Visible to the public Biblio

Found 758 results

Filters: First Letter Of Last Name is E  [Clear All Filters]
2020-09-18
Ameli, Amir, Hooshyar, Ali, El-Saadany, Ehab F..  2019.  Development of a Cyber-Resilient Line Current Differential Relay. IEEE Transactions on Industrial Informatics. 15:305—318.
The application of line current differential relays (LCDRs) to protect transmission lines has recently proliferated. However, the reliance of LCDRs on digital communication channels has raised growing cyber-security concerns. This paper investigates the impacts of false data injection attacks (FDIAs) on the performance of LCDRs. It also develops coordinated attacks that involve multiple components, including LCDRs, and can cause false line tripping. Additionally, this paper proposes a technique for detecting FDIAs against LCDRs and differentiating them from actual faults in two-terminal lines. In this method, when an LCDR detects a fault, instead of immediately tripping the line, it calculates and measures the superimposed voltage at its local terminal, using the proposed positive-sequence (PS) and negative-sequence (NS) submodules. To calculate this voltage, the LCDR models the protected line in detail and replaces the rest of the system with a Thevenin equivalent that produces accurate responses at the line terminals. Afterwards, remote current measurement is utilized by the PS and NS submodules to compute each sequence's superimposed voltage. A difference between the calculated and the measured superimposed voltages in any sequence reveals that the remote current measurements are not authentic. Thus, the LCDR's trip command is blocked. The effectiveness of the proposed method is corroborated using simulation results for the IEEE 39-bus test system. The performance of the proposed method is also tested using an OPAL real-time simulator.
2020-09-14
Eggendorfer, Tobias, Eiseler, Volker.  2019.  On the Relevance of IT Security in TDL. 2019 International Conference on Computational Science and Computational Intelligence (CSCI). :220–223.
Tactical Data Links (TDL) and Computer Science meet usually when it comes to interoperability andimplementation. However looking at it from an IT security perspective, some interesting issues occur. These become more relevant the more military hard-and software is built using commercial of the shelf (COTS) systems, that are usually implemented using standard Internet technology and software development patterns. This paper looks at Link 16, Link 11 and VMF security considerations and how compatible they are to current IT security standards. Typical security issues are discussed and concepts to mitigate them presented, which however need to be analysed for their suitability to TDL.
2020-09-11
Eskandarian, Saba, Cogan, Jonathan, Birnbaum, Sawyer, Brandon, Peh Chang Wei, Franke, Dillon, Fraser, Forest, Garcia, Gaspar, Gong, Eric, Nguyen, Hung T., Sethi, Taresh K. et al..  2019.  Fidelius: Protecting User Secrets from Compromised Browsers. 2019 IEEE Symposium on Security and Privacy (SP). :264—280.
Users regularly enter sensitive data, such as passwords, credit card numbers, or tax information, into the browser window. While modern browsers provide powerful client-side privacy measures to protect this data, none of these defenses prevent a browser compromised by malware from stealing it. In this work, we present Fidelius, a new architecture that uses trusted hardware enclaves integrated into the browser to enable protection of user secrets during web browsing sessions, even if the entire underlying browser and OS are fully controlled by a malicious attacker. Fidelius solves many challenges involved in providing protection for browsers in a fully malicious environment, offering support for integrity and privacy for form data, JavaScript execution, XMLHttpRequests, and protected web storage, while minimizing the TCB. Moreover, interactions between the enclave and the browser, the keyboard, and the display all require new protocols, each with their own security considerations. Finally, Fidelius takes into account UI considerations to ensure a consistent and simple interface for both developers and users. As part of this project, we develop the first open source system that provides a trusted path from input and output peripherals to a hardware enclave with no reliance on additional hypervisor security assumptions. These components may be of independent interest and useful to future projects. We implement and evaluate Fidelius to measure its performance overhead, finding that Fidelius imposes acceptable overhead on page load and user interaction for secured pages and has no impact on pages and page components that do not use its enhanced security features.
Ababtain, Eman, Engels, Daniel.  2019.  Security of Gestures Based CAPTCHAs. 2019 International Conference on Computational Science and Computational Intelligence (CSCI). :120—126.
We present a security analysis of several gesture CAPTCHA challenges designed to operate on mobiles. Mobile gesture CAPTCHA challenges utilize the accelerometer and the gyroscope inputs from a mobile to allow a human to solve a simple test by physically manipulating the device. We have evaluated the security of gesture CAPTCHA in mobile devices and found them resistant to a range of common automated attacks. Our study has shown that using an accelerometer and the gyroscope readings as an input to solve the CAPTCHA is difficult for malware, but easy for a real user. Gesture CAPTCHA is effective in differentiating between humans and machines.
Ababtain, Eman, Engels, Daniel.  2019.  Gestures Based CAPTCHAs the Use of Sensor Readings to Solve CAPTCHA Challenge on Smartphones. 2019 International Conference on Computational Science and Computational Intelligence (CSCI). :113—119.
We present novel CAPTCHA challenges based on user gestures designed for mobile. A gesture CAPTCHA challenge is a security mechanism to prevent malware from gaining access to network resources from mobile. Mobile devices contain a number of sensors that record the physical movement of the device. We utilized the accelerometer and gyroscope data as inputs to our novel CAPTCHAs to capture the physical manipulation of the device. We conducted an experimental study on a group of people. We discovered that younger people are able to solve this type of CAPTCHA challenges successfully in a short amount of time. We found that using accelerometer readings produces issues for some older people.
2020-09-08
El-Sakka, Ahmed H., Shaaban, Shawki, Moussa, Karim H..  2019.  Crypto Polar Codes based on Pseudorandom Frozen Bits Values and Indices. 2019 7th International Japan-Africa Conference on Electronics, Communications, and Computations, (JAC-ECC). :160–163.
Polar codes are a talented coding technique with the ability to accomplish the discrete memoryless channel capacity for modern communication systems with high reliability, but it is not secured enough for such systems. A secured system counts on grouping polar codes with secret Mersenne- Twister pseudo-random number generator (MT PRNG) is presented in this paper. The proposed encoder security is deduced from the secret pre-shared initial state of MT PRNG which is considered as the crypto-system ciphering key. The generated sequences are random like and control the frozen bits' values and their indices in the polarized bit channels. When the decoding cipher key at the receiver has one-bit change from the original encoding cipher key, the receiver has an almost 0.5 BER probability. This means that the receiver, in this case, had no clue about the originally sent information data bits without prior knowledge of the utilized 232-bit ciphering key. Moreover, the security of the system can be enhanced by utilizing a pseudo-random number generator (PRBG) with longer seed to increase the system secrecy and decoding obscurity.
El Abbadi, Reda, Jamouli, Hicham.  2019.  Stabilization of Cyber Physical System exposed to a random replay attack modeled by Markov chains. 2019 6th International Conference on Control, Decision and Information Technologies (CoDIT). :528–533.
This paper is concerned with the stabilization problem of cyber physical system (CPS) exposed to a random replay attack. The study will ignore the effects of communication delays and packet losses, and the attention will be focused on the effect of replay attack on the stability of (CPS). The closed-loop system is modeled as Markovian jump linear system with two jumping parameters. Linear matrix inequality (LMI) formulation is used to give a condition for stochastic stabilization of the system. Finally the theory is illustrated through a numerical example.
2020-09-04
Elkanishy, Abdelrahman, Badawy, Abdel-Hameed A., Furth, Paul M., Boucheron, Laura E., Michael, Christopher P..  2019.  Machine Learning Bluetooth Profile Operation Verification via Monitoring the Transmission Pattern. 2019 53rd Asilomar Conference on Signals, Systems, and Computers. :2144—2148.
Manufacturers often buy and/or license communication ICs from third-party suppliers. These communication ICs are then integrated into a complex computational system, resulting in a wide range of potential hardware-software security issues. This work proposes a compact supervisory circuit to classify the Bluetooth profile operation of a Bluetooth System-on-Chip (SoC) at low frequencies by monitoring the radio frequency (RF) output power of the Bluetooth SoC. The idea is to inexpensively manufacture an RF envelope detector to monitor the RF output power and a profile classification algorithm on a custom low-frequency integrated circuit in a low-cost legacy technology. When the supervisory circuit observes unexpected behavior, it can shut off power to the Bluetooth SoC. In this preliminary work, we proto-type the supervisory circuit using off-the-shelf components to collect a sufficient data set to train 11 different Machine Learning models. We extract smart descriptive time-domain features from the envelope of the RF output signal. Then, we train the machine learning models to classify three different Bluetooth operation profiles: sensor, hands-free, and headset. Our results demonstrate 100% classification accuracy with low computational complexity.
Elliott, Sean.  2019.  Nash Equilibrium of Multiple, Non-Uniform Bitcoin Block Withholding Attackers. 2019 2nd International Conference on Data Intelligence and Security (ICDIS). :144—151.
This research analyzes a seemingly malicious behavior known as a block withholding (BWH) attack between pools of cryptocurrency miners in Bitcoin-like systems featuring blockchain distributed databases. This work updates and builds on a seminal paper, The Miner's Dilemma, which studied a simplified scenario and showed that a BWH attack can be rational behavior that is profitable for the attacker. The new research presented here provides an in-depth profit analysis of a more complex and realistic BWH attack scenario, which includes mutual attacks between multiple, non-uniform Bitcoin mining pools. As a result of mathematical analysis and MATLAB modeling, this paper illustrates the Nash equilibrium conditions of a system of independent mining pools with varied mining rates and computes the equilibrium rates of mutual BWH attack. The analysis method quantifies the additional profit the largest pools extract from the system at the expense of the smaller pools. The results indicate that while the presence of BWH is a net negative for smaller pools, they must participate in BWH to maximize their remaining profits, and the results quantify the attack rates the smaller pools must maintain. Also, the smallest pools maximize profit by not attacking at all-that is, retaliation is not a rational move for them.
2020-08-28
Eom, Taehoon, Hong, Jin Bum, An, SeongMo, Park, Jong Sou, Kim, Dong Seong.  2019.  Security and Performance Modeling and Optimization for Software Defined Networking. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :610—617.

Software Defined Networking (SDN) provides new functionalities to efficiently manage the network traffic, which can be used to enhance the networking capabilities to support the growing communication demands today. But at the same time, it introduces new attack vectors that can be exploited by attackers. Hence, evaluating and selecting countermeasures to optimize the security of the SDN is of paramount importance. However, one should also take into account the trade-off between security and performance of the SDN. In this paper, we present a security optimization approach for the SDN taking into account the trade-off between security and performance. We evaluate the security of the SDN using graphical security models and metrics, and use queuing models to measure the performance of the SDN. Further, we use Genetic Algorithms, namely NSGA-II, to optimally select the countermeasure with performance and security constraints. Our experimental analysis results show that the proposed approach can efficiently compute the countermeasures that will optimize the security of the SDN while satisfying the performance constraints.

2020-08-24
Huang, Hao, Kazerooni, Maryam, Hossain-McKenzie, Shamina, Etigowni, Sriharsha, Zonouz, Saman, Davis, Katherine.  2019.  Fast Generation Redispatch Techniques for Automated Remedial Action Schemes. 2019 20th International Conference on Intelligent System Application to Power Systems (ISAP). :1–8.
To ensure power system operational security, it not only requires security incident detection, but also automated intrusion response and recovery mechanisms to tolerate failures and maintain the system's functionalities. In this paper, we present a design procedure for remedial action schemes (RAS) that improves the power systems resiliency against accidental failures or malicious endeavors such as cyber attacks. A resilience-oriented optimal power flow is proposed, which optimizes the system security instead of the generation cost. To improve its speed for online application, a fast greedy algorithm is presented to narrow the search space. The proposed techniques are computationally efficient and are suitable for online RAS applications in large-scale power systems. To demonstrate the effectiveness of the proposed methods, there are two case studies with IEEE 24-bus and IEEE 118-bus systems.
2020-08-17
Eswaraiah, Guruprasad, Subramanian, Lalitha Muthu, Vishwanathan, Roopa.  2019.  Exploring Automation in Proofs of Attribute-based Encryption in the Standard Model. 2019 17th International Conference on Privacy, Security and Trust (PST). :1–5.
Motivated by the complexity of cryptographic proofs, we propose methods to automate the construction and verification of cryptographic proofs in the standard model. Proofs in the standard model (as opposed to the random oracle model) are the gold standard of cryptographic proofs, and most cryptographic protocols strive to achieve them. The burgeoning complexity of cryptographic proofs implies that such proofs are prone to errors, and are hard to write, much less verify. In this paper, we propose techniques to generate automated proofs for attribute-based encryption schemes in the standard model, building upon a prototype tool, AutoG&P due to Barthe et al. In doing so, we significantly expand the scope of AutoG&P to support a rich set of data types such as multi-dimensional arrays, and constructs commonly used in cryptographic protocols such as monotone-access structures, and linear secret-sharing schemes. We also provide support for a extended class of pairing-based assumptions. We demonstrate the usefulness of our extensions by giving automated proofs of the Lewko et al. attribute-based encryption scheme, and the Waters' ciphertext-policy attribute-based encryption scheme.
De Oliveira Nunes, Ivan, ElDefrawy, Karim, Rattanavipanon, Norrathep, Tsudik, Gene.  2019.  PURE: Using Verified Remote Attestation to Obtain Proofs of Update, Reset and Erasure in low-End Embedded Systems. 2019 IEEE/ACM International Conference on Computer-Aided Design (ICCAD). :1–8.
Remote Attestation ( RA) is a security service that enables a trusted verifier ( Vrf) to measure current memory state of an untrusted remote prover ( Prv). If correctly implemented, RA allows Vrf to remotely detect if Prv's memory reflects a compromised state. However, RA by itself offers no means of remedying the situation once P rv is determined to be compromised. In this work we show how a secure RA architecture can be extended to enable important and useful security services for low-end embedded devices. In particular, we extend the formally verified RA architecture, VRASED, to implement provably secure software update, erasure, and system-wide resets. When (serially) composed, these features guarantee to Vrf that a remote Prv has been updated to a functional and malware-free state, and was properly initialized after such process. These services are provably secure against an adversary (represented by malware) that compromises Prv and exerts full control of its software state. Our results demonstrate that such services incur minimal additional overhead (0.4% extra hardware footprint, and 100-s milliseconds to generate combined proofs of update, erasure, and reset), making them practical even for the lowest-end embedded devices, e.g., those based on MSP430 or AVR ATMega micro-controller units (MCUs). All changes introduced by our new services to VRASED trusted components are also formally verified.
Paudel, Ramesh, Muncy, Timothy, Eberle, William.  2019.  Detecting DoS Attack in Smart Home IoT Devices Using a Graph-Based Approach. 2019 IEEE International Conference on Big Data (Big Data). :5249–5258.
The use of the Internet of Things (IoT) devices has surged in recent years. However, due to the lack of substantial security, IoT devices are vulnerable to cyber-attacks like Denial-of-Service (DoS) attacks. Most of the current security solutions are either computationally expensive or unscalable as they require known attack signatures or full packet inspection. In this paper, we introduce a novel Graph-based Outlier Detection in Internet of Things (GODIT) approach that (i) represents smart home IoT traffic as a real-time graph stream, (ii) efficiently processes graph data, and (iii) detects DoS attack in real-time. The experimental results on real-world data collected from IoT-equipped smart home show that GODIT is more effective than the traditional machine learning approaches, and is able to outperform current graph-stream anomaly detection approaches.
2020-08-13
Zola, Francesco, Eguimendia, Maria, Bruse, Jan Lukas, Orduna Urrutia, Raul.  2019.  Cascading Machine Learning to Attack Bitcoin Anonymity. 2019 IEEE International Conference on Blockchain (Blockchain). :10—17.

Bitcoin is a decentralized, pseudonymous cryptocurrency that is one of the most used digital assets to date. Its unregulated nature and inherent anonymity of users have led to a dramatic increase in its use for illicit activities. This calls for the development of novel methods capable of characterizing different entities in the Bitcoin network. In this paper, a method to attack Bitcoin anonymity is presented, leveraging a novel cascading machine learning approach that requires only a few features directly extracted from Bitcoin blockchain data. Cascading, used to enrich entities information with data from previous classifications, led to considerably improved multi-class classification performance with excellent values of Precision close to 1.0 for each considered class. Final models were implemented and compared using different machine learning models and showed significantly higher accuracy compared to their baseline implementation. Our approach can contribute to the development of effective tools for Bitcoin entity characterization, which may assist in uncovering illegal activities.

Basyoni, Lamiaa, Erbad, Aiman, Alsabah, Mashael, Fetais, Noora, Guizani, Mohsen.  2019.  Empirical Performance Evaluation of QUIC Protocol for Tor Anonymity Network. 2019 15th International Wireless Communications Mobile Computing Conference (IWCMC). :635—642.
Tor's anonymity network is one of the most widely used anonymity networks online, it consists of thousands of routers run by volunteers. Tor preserves the anonymity of its users by relaying the traffic through a number of routers (called onion routers) forming a circuit. The current design of Tor's transport layer suffers from a number of problems affecting the performance of the network. Several researches proposed changes in the transport design in order to eliminate the effect of these problems and improve the performance of Tor's network. In this paper. we propose "QuicTor", an improvement to the transport layer of Tor's network by using Google's protocol "QUIC" instead of TCP. QUIC was mainly developed to eliminate TCP's latency introduced from the handshaking delays and the head-of-line blocking problem. We provide an empirical evaluation of our proposed design and compare it to two other proposed designs, IMUX and PCTCP. We show that QuicTor significantly enhances the performance of Tor's network.
2020-08-10
Hajdu, Gergo, Minoso, Yaclaudes, Lopez, Rafael, Acosta, Miguel, Elleithy, Abdelrahman.  2019.  Use of Artificial Neural Networks to Identify Fake Profiles. 2019 IEEE Long Island Systems, Applications and Technology Conference (LISAT). :1–4.
In this paper, we use machine learning, namely an artificial neural network to determine what are the chances that Facebook friend request is authentic or not. We also outline the classes and libraries involved. Furthermore, we discuss the sigmoid function and how the weights are determined and used. Finally, we consider the parameters of the social network page which are utmost important in the provided solution.
2020-08-07
Guri, Mordechai, Bykhovsky, Dima, Elovici, Yuval.  2019.  Brightness: Leaking Sensitive Data from Air-Gapped Workstations via Screen Brightness. 2019 12th CMI Conference on Cybersecurity and Privacy (CMI). :1—6.
Air-gapped computers are systems that are kept isolated from the Internet since they store or process sensitive information. In this paper, we introduce an optical covert channel in which an attacker can leak (or, exfiltlrate) sensitive information from air-gapped computers through manipulations on the screen brightness. This covert channel is invisible and it works even while the user is working on the computer. Malware on a compromised computer can obtain sensitive data (e.g., files, images, encryption keys and passwords), and modulate it within the screen brightness, invisible to users. The small changes in the brightness are invisible to humans but can be recovered from video streams taken by cameras such as a local security camera, smartphone camera or a webcam. We present related work and discuss the technical and scientific background of this covert channel. We examined the channel's boundaries under various parameters, with different types of computer and TV screens, and at several distances. We also tested different types of camera receivers to demonstrate the covert channel. Lastly, we present relevant countermeasures to this type of attack.
Guri, Mordechai, Zadov, Boris, Bykhovsky, Dima, Elovici, Yuval.  2019.  CTRL-ALT-LED: Leaking Data from Air-Gapped Computers Via Keyboard LEDs. 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC). 1:801—810.
Using the keyboard LEDs to send data optically was proposed in 2002 by Loughry and Umphress [1] (Appendix A). In this paper we extensively explore this threat in the context of a modern cyber-attack with current hardware and optical equipment. In this type of attack, an advanced persistent threat (APT) uses the keyboard LEDs (Caps-Lock, Num-Lock and Scroll-Lock) to encode information and exfiltrate data from airgapped computers optically. Notably, this exfiltration channel is not monitored by existing data leakage prevention (DLP) systems. We examine this attack and its boundaries for today's keyboards with USB controllers and sensitive optical sensors. We also introduce smartphone and smartwatch cameras as components of malicious insider and 'evil maid' attacks. We provide the necessary scientific background on optical communication and the characteristics of modern USB keyboards at the hardware and software level, and present a transmission protocol and modulation schemes. We implement the exfiltration malware, discuss its design and implementation issues, and evaluate it with different types of keyboards. We also test various receivers, including light sensors, remote cameras, 'extreme' cameras, security cameras, and smartphone cameras. Our experiment shows that data can be leaked from air-gapped computers via the keyboard LEDs at a maximum bit rate of 3000 bit/sec per LED given a light sensor as a receiver, and more than 120 bit/sec if smartphones are used. The attack doesn't require any modification of the keyboard at hardware or firmware levels.
2020-08-03
POLAT, Hüseyin, POLAT, Onur, SÖĞÜT, Esra, ERDEM, O. Ayhan.  2019.  Performance Analysis of Between Software Defined Wireless Network and Mobile Ad Hoc Network Under DoS Attack. 2019 3rd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT). :1–5.

The traditional network used today is unable to meet the increasing needs of technology in terms of management, scaling, and performance criteria. Major developments in information and communication technologies show that the traditional network structure is quite lacking in meeting the current requirements. In order to solve these problems, Software Defined Network (SDN) is capable of responding as it, is flexible, easier to manage and offers a new structure. Software Defined Networks have many advantages over traditional network structure. However, it also brings along many security threats due to its new architecture. For example, the DoS attack, which overloads the controller's processing and communication capacity in the SDN structure, is a significant threat. Mobile Ad Hoc Network (MANET), which is one of the wireless network technologies, is different from SDN technology. MANET is exposed to various attacks such as DoS due to its security vulnerabilities. The aim of the study is to reveal the security problems in SDN structure presented with a new understanding. This is based on the currently used network structures such as MANET. The study consists of two parts. First, DoS attacks against the SDN controller were performed. Different SDN controllers were used for more accurate results. Second, MANET was established and DoS attacks against this network were performed. Different MANET routing protocols were used for more accurate results. According to the scenario, attacks were performed and the performance values of the networks were tested. The reason for using two different networks in this study is to compare the performance values of these networks at the time of attack. According to the test results, both networks were adversely affected by the attacks. It was observed that network performance decreased in MANET structure but there was no network interruption. The SDN controller becomes dysfunctional and collapses as a result of the attack. While the innovations offered by the SDN structure are expected to provide solutions to many problems in traditional networks, there are still many vulnerabilities for network security.

2020-07-30
Perez, Claudio A., Estévez, Pablo A, Galdames, Francisco J., Schulz, Daniel A., Perez, Juan P., Bastías, Diego, Vilar, Daniel R..  2018.  Trademark Image Retrieval Using a Combination of Deep Convolutional Neural Networks. 2018 International Joint Conference on Neural Networks (IJCNN). :1—7.
Trademarks are recognizable images and/or words used to distinguish various products or services. They become associated with the reputation, innovation, quality, and warranty of the products. Countries around the world have offices for industrial/intellectual property (IP) registration. A new trademark image in application for registration should be distinct from all the registered trademarks. Due to the volume of trademark registration applications and the size of the databases containing existing trademarks, it is impossible for humans to make all the comparisons visually. Therefore, technological tools are essential for this task. In this work we use a pre-trained, publicly available Convolutional Neural Network (CNN) VGG19 that was trained on the ImageNet database. We adapted the VGG19 for the trademark image retrieval (TIR) task by fine tuning the network using two different databases. The VGG19v was trained with a database organized with trademark images using visual similarities, and the VGG19c was trained using trademarks organized by using conceptual similarities. The database for the VGG19v was built using trademarks downloaded from the WEB, and organized by visual similarity according to experts from the IP office. The database for the VGG19c was built using trademark images from the United States Patent and Trademarks Office and organized according to the Vienna conceptual protocol. The TIR was assessed using the normalized average rank for a test set from the METU database that has 922,926 trademark images. We computed the normalized average ranks for VGG19v, VGG19c, and for a combination of both networks. Our method achieved significantly better results on the METU database than those published previously.
Ernawan, Ferda, Kabir, Muhammad Nomani.  2018.  A blind watermarking technique using redundant wavelet transform for copyright protection. 2018 IEEE 14th International Colloquium on Signal Processing Its Applications (CSPA). :221—226.
A digital watermarking technique is an alternative method to protect the intellectual property of digital images. This paper presents a hybrid blind watermarking technique formulated by combining RDWT with SVD considering a trade-off between imperceptibility and robustness. Watermark embedding locations are determined using a modified entropy of the host image. Watermark embedding is employed by examining the orthogonal matrix U obtained from the hybrid scheme RDWT-SVD. In the proposed scheme, the watermark image in binary format is scrambled by Arnold chaotic map to provide extra security. Our scheme is tested under different types of signal processing and geometrical attacks. The test results demonstrate that the proposed scheme provides higher robustness and less distortion than other existing schemes in withstanding JPEG2000 compression, cropping, scaling and other noises.
2020-07-27
Vöelp, Marcus, Esteves-Verissimo, Paulo.  2018.  Intrusion-Tolerant Autonomous Driving. 2018 IEEE 21st International Symposium on Real-Time Distributed Computing (ISORC). :130–133.
Fully autonomous driving is one if not the killer application for the upcoming decade of real-time systems. However, in the presence of increasingly sophisticated attacks by highly skilled and well equipped adversarial teams, autonomous driving must not only guarantee timeliness and hence safety. It must also consider the dependability of the software concerning these properties while the system is facing attacks. For distributed systems, fault-and-intrusion tolerance toolboxes already offer a few solutions to tolerate partial compromise of the system behind a majority of healthy components operating in consensus. In this paper, we present a concept of an intrusion-tolerant architecture for autonomous driving. In such a scenario, predictability and recovery challenges arise from the inclusion of increasingly more complex software on increasingly less predictable hardware. We highlight how an intrusion tolerant design can help solve these issues by allowing timeliness to emerge from a majority of complex components being fast enough, often enough while preserving safety under attack through pre-computed fail safes.
Lambert, Christoph, Völp, Marcus, Decouchant, Jérémie, Esteves-Verissimo, Paulo.  2018.  Towards Real-Time-Aware Intrusion Tolerance. 2018 IEEE 37th Symposium on Reliable Distributed Systems (SRDS). :269–270.
Technologies such as Industry 4.0 or assisted/autonomous driving are relying on highly customized cyber-physical realtime systems. Those systems are designed to match functional safety regulations and requirements such as EN ISO 13849, EN IEC 62061 or ISO 26262. However, as systems - especially vehicles - are becoming more connected and autonomous, they become more likely to suffer from new attack vectors. New features may meet the corresponding safety requirements but they do not consider adversaries intruding through security holes with the purpose of bringing vehicles into unsafe states. As research goal, we want to bridge the gap between security and safety in cyber-physical real-time systems by investigating real-time-aware intrusion-tolerant architectures for automotive use-cases.
2020-07-16
Koumidis, K., Kolios, P., Ellinas, G., Panayiotou, C. G..  2019.  Secure Event Logging Using a Blockchain of Heterogeneous Computing Resources. 2019 IEEE Global Communications Conference (GLOBECOM). :1—6.

Secure logging is essential for the integrity and accountability of cyber-physical systems (CPS). To prevent modification of log files the integrity of data must be ensured. In this work, we propose a solution for secure event in cyberphysical systems logging based on the blockchain technology, by encapsulating event data in blocks. The proposed solution considers the real-time application constraints that are inherent in CPS monitoring and control functions by optimizing the heterogeneous resources governing blockchain computations. In doing so, the proposed blockchain mechanism manages to deliver events in hard-to-tamper ledger blocks that can be accessed and utilized by the various functions and components of the system. Performance analysis of the proposed solution is conducted through extensive simulation, demonstrating the effectiveness of the proposed approach in delivering blocks of events on time using the minimum computational resources.