Visible to the public Biblio

Found 2131 results

Filters: First Letter Of Last Name is D  [Clear All Filters]
2023-08-03
Colombier, Brice, Drăgoi, Vlad-Florin, Cayrel, Pierre-Louis, Grosso, Vincent.  2022.  Profiled Side-Channel Attack on Cryptosystems Based on the Binary Syndrome Decoding Problem. IEEE Transactions on Information Forensics and Security. 17:3407–3420.
The NIST standardization process for post-quantum cryptography has been drawing the attention of researchers to the submitted candidates. One direction of research consists in implementing those candidates on embedded systems and that exposes them to physical attacks in return. The Classic McEliece cryptosystem, which is among the four finalists of round 3 in the Key Encapsulation Mechanism category, builds its security on the hardness of the syndrome decoding problem, which is a classic hard problem in code-based cryptography. This cryptosystem was recently targeted by a laser fault injection attack leading to message recovery. Regrettably, the attack setting is very restrictive and it does not tolerate any error in the faulty syndrome. Moreover, it depends on the very strong attacker model of laser fault injection, and does not apply to optimised implementations of the algorithm that make optimal usage of the machine words capacity. In this article, we propose a to change the angle and perform a message-recovery attack that relies on side-channel information only. We improve on the previously published work in several key aspects. First, we show that side-channel information, obtained with power consumption analysis, is sufficient to obtain an integer syndrome, as required by the attack framework. This is done by leveraging classic machine learning techniques that recover the Hamming weight information very accurately. Second, we put forward a computationally-efficient method, based on a simple dot product and information-set decoding algorithms, to recover the message from the, possibly inaccurate, recovered integer syndrome. Finally, we present a masking countermeasure against the proposed attack.
Conference Name: IEEE Transactions on Information Forensics and Security
2023-07-31
Legrand, Antoine, Macq, Benoît, De Vleeschouwer, Christophe.  2022.  Forward Error Correction Applied to JPEG-XS Codestreams. 2022 IEEE International Conference on Image Processing (ICIP). :3723—3727.
JPEG-XS offers low complexity image compression for applications with constrained but reasonable bit-rate, and low latency. Our paper explores the deployment of JPEG-XS on lossy packet networks. To preserve low latency, Forward Error Correction (FEC) is envisioned as the protection mechanism of interest. Although the JPEG-XS codestream is not scalable in essence, we observe that the loss of a codestream fraction impacts the decoded image quality differently, depending on whether this codestream fraction corresponds to codestream headers, to coefficient significance information, or to low/high frequency data. Hence, we propose a rate-distortion optimal unequal error protection scheme that adapts the redundancy level of Reed-Solomon codes according to the rate of channel losses and the type of information protected by the code. Our experiments demonstrate that, at 5% loss rates, it reduces the Mean Squared Error by up to 92% and 65%, compared to a transmission without and with optimal but equal protection, respectively.
2023-07-28
Hasan, Darwito, Haryadi Amran, Sudarsono, Amang.  2022.  Environmental Condition Monitoring and Decision Making System Using Fuzzy Logic Method. 2022 International Electronics Symposium (IES). :267—271.

Currently, air pollution is still a problem that requires special attention, especially in big cities. Air pollution can come from motor vehicle fumes, factory smoke or other particles. To overcome these problems, a system is made that can monitor environmental conditions in order to know the good and bad of air quality in an environment and is expected to be a solution to reduce air pollution that occurs. The system created will utilize the Wireless Sensor Network (WSN) combined with Waspmote Smart Environment PRO, so that later data will be obtained in the form of temperature, humidity, CO levels and CO2 levels. From the sensor data that has been processed on Waspmote, it will then be used as input for data processing using a fuzzy algorithm. The classification obtained from sensor data processing using fuzzy to monitor environmental conditions there are 5 classifications, namely Very Good, Good, Average, Bad and Dangerous. Later the data that has been collected will be distributed to Meshlium as a gateway and will be stored in the database. The process of sending information between one party to another needs to pay attention to the confidentiality of data and information. The final result of the implementation of this research is that the system is able to classify values using fuzzy algorithms and is able to secure text data that will be sent to the database via Meshlium, and is able to display data sent to the website in real time.

De La Croix, Ntivuguruzwa Jean, Islamy, Chaidir Chalaf, Ahmad, Tohari.  2022.  Secret Message Protection using Fuzzy Logic and Difference Expansion in Digital Images. 2022 IEEE Nigeria 4th International Conference on Disruptive Technologies for Sustainable Development (NIGERCON). :1—5.

Secrete message protection has become a focal point of the network security domain due to the problems of violating the network use policies and unauthorized access of the public network. These problems have led to data protection techniques such as cryptography, and steganography. Cryptography consists of encrypting secrete message to a ciphertext format and steganography consists of concealing the secrete message in codes that make up a digital file, such as an image, audio, and video. Steganography, which is different from cryptography, ensures hiding a secret message for secure transmission over the public network. This paper presents a steganographic approach using digital images for data hiding that aims to providing higher performance by combining fuzzy logic type I to pre-process the cover image and difference expansion techniques. The previous methods have used the original cover image to embed the secrete message. This paper provides a new method that first identifies the edges of a cover image and then proceeds with a difference expansion to embed the secrete message. The experimental results of this work identified an improvement of 10% of the existing method based on increased payload capacity and the visibility of the stego image.

Dubchak, Lesia, Vasylkiv, Nadiia, Turchenko, Iryna, Komar, Myroslav, Nadvynychna, Tetiana, Volner, Rudolf.  2022.  Access Distribution to the Evaluation System Based on Fuzzy Logic. 2022 12th International Conference on Advanced Computer Information Technologies (ACIT). :564—567.
In order to control users’ access to the information system, it is necessary to develop a security system that can work in real time and easily reconfigure. This problem can be solved using a fuzzy logic. In this paper the authors propose a fuzzy distribution system for access to the student assessment system, which takes into account the level of user access, identifier and the risk of attack during the request. This approach allows process fuzzy or incomplete information about the user and implement a sufficient level of confidential information protection.
2023-07-21
Udeh, Chinonso Paschal, Chen, Luefeng, Du, Sheng, Li, Min, Wu, Min.  2022.  A Co-regularization Facial Emotion Recognition Based on Multi-Task Facial Action Unit Recognition. 2022 41st Chinese Control Conference (CCC). :6806—6810.
Facial emotion recognition helps feed the growth of the future artificial intelligence with the development of emotion recognition, learning, and analysis of different angles of a human face and head pose. The world's recent pandemic gave rise to the rapid installment of facial recognition for fewer applications, while emotion recognition is still within the experimental boundaries. The current challenges encountered with facial emotion recognition (FER) are the difference between background noises. Since today's world shows us that humans soon need robotics in the most significant role of human perception, attention, memory, decision-making, and human-robot interaction (HRI) needs employees. By merging the head pose as a combination towards the FER to boost the robustness in understanding emotions using the convolutional neural networks (CNN). The stochastic gradient descent with a comprehensive model is adopted by applying multi-task learning capable of implicit parallelism, inherent and better global optimizer in finding better network weights. After executing a multi-task learning model using two independent datasets, the experiment with the FER and head pose learning multi-views co-regularization frameworks were subsequently merged with validation accuracy.
Mai, Juanyun, Wang, Minghao, Zheng, Jiayin, Shao, Yanbo, Diao, Zhaoqi, Fu, Xinliang, Chen, Yulong, Xiao, Jianyu, You, Jian, Yin, Airu et al..  2022.  MHSnet: Multi-head and Spatial Attention Network with False-Positive Reduction for Lung Nodule Detection. 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). :1108—1114.
Mortality from lung cancer has ranked high among cancers for many years. Early detection of lung cancer is critical for disease prevention, cure, and mortality rate reduction. Many existing detection methods on lung nodules can achieve high sensitivity but meanwhile introduce an excessive number of false-positive proposals, which is clinically unpractical. In this paper, we propose the multi-head detection and spatial attention network, shortly MHSnet, to address this crucial false-positive issue. Specifically, we first introduce multi-head detectors and skip connections to capture multi-scale features so as to customize for the variety of nodules in sizes, shapes, and types. Then, inspired by how experienced clinicians screen CT images, we implemented a spatial attention module to enable the network to focus on different regions, which can successfully distinguish nodules from noisy tissues. Finally, we designed a lightweight but effective false-positive reduction module to cut down the number of false-positive proposals, without any constraints on the front network. Compared with the state-of-the-art models, our extensive experimental results show the superiority of this MHSnet not only in the average FROC but also in the false discovery rate (2.64% improvement for the average FROC, 6.39% decrease for the false discovery rate). The false-positive reduction module takes a further step to decrease the false discovery rate by 14.29%, indicating its very promising utility of reducing distracted proposals for the downstream tasks relied on detection results.
Zhou, Haosu, Lu, Wenbin, Shi, Yipeng, Liu, Zhenfu, Liu, Liu, Dong, Ningfei.  2022.  Constant False Alarm Rate Frame Detection Strategy for Terrestrial ASM/VDE Signals Received by Satellite. 2022 IEEE 5th International Conference on Electronics and Communication Engineering (ICECE). :29—33.
Frame detection is an important part of the reconnaissance satellite receiver to identify the terrestrial application specific messages (ASM) / VHF data exchange (VDE) signal, and has been challenged by Doppler shift and message collision. A constant false alarm rate (CFAR) frame detection strategy insensitive to Doppler shift has been proposed in this paper. Based on the double Barker sequence, a periodical sequence has been constructed, and differential operations have been adopted to eliminate the Doppler shift. Moreover, amplitude normalization is helpful for suppressing the interference introduced by message collision. Simulations prove that the proposed CFAR frame detection strategy is very attractive for the reconnaissance satellite to identify the terrestrial ASM/VDE signal.
Dabush, Lital, Routtenberg, Tirza.  2022.  Detection of False Data Injection Attacks in Unobservable Power Systems by Laplacian Regularization. 2022 IEEE 12th Sensor Array and Multichannel Signal Processing Workshop (SAM). :415—419.
The modern electrical grid is a complex cyber-physical system, and thus is vulnerable to measurement losses and attacks. In this paper, we consider the problem of detecting false data injection (FDI) attacks and bad data in unobservable power systems. Classical bad-data detection methods usually assume observable systems and cannot detect stealth FDI attacks. We use the smoothness property of the system states (voltages) w.r.t. the admittance matrix, which is also the Laplacian of the graph representation of the grid. First, we present the Laplacian-based regularized state estimator, which does not require full observability of the network. Then, we derive the Laplacian-regularized generalized likelihood ratio test (LR-GLRT). We show that the LR-GLRT has a component of a soft high-pass graph filter applied to the state estimator. Numerical results on the IEEE 118-bus system demonstrate that the LR-GLRT outperforms other detection approaches and is robust to missing data.
Kiruthiga, G, Saraswathi, P, Rajkumar, S, Suresh, S, Dhiyanesh, B, Radha, R.  2022.  Effective DDoS Attack Detection using Deep Generative Radial Neural Network in the Cloud Environment. 2022 7th International Conference on Communication and Electronics Systems (ICCES). :675—681.
Recently, internet services have increased rapidly due to the Covid-19 epidemic. As a result, cloud computing applications, which serve end-users as subscriptions, are rising. Cloud computing provides various possibilities like cost savings, time and access to online resources via the internet for end-users. But as the number of cloud users increases, so does the potential for attacks. The availability and efficiency of cloud computing resources may be affected by a Distributed Denial of Service (DDoS) attack that could disrupt services' availability and processing power. DDoS attacks pose a serious threat to the integrity and confidentiality of computer networks and systems that remain important assets in the world today. Since there is no effective way to detect DDoS attacks, it is a reliable weapon for cyber attackers. However, the existing methods have limitations, such as relatively low accuracy detection and high false rate performance. To tackle these issues, this paper proposes a Deep Generative Radial Neural Network (DGRNN) with a sigmoid activation function and Mutual Information Gain based Feature Selection (MIGFS) techniques for detecting DDoS attacks for the cloud environment. Specifically, the proposed first pre-processing step uses data preparation using the (Network Security Lab) NSL-KDD dataset. The MIGFS algorithm detects the most efficient relevant features for DDoS attacks from the pre-processed dataset. The features are calculated by trust evaluation for detecting the attack based on relative features. After that, the proposed DGRNN algorithm is utilized for classification to detect DDoS attacks. The sigmoid activation function is to find accurate results for prediction in the cloud environment. So thus, the proposed experiment provides effective classification accuracy, performance, and time complexity.
Gao, Kai, Cheng, Xiangyu, Huang, Hao, Li, Xunhao, Yuan, Tingyu, Du, Ronghua.  2022.  False Data Injection Attack Detection in a Platoon of CACC in RSU. 2022 IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1324—1329.
Intelligent connected vehicle platoon technology can reduce traffic congestion and vehicle fuel. However, attacks on the data transmitted by the platoon are one of the primary challenges encountered by the platoon during its travels. The false data injection (FDI) attack can lead to road congestion and even vehicle collisions, which can impact the platoon. However, the complexity of the cellular - vehicle to everything (C-V2X) environment, the single source of the message and the poor data processing capability of the on board unit (OBU) make the traditional detection methods’ success rate and response time poor. This study proposes a platoon state information fusion method using the communication characteristics of the platoon in C-V2X and proposes a novel platoon intrusion detection model based on this fusion method combined with sequential importance sampling (SIS). The SIS is a measured strategy of Monte Carlo integration sampling. Specifically, the method takes the status information of the platoon members as the predicted value input. It uses the leader vehicle status information as the posterior probability of the observed value to the current moment of the platoon members. The posterior probabilities of the platoon members and the weights of the platoon members at the last moment are used as input to update the weights of the platoon members at the current moment and obtain the desired platoon status information at the present moment. Moreover, it compares the status information of the platoon members with the desired status information to detect attacks on the platoon. Finally, the effectiveness of the method is demonstrated by simulation.
2023-07-20
Human, Soheil, Pandit, Harshvardhan J., Morel, Victor, Santos, Cristiana, Degeling, Martin, Rossi, Arianna, Botes, Wilhelmina, Jesus, Vitor, Kamara, Irene.  2022.  Data Protection and Consenting Communication Mechanisms: Current Open Proposals and Challenges. 2022 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW). :231—239.
Data Protection and Consenting Communication Mechanisms (DPCCMs) enable users to express their privacy decisions and manage their online consent. Thus, they can become a crucial means of protecting individuals' online privacy and agency, thereby replacing the current problematic practices such as “consent dialogues”. Based on an in-depth analysis of different DPCCMs, we propose an interdisciplinary set of factors that can be used for a comparison of such mechanisms. Moreover, we use the results from a qualitative expert study to identify some of the main multidisciplinary challenges that DPCCMs should address to become widely adopted data privacy mechanisms. We leverage both the factors and the challenges to compare two current open specifications, i.e. the Advanced Data Protection Control (ADPC) and the Global Privacy Control (GPC), and discuss future work.
Lourens, Melanie, Naureen, Ayesha, Guha, Shouvik Kumar, Ahamad, Shahanawaj, Dharamvir, Tripathi, Vikas.  2022.  Circumstantial Discussion on Security and Privacy Protection using Cloud Computing Technology. 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE). :1589—1593.
Cloud computing is becoming a demanding technology due to its flexibility, sensibility and remote accessibility. Apart from these applications of cloud computing, privacy and security are two terms that pose a circumstantial discussion. Various authors have argued on this topic that cloud computing is more secure than other data sharing and storing methods. The conventional data storing system is a computer system or smartphone storage. The argument debate also states that cloud computing is vulnerable to enormous types of attacks which make it a more concerning technology. This current study has also tried to draw the circumstantial and controversial debate on the security and privacy system of cloud computing. Primary research has been conducted with 65 cloud computing experts to understand whether a cloud computing security technique is highly secure or not. An online survey has been conducted with them where they provided their opinions based on the security and privacy system of cloud computing. Findings showed that no particular technology is available which can provide maximum security. Although the respondents agreed that blockchain is a more secure cloud computing technology; however, the blockchain also has certain threats which need to be addressed. The study has found essential encryption systems that can be integrated to strengthen security; however, continuous improvement is required.
2023-07-14
Dib, S., Amzert, A. K., Grimes, M., Benchiheb, A., Benmeddour, F..  2022.  Elliptic Curve Cryptography for Medical Image Security. 2022 19th International Multi-Conference on Systems, Signals & Devices (SSD). :1782–1787.
To contribute to medical data security, we propose the application of a modified algorithm on elliptical curves (ECC), initially proposed for text encryption. We implement this algorithm by eliminating the sender-receiver lookup table and grouping the pixel values into pairs to form points on a predefined elliptical curve. Simulation results show that the proposed algorithm offers the best compromise between the quality and the speed of cipher / decipher, especially for large images. A comparative study between ECC and AlGamel showed that the proposed algorithm offers better performance and its application, on medical images, is promising. Medical images contain many pieces of information and are often large. If the cryptographic operation is performed on every single pixel it will take more time. So, working on groups of pixels will be strongly recommended to save time and space.
ISSN: 2474-0446
M, Deepa, Dhiipan, J..  2022.  A Meta-Analysis of Efficient Countermeasures for Data Security. 2022 International Conference on Automation, Computing and Renewable Systems (ICACRS). :1303–1308.
Data security is the process of protecting data from loss, alteration, or unauthorised access during its entire lifecycle. It includes everything from the policies and practices of a company to the hardware, software, storage, and user devices used by that company. Data security tools and technology increase transparency into an organization's data and its usage. These tools can protect data by employing methods including encryption and data masking personally identifiable information.. Additionally, the method aids businesses in streamlining their auditing operations and adhering to the increasingly strict data protection rules.
Reis, Lúcio H. A., de Oliveira, Marcela T., Olabarriaga, Sílvia D..  2022.  Fine-grained Encryption for Secure Research Data Sharing. 2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS). :465–470.
Research data sharing requires provision of adequate security. The requirements for data privacy are extremely demanding for medical data that is reused for research purposes. To address these requirements, the research institutions must implement adequate security measurements, and this demands large effort and costs to do it properly. The usage of adequate access controls and data encryption are key approaches to effectively protect research data confidentiality; however, the management of the encryption keys is challenging. There are novel mechanisms that can be explored for managing access to the encryption keys and encrypted files. These mechanisms guarantee that data are accessed by authorised users and that auditing is possible. In this paper we explore these mechanisms to implement a secure research medical data sharing system. In the proposed system, the research data are stored on a secure cloud system. The data are partitioned into subsets, each one encrypted with a unique key. After the authorisation process, researchers are given rights to use one or more of the keys and to selectively access and decrypt parts of the dataset. Our proposed solution offers automated fine-grain access control to research data, saving time and work usually made manually. Moreover, it maximises and fortifies users' trust in data sharing through secure clouds solutions. We present an initial evaluation and conclude with a discussion about the limitations, open research questions and future work around this challenging topic.
ISSN: 2372-9198
2023-07-13
Senthilnayaki, B., Venkatalakshami, K., Dharanyadevi, P., G, Nivetha, Devi, A..  2022.  An Efficient Medical Image Encryption Using Magic Square and PSO. 2022 International Conference on Smart Technologies and Systems for Next Generation Computing (ICSTSN). :1–5.
Encryption is essential for protecting sensitive data, especially images, against unauthorized access and exploitation. The goal of this work is to develop a more secure image encryption technique for image-based communication. The approach uses particle swarm optimization, chaotic map and magic square to offer an ideal encryption effect. This work introduces a novel encryption algorithm based on magic square. The image is first broken down into single-byte blocks, which are then replaced with the value of the magic square. The encrypted images are then utilized as particles and a starting assembly for the PSO optimization process. The correlation coefficient applied to neighboring pixels is used to define the ideal encrypted image as a fitness function. The results of the experiments reveal that the proposed approach can effectively encrypt images with various secret keys and has a decent encryption effect. As a result of the proposed work improves the public key method's security while simultaneously increasing memory economy.
2023-07-12
B C, Manoj Kumar, R J, Anil Kumar, D, Shashidhara, M, Prem Singh.  2022.  Data Encryption and Decryption Using DNA and Embedded Technology. 2022 Fourth International Conference on Emerging Research in Electronics, Computer Science and Technology (ICERECT). :1—5.
Securing communication and information is known as cryptography. To convert messages from plain text to cipher text and the other way around. It is the process of protecting the data and sending it to the right audience so they can understand and process it. Hence, unauthorized access is avoided. This work suggests leveraging DNA technology for encrypt and decrypt the data. The main aim of utilizing the AES in this stage will transform ASCII code to hexadecimal to binary coded form and generate DNA. The message is encrypted with a random key. Shared key used for encrypt and decrypt the data. The encrypted data will be disguised as an image using steganography. To protect our data from hijackers, assailants, and muggers, it is frequently employed in institutions, banking, etc.
Dwiko Satriyo, U. Y. S, Rahutomo, Faisal, Harjito, Bambang, Prasetyo, Heri.  2022.  DNA Cryptography Based on NTRU Cryptosystem to Improve Security. 2022 IEEE 8th Information Technology International Seminar (ITIS). :27—31.
Information exchange occurs all the time in today’s internet era. Some of the data are public, and some are private. Asymmetric cryptography plays a critical role in securing private data transfer. However, technological advances caused private data at risk due to the presence of quantum computers. Therefore, we need a new method for securing private data. This paper proposes combining DNA cryptography methods based on the NTRU cryptosystem to enhance security data confidentiality. This method is compared with conventional public key cryptography methods. The comparison shows that the proposed method has a slow encryption and decryption time compared to other methods except for RSA. However, the key generation time of the proposed method is much faster than other methods tested except for ECC. The proposed method is superior in key generation time and considerably different from other tested methods. Meanwhile, the encryption and decryption time is slower than other methods besides RSA. The test results can get different results based on the programming language used.
2023-07-11
Gritti, Fabio, Pagani, Fabio, Grishchenko, Ilya, Dresel, Lukas, Redini, Nilo, Kruegel, Christopher, Vigna, Giovanni.  2022.  HEAPSTER: Analyzing the Security of Dynamic Allocators for Monolithic Firmware Images. 2022 IEEE Symposium on Security and Privacy (SP). :1082—1099.
Dynamic memory allocators are critical components of modern systems, and developers strive to find a balance between their performance and their security. Unfortunately, vulnerable allocators are routinely abused as building blocks in complex exploitation chains. Most of the research regarding memory allocators focuses on popular and standardized heap libraries, generally used by high-end devices such as desktop systems and servers. However, dynamic memory allocators are also extensively used in embedded systems but they have not received much scrutiny from the security community.In embedded systems, a raw firmware image is often the only available piece of information, and finding heap vulnerabilities is a manual and tedious process. First of all, recognizing a memory allocator library among thousands of stripped firmware functions can quickly become a daunting task. Moreover, emulating firmware functions to test for heap vulnerabilities comes with its own set of challenges, related, but not limited, to the re-hosting problem.To fill this gap, in this paper we present HEAPSTER, a system that automatically identifies the heap library used by a monolithic firmware image, and tests its security with symbolic execution and bounded model checking. We evaluate HEAPSTER on a dataset of 20 synthetic monolithic firmware images — used as ground truth for our analyses — and also on a dataset of 799 monolithic firmware images collected in the wild and used in real-world devices. Across these datasets, our tool identified 11 different heap management library (HML) families containing a total of 48 different variations. The security testing performed by HEAPSTER found that all the identified variants are vulnerable to at least one critical heap vulnerability. The results presented in this paper show a clear pattern of poor security standards, and raise some concerns over the security of dynamic memory allocators employed by IoT devices.
2023-07-10
Obien, Joan Baez, Calinao, Victor, Bautista, Mary Grace, Dadios, Elmer, Jose, John Anthony, Concepcion, Ronnie.  2022.  AEaaS: Artificial Intelligence Edge-of-Things as a Service for Intelligent Remote Farm Security and Intrusion Detection Pre-alarm System. 2022 IEEE 14th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM). :1—6.
With the continues growth of our technology, majority in our sectors are becoming smart and one of its great applications is in agriculture, which we call it as smart farming. The application of sensors, IoT, artificial intelligence, networking in the agricultural setting with the main purpose of increasing crop production and security level. With this advancement in farming, this provides a lot of privileges like remote monitoring, optimization of produce and too many to mention. In light of the thorough systematic analysis performed in this study, it was discovered that Edge-of-things is a potential computing scheme that could boost an artificial intelligence for intelligent remote farm security and intrusion detection pre-alarm system over other computing schemes. Again, the purpose of this study is not to replace existing cloud computing, but rather to highlight the potential of the Edge. The Edge architecture improves end-user experience by improving the time-related response of the system. response time of the system. One of the strengths of this system is to provide time-critical response service to make a decision with almost no delay, making it ideal for a farm security setting. Moreover, this study discussed the comparative analysis of Cloud, Fog and Edge in relation to farm security, the demand for a farm security system and the tools needed to materialize an Edge computing in a farm environment.
Devi, Reshoo, Kumar, Amit, Kumar, Vivek, Saini, Ashish, Kumari, Amrita, Kumar, Vipin.  2022.  A Review Paper on IDS in Edge Computing or EoT. 2022 International Conference on Fourth Industrial Revolution Based Technology and Practices (ICFIRTP). :30—35.

The main intention of edge computing is to improve network performance by storing and computing data at the edge of the network near the end user. However, its rapid development largely ignores security threats in large-scale computing platforms and their capable applications. Therefore, Security and privacy are crucial need for edge computing and edge computing based environment. Security vulnerabilities in edge computing systems lead to security threats affecting edge computing networks. Therefore, there is a basic need for an intrusion detection system (IDS) designed for edge computing to mitigate security attacks. Due to recent attacks, traditional algorithms may not be possibility for edge computing. This article outlines the latest IDS designed for edge computing and focuses on the corresponding methods, functions and mechanisms. This review also provides deep understanding of emerging security attacks in edge computing. This article proves that although the design and implementation of edge computing IDS have been studied previously, the development of efficient, reliable and powerful IDS for edge computing systems is still a crucial task. At the end of the review, the IDS developed will be introduced as a future prospect.

Dong, Yeting, Wang, Zhiwen, Guo, Wuyuan.  2022.  Overview of edge detection algorithms based on mathematical morphology. 2022 IEEE 6th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC ). :1321—1326.
Edge detection is the key and difficult point of machine vision and image processing technology. The traditional edge detection algorithm is sensitive to noise and it is difficult to accurately extract the edge of the image, so the effect of image processing is not ideal. To solve this problem, people in the industry use the structural element features of morphological edge detection operator to extract the edge features of the image by carefully designing and combining the structural elements of different sizes and directions, so as to effectively ensure the integrity of edge information in all directions and eliminate large noise at the same time. This paper first introduces the traditional edge detection algorithms, then summarizes the edge detection algorithms based on mathematical morphology in recent years, finds that the selection of multi-scale and multi-directional structural elements is an important research direction, and finally discusses the development trend of mathematical morphology edge detection technology.
2023-06-30
Song, Yuning, Ding, Liping, Liu, Xuehua, Du, Mo.  2022.  Differential Privacy Protection Algorithm Based on Zero Trust Architecture for Industrial Internet. 2022 IEEE 4th International Conference on Power, Intelligent Computing and Systems (ICPICS). :917–920.
The Zero Trust Architecture is an important part of the industrial Internet security protection standard. When analyzing industrial data for enterprise-level or industry-level applications, differential privacy (DP) is an important technology for protecting user privacy. However, the centralized and local DP used widely nowadays are only applicable to the networks with fixed trust relationship and cannot cope with the dynamic security boundaries in Zero Trust Architecture. In this paper, we design a differential privacy scheme that can be applied to Zero Trust Architecture. It has a consistent privacy representation and the same noise mechanism in centralized and local DP scenarios, and can balance the strength of privacy protection and the flexibility of privacy mechanisms. We verify the algorithm in the experiment, that using maximum expectation estimation method it is able to obtain equal or even better result of the utility with the same level of security as traditional methods.
2023-06-29
Kanagavalli, N., Priya, S. Baghavathi, D, Jeyakumar.  2022.  Design of Hyperparameter Tuned Deep Learning based Automated Fake News Detection in Social Networking Data. 2022 6th International Conference on Computing Methodologies and Communication (ICCMC). :958–963.

Recently, social networks have become more popular owing to the capability of connecting people globally and sharing videos, images and various types of data. A major security issue in social media is the existence of fake accounts. It is a phenomenon that has fake accounts that can be frequently utilized by mischievous users and entities, which falsify, distribute, and duplicate fake news and publicity. As the fake news resulted in serious consequences, numerous research works have focused on the design of automated fake accounts and fake news detection models. In this aspect, this study designs a hyperparameter tuned deep learning based automated fake news detection (HDL-FND) technique. The presented HDL-FND technique accomplishes the effective detection and classification of fake news. Besides, the HDLFND process encompasses a three stage process namely preprocessing, feature extraction, and Bi-Directional Long Short Term Memory (BiLSTM) based classification. The correct way of demonstrating the promising performance of the HDL-FND technique, a sequence of replications were performed on the available Kaggle dataset. The investigational outcomes produce improved performance of the HDL-FND technique in excess of the recent approaches in terms of diverse measures.