Poster: Novel Opportunities in Design of Efficient Deep Packet Inspection Engines. 2020 IEEE 28th International Conference on Network Protocols (ICNP). :1–2.
Deep Packet Inspection (DPI) is an essential building block implementing various services on data plane [5]. Usually, DPI engines are centered around efficient implementation of regular expressions both from the required memory and lookup time perspectives. In this paper, we explore and generalize original approaches used for packet classifiers [7] to regular expressions. Our preliminary results establish a promising direction for the efficient implementation of DPI engines.
Cheng, Z., Beshley, M., Beshley, H., Kochan, O., Urikova, O..  2020.  Development of Deep Packet Inspection System for Network Traffic Analysis and Intrusion Detection. 2020 IEEE 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET). :877–881.
One of the most important issues in the development of the Internet of Things (IoT) is network security. The deep packet inspection (DPI) is a promising technology that helps to detection and protection against network attacks. The DPI software system for IoT is developed in this paper. The system for monitoring and analyzing IoT traffic to detect anomalies and identify attacks based on Hurst parameter is proposed. This system makes it possible to determine the Hurst flow parameter at different intervals of observation. This system can be installed on a network provider to use more effectively the bandwidth.
Zhang, H., Zhang, D., Chen, H., Xu, J..  2020.  Improving Efficiency of Pseudonym Revocation in VANET Using Cuckoo Filter. 2020 IEEE 20th International Conference on Communication Technology (ICCT). :763–769.
In VANETs, pseudonyms are often used to replace the identity of vehicles in communication. When vehicles drive out of the network or misbehave, their pseudonym certificates need to be revoked by the certificate authority (CA). The certificate revocation lists (CRLs) are usually used to store the revoked certificates before their expiration. However, using CRLs would incur additional storage, communication and computation overhead. Some existing schemes have proposed to use Bloom Filter to compress the original CRLs, but they are unable to delete the expired certificates and introduce the false positive problem. In this paper, we propose an improved pseudonym certificates revocation scheme, using Cuckoo Filter for compression to reduce the impact of these problems. In order to optimize deletion efficiency, we propose the concept of Certificate Expiration List (CEL) which can be implemented with priority queue. The experimental results show that our scheme can effectively reduce the storage and communication overhead of pseudonym certificates revocation, while retaining moderately low false positive rates. In addition, our scheme can also greatly improve the lookup performance on CRLs, and reduce the revocation operation costs by allowing deletion.
Cao, S., Zou, J., Du, X., Zhang, X..  2020.  A Successive Framework: Enabling Accurate Identification and Secure Storage for Data in Smart Grid. ICC 2020 - 2020 IEEE International Conference on Communications (ICC). :1–6.
Due to malicious eavesdropping, forgery as well as other risks, it is challenging to dispose and store collected power data from smart grid in secure manners. Blockchain technology has become a novel method to solve the above problems because of its de-centralization and tamper-proof characteristics. It is especially well known that data stored in blockchain cannot be changed, so it is vital to seek out perfect mechanisms to ensure that data are compliant with high quality (namely, accuracy of the power data) before being stored in blockchain. This will help avoid losses due to low-quality data modification or deletion as needed in smart grid. Thus, we apply the parallel vision theory on the identification of meter readings to realize accurate power data. A cloud-blockchain fusion model (CBFM) is proposed for the storage of accurate power data, allowing for secure conducting of flexible transactions. Only power data calculated by parallel visual system instead of image data collected originally via robot would be stored in blockchain. Hence, we define the quality assurance before data uploaded to blockchain and security guarantee after data stored in blockchain as a successive framework, which is a brand new solution to manage efficiency and security as a whole for power data and data alike in other scenes. Security analysis and performance evaluations are performed, which prove that CBFM is highly secure and efficient impressively.