Visible to the public Biblio

Found 1398 results

Filters: First Letter Of Last Name is F  [Clear All Filters]
2022-12-20
Speith, Julian, Schweins, Florian, Ender, Maik, Fyrbiak, Marc, May, Alexander, Paar, Christof.  2022.  How Not to Protect Your IP – An Industry-Wide Break of IEEE 1735 Implementations. 2022 IEEE Symposium on Security and Privacy (SP). :1656–1671.
Modern hardware systems are composed of a variety of third-party Intellectual Property (IP) cores to implement their overall functionality. Since hardware design is a globalized process involving various (untrusted) stakeholders, a secure management of the valuable IP between authors and users is inevitable to protect them from unauthorized access and modification. To this end, the widely adopted IEEE standard 1735-2014 was created to ensure confidentiality and integrity. In this paper, we outline structural weaknesses in IEEE 1735 that cannot be fixed with cryptographic solutions (given the contemporary hardware design process) and thus render the standard inherently insecure. We practically demonstrate the weaknesses by recovering the private keys of IEEE 1735 implementations from major Electronic Design Automation (EDA) tool vendors, namely Intel, Xilinx, Cadence, Siemens, Microsemi, and Lattice, while results on a seventh case study are withheld. As a consequence, we can decrypt, modify, and re-encrypt all allegedly protected IP cores designed for the respective tools, thus leading to an industry-wide break. As part of this analysis, we are the first to publicly disclose three RSA-based white-box schemes that are used in real-world products and present cryptanalytical attacks for all of them, finally resulting in key recovery.
2022-12-09
Fakhartousi, Amin, Meacham, Sofia, Phalp, Keith.  2022.  Autonomic Dominant Resource Fairness (A-DRF) in Cloud Computing. 2022 IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC). :1626—1631.
In the world of information technology and the Internet, which has become a part of human life today and is constantly expanding, Attention to the users' requirements such as information security, fast processing, dynamic and instant access, and costs savings has become essential. The solution that is proposed for such problems today is a technology that is called cloud computing. Today, cloud computing is considered one of the most essential distributed tools for processing and storing data on the Internet. With the increasing using this tool, the need to schedule tasks to make the best use of resources and respond appropriately to requests has received much attention, and in this regard, many efforts have been made and are being made. To this purpose, various algorithms have been proposed to calculate resource allocation, each of which has tried to solve equitable distribution challenges while using maximum resources. One of these calculation methods is the DRF algorithm. Although it offers a better approach than previous algorithms, it faces challenges, especially with time-consuming resource allocation computing. These challenges make the use of DRF more complex than ever in the low number of requests with high resource capacity as well as the high number of simultaneous requests. This study tried to reduce the computations costs associated with the DRF algorithm for resource allocation by introducing a new approach to using this DRF algorithm to automate calculations by machine learning and artificial intelligence algorithms (Autonomic Dominant Resource Fairness or A-DRF).
Cody, Tyler, Adams, Stephen, Beling, Peter, Freeman, Laura.  2022.  On Valuing the Impact of Machine Learning Faults to Cyber-Physical Production Systems. 2022 IEEE International Conference on Omni-layer Intelligent Systems (COINS). :1—6.
Machine learning (ML) has been applied in prognostics and health management (PHM) to monitor and predict the health of industrial machinery. The use of PHM in production systems creates a cyber-physical, omni-layer system. While ML offers statistical improvements over previous methods, and brings statistical models to bear on new systems and PHM tasks, it is susceptible to performance degradation when the behavior of the systems that ML is receiving its inputs from changes. Natural changes such as physical wear and engineered changes such as maintenance and rebuild procedures are catalysts for performance degradation, and are both inherent to production systems. Drawing from data on the impact of maintenance procedures on ML performance in hydraulic actuators, this paper presents a simulation study that investigates how long it takes for ML performance degradation to create a difference in the throughput of serial production system. In particular, this investigation considers the performance of an ML model learned on data collected before a rebuild procedure is conducted on a hydraulic actuator and an ML model transfer learned on data collected after the rebuild procedure. Transfer learning is able to mitigate performance degradation, but there is still a significant impact on throughput. The conclusion is drawn that ML faults can have drastic, non-linear effects on the throughput of production systems.
Doebbert, Thomas Robert, Fischer, Florian, Merli, Dominik, Scholl, Gerd.  2022.  On the Security of IO-Link Wireless Communication in the Safety Domain. 2022 IEEE 27th International Conference on Emerging Technologies and Factory Automation (ETFA). :1—8.

Security is an essential requirement of Industrial Control System (ICS) environments and its underlying communication infrastructure. Especially the lowest communication level within Supervisory Control and Data Acquisition (SCADA) systems - the field level - commonly lacks security measures.Since emerging wireless technologies within field level expose the lowest communication infrastructure towards potential attackers, additional security measures above the prevalent concept of air-gapped communication must be considered.Therefore, this work analyzes security aspects for the wireless communication protocol IO-Link Wireless (IOLW), which is commonly used for sensor and actuator field level communication. A possible architecture for an IOLW safety layer has already been presented recently [1].In this paper, the overall attack surface of IOLW within its typical environment is analyzed and attack preconditions are investigated to assess the effectiveness of different security measures. Additionally, enhanced security measures are evaluated for the communication systems and the results are summarized. Also, interference of security measures and functional safety principles within the communication are investigated, which do not necessarily complement one another but may also have contradictory requirements.This work is intended to discuss and propose enhancements of the IOLW standard with additional security considerations in future implementations.

Feng, Li, Bo, Ye.  2022.  Intelligent fault diagnosis technology of power transformer based on Artificial Intelligence. 2022 IEEE 6th Information Technology and Mechatronics Engineering Conference (ITOEC). 6:1968—1971.
Transformer is the key equipment of power system, and its stable operation is very important to the security of power system In practical application, with the progress of technology, the performance of transformer becomes more and more important, but faults also occur from time to time in practical application, and the traditional manual fault diagnosis needs to consume a lot of time and energy. At present, the rapid development of artificial intelligence technology provides a new research direction for timely and accurate detection and treatment of transformer faults. In this paper, a method of transformer fault diagnosis using artificial neural network is proposed. The neural network algorithm is used for off-line learning and training of the operation state data of normal and fault states. By adjusting the relationship between neuron nodes, the mapping relationship between fault characteristics and fault location is established by using network layer learning, Finally, the reasoning process from fault feature to fault location is realized to realize intelligent fault diagnosis.
2022-12-07
Ariturk, Gokhan, Almuqati, Nawaf R., Yu, Yao, Yen, Ernest Ting-Ta, Fruehling, Adam, Sigmarsson, Hjalti H..  2022.  Wideband Hybrid Acoustic-Electromagnetic Filters with Prescribed Chebyshev Functions. 2022 IEEE/MTT-S International Microwave Symposium - IMS 2022. :887—890.
The achievable bandwidth in ladder acoustic filters is strictly limited by the electromechanical coupling coefficient (k;) in conventional ladder-acoustic filters. Furthermore, their out-of-band rejection is inherently weak due to the frequency responses of the shunt or series-connected acoustic resonators. This work proposes a coupling-matrix-based solution for both issues by employing acoustic and electromagnetic resonators within the same filter prototype using prescribed Chebyshev responses. It has been shown that significantly much wider bandwidths, that cannot be achieved with acoustic-only filters, can be obtained. An important strength of the proposed method is that a filter with a particular FBW can be designed with a wide range of acoustic resonators with different k; values. An 14 % third-order asymmetrical-response filter is designed and fabricated using electromagnetic resonators and an acoustic resonator with a k; of 3.5 %.
2022-12-06
Koosha, Mohammad, Farzaneh, Behnam, Farzaneh, Shahin.  2022.  A Classification of RPL Specific Attacks and Countermeasures in the Internet of Things. 2022 Sixth International Conference on Smart Cities, Internet of Things and Applications (SCIoT). :1-7.

Although 6LoWPAN has brought about a revolutionary leap in networking for Low-power Lossy Networks, challenges still exist, including security concerns that are yet to answer. The most common type of attack on 6LoWPANs is the network layer, especially routing attacks, since the very members of a 6LoWPAN network have to carry out packet forwarding for the whole network. According to the initial purpose of IoT, these nodes are expected to be resource-deficient electronic devices with an utterly stochastic time pattern of attachment or detachment from a network. This issue makes preserving their authenticity or identifying their malignity hard, if not impossible. Since 6LoWPAN is a successor and a hybrid of previously developed wireless technologies, it is inherently prone to cyber-attacks shared with its predecessors, especially Wireless Sensor Networks (WSNs) and WPANs. On the other hand, multiple attacks have been uniquely developed for 6LoWPANs due to the unique design of the network layer protocol of 6LoWPANs known as RPL. While there exist publications about attacks on 6LoWPANs, a comprehensive survey exclusively on RPL-specific attacks is felt missing to bold the discrimination between the RPL-specific and non-specific attacks. Hence, the urge behind this paper is to gather all known attacks unique to RPL in a single volume.

2022-12-02
Fang, Wengao, Guan, Xiaojuan.  2022.  Research on iOS Remote Security Access Technology Based on Zero Trust. 2022 IEEE 6th Information Technology and Mechatronics Engineering Conference (ITOEC). 6:238—241.

Under the situation of regular epidemic prevention and control, teleworking has gradually become a normal working mode. With the development of modern information technologies such as big data, cloud computing and mobile Internet, it's become a problem that how to build an effective security defense system to ensure the information security of teleworking in complex network environment while ensuring the availability, collaboration and efficiency of teleworking. One of the solutions is Zero Trust Network(ZTN), most enterprise infrastructures will operate in a hybrid zero trust/perimeter-based mode while continuing to invest in IT modernization initiatives and improve organization business processes. In this paper, we have systematically studied the zero trust principles, the logical components of zero trust architecture and the key technology of zero trust network. Based on the abstract model of zero trust architecture and information security technologies, a prototype has been realized which suitable for iOS terminals to access enterprise resources safely in teleworking mode.

2022-12-01
Fujita, Koji, Shibahara, Toshiki, Chiba, Daiki, Akiyama, Mitsuaki, Uchida, Masato.  2022.  Objection!: Identifying Misclassified Malicious Activities with XAI. ICC 2022 - IEEE International Conference on Communications. :2065—2070.
Many studies have been conducted to detect various malicious activities in cyberspace using classifiers built by machine learning. However, it is natural for any classifier to make mistakes, and hence, human verification is necessary. One method to address this issue is eXplainable AI (XAI), which provides a reason for the classification result. However, when the number of classification results to be verified is large, it is not realistic to check the output of the XAI for all cases. In addition, it is sometimes difficult to interpret the output of XAI. In this study, we propose a machine learning model called classification verifier that verifies the classification results by using the output of XAI as a feature and raises objections when there is doubt about the reliability of the classification results. The results of experiments on malicious website detection and malware detection show that the proposed classification verifier can efficiently identify misclassified malicious activities.
Feng, Shuai, Cetinkaya, Ahmet, Ishii, Hideaki, Tesi, Pietro, De Persis, Claudio.  2021.  Resilient Quantized Control under Denial-of-Service with the Application of Variable Bit Rate Quantization. 2021 European Control Conference (ECC). :509–514.
In this paper, we investigate a networked control problem in the presence of Denial-of-Service (DoS) attacks, which prevent transmissions over the communication network. The communication between the process and controller is also subject to bit rate constraints. For mitigating the influences of DoS attacks and bit rate constraints, we develop a variable bit rate (VBR) encoding-decoding protocol and quantized controller to stabilize the control system. We show that the system’s resilience against DoS under VBR is preserved comparing with those under constant bit rate (CBR) quantized control, with fewer bits transmitted especially when the attack levels are low. The proposed VBR quantized control framework in this paper is general enough such that the results of CBR quantized control under DoS and moreover the results of minimum bit rate in the absence of DoS can be recovered.
Kamhoua, Georges, Bandara, Eranga, Foytik, Peter, Aggarwal, Priyanka, Shetty, Sachin.  2021.  Resilient and Verifiable Federated Learning against Byzantine Colluding Attacks. 2021 Third IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA). :31–40.
Federated Learning (FL) is a multiparty learning computing approach that can aid privacy-preservation machine learning. However, FL has several potential security and privacy threats. First, the existing FL requires a central coordinator for the learning process which brings a single point of failure and trust issues for the shared trained model. Second, during the learning process, intentionally unreliable model updates performed by Byzantine colluding parties can lower the quality and convergence of the shared ML models. Therefore, discovering verifiable local model updates (i.e., integrity or correctness) and trusted parties in FL becomes crucial. In this paper, we propose a resilient and verifiable FL algorithm based on a reputation scheme to cope with unreliable parties. We develop a selection algorithm for task publisher and blockchain-based multiparty learning architecture approach where local model updates are securely exchanged and verified without the central party. We also proposed a novel auditing scheme to ensure our proposed approach is resilient up to 50% Byzantine colluding attack in a malicious scenario.
Fei, Song, Yuanbing, Shi, Minghao, Huang.  2020.  A Method of Industrial Internet Entity Mutual Trust Combining PKI and IBE Technology System. 2020 3rd International Conference on Artificial Intelligence and Big Data (ICAIBD). :304–308.
The industrial Internet has built a new industrial manufacturing and service system with all elements, all industrial chains and all value chains connected through the interconnection of people, machines and things. It breaks the relatively closed and credible production environment of traditional industry. But at the same time, the full interconnection of cross-device, cross-system, and cross-region in the industrial Internet also brings a certain network trust crisis. The method proposed in this paper breaking the relatively closed manufacturing environment of traditional industries, extends the network connection object from human to machine equipment, industrial products and industrial services. It provides a safe and credible environment for the development of industrial Internet, and a trust guarantee for the across enterprises entities and data sharing.
Torres-Figueroa, Luis, Mönich, Ullrich J., Voichtleitner, Johannes, Frank, Anna, Andrei, Vlad-Costin, Wiese, Moritz, Boche, Holger.  2021.  Experimental Evaluation of a Modular Coding Scheme for Physical Layer Security. 2021 IEEE Global Communications Conference (GLOBECOM). :1–6.
In this paper we use a seeded modular coding scheme for implementing physical layer security in a wiretap scenario. This modular scheme consists of a traditional coding layer and a security layer. For the traditional coding layer, we use a polar code. We evaluate the performance of the seeded modular coding scheme in an experimental setup with software defined radios and compare these results to simulation results. In order to assess the secrecy level of the scheme, we employ the distinguishing security metric. In our experiments, we compare the distinguishing error rate for different seeds and block lengths.
Fang, Xiaojie, Yin, Xinyu, Zhang, Ning, Sha, Xuejun, Zhang, Hongli, Han, Zhu.  2021.  Demonstrating Physical Layer Security Via Weighted Fractional Fourier Transform. IEEE INFOCOM 2021 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :1–2.
Recently, there has been significant enthusiasms in exploiting physical (PHY-) layer characteristics for secure wireless communication. However, most existing PHY-layer security paradigms are information theoretical methodologies, which are infeasible to real and practical systems. In this paper, we propose a weighted fractional Fourier transform (WFRFT) pre-coding scheme to enhance the security of wireless transmissions against eavesdropping. By leveraging the concept of WFRFT, the proposed scheme can easily change the characteristics of the underlying radio signals to complement and secure upper-layer cryptographic protocols. We demonstrate a running prototype based on the LTE-framework. First, the compatibility between the WFRFT pre-coding scheme and the conversational LTE architecture is presented. Then, the security mechanism of the WFRFT pre-coding scheme is demonstrated. Experimental results validate the practicability and security performance superiority of the proposed scheme.
Queirós, Mauro, Pereira, João Lobato, Leiras, Valdemar, Meireles, José, Fonseca, Jaime, Borges, João.  2022.  Work cell for assembling small components in PCB. 2022 IEEE 27th International Conference on Emerging Technologies and Factory Automation (ETFA). :1—4.

Flexibility and speed in the development of new industrial machines are essential factors for the success of capital goods industries. When assembling a printed circuit board (PCB), since all the components are surface mounted devices (SMD), the whole process is automatic. However, in many PCBs, it is necessary to place components that are not SMDs, called pin through hole components (PTH), having to be inserted manually, which leads to delays in the production line. This work proposes and validates a prototype work cell based on a collaborative robot and vision systems whose objective is to insert these components in a completely autonomous or semi-autonomous way. Different tests were made to validate this work cell, showing the correct implementation and the possibility of replacing the human worker on this PCB assembly task.

2022-11-22
Fugkeaw, Somchart, Sanchol, Pattavee.  2021.  Proxy-Assisted Digital Signing Scheme for Mobile Cloud Computing. 2021 13th International Conference on Knowledge and Smart Technology (KST). :78—83.
This paper proposes a lightweight digital signing scheme for supporting document signing on mobile devices connected to cloud computing. We employ elliptic curve (ECC) digital signature algorithm (ECDSA) for key pair generation done at mobile device and introduce outsourced proxy (OSP) to decrypt the encrypted file and compute hash value of the files stored in the cloud system. In our model, a mobile client invokes fixed-sized message digests to be signed with a private key stored in the device and produces the digital signature. Then, the signature is returned to the proxy for embedding it onto the original file. To this end, the trust between proxy and mobile devices is guaranteed by PKI technique. Based on the lightweight property of ECC and the modular design of our OSP, our scheme delivers the practical solution that allows mobile users to create their own digital signatures onto documents in a secure and efficient way. We also present the implementation details including system development and experimental evaluation to demonstrate the efficiency of our proposed system.
Farran, Hassan, Khoury, David, Kfoury, Elie, Bokor, László.  2021.  A blockchain-based V2X communication system. 2021 44th International Conference on Telecommunications and Signal Processing (TSP). :208—213.
The security proposed for Vehicle-to-Everything (V2X) systems in the European Union is specified in the ETSI Cooperative Intelligent Transport System (C-ITS) standards, and related documents are based on the trusted PKI/CAs. The C-ITS trust model platform comprises an EU Root CA and additional Root CAs run in Europe by member state authorities or private organizations offering certificates to individual users. A new method is described in this paper where the security in V2X is based on the Distributed Public Keystore (DPK) platform developed for Ethereum blockchain. The V2X security is considered as one application of the DPK platform. The DPK stores and distributes the vehicles, RSUs, or other C-ITS role-players’ public keys. It establishes a generic key exchange/ agreement scheme that provides mutual key, entity authentication, and distributing a session key between two peers. V2X communication based on this scheme can establish an end-to-end (e2e) secure session and enables vehicle authentication without the need for a vehicle certificate signed by a trusted Certificate Authority.
2022-11-18
Goldstein, Brunno F., Ferreira, Victor C., Srinivasan, Sudarshan, Das, Dipankar, Nery, Alexandre S., Kundu, Sandip, França, Felipe M. G..  2021.  A Lightweight Error-Resiliency Mechanism for Deep Neural Networks. 2021 22nd International Symposium on Quality Electronic Design (ISQED). :311–316.
In recent years, Deep Neural Networks (DNNs) have made inroads into a number of applications involving pattern recognition - from facial recognition to self-driving cars. Some of these applications, such as self-driving cars, have real-time requirements, where specialized DNN hardware accelerators help meet those requirements. Since DNN execution time is dominated by convolution, Multiply-and-Accumulate (MAC) units are at the heart of these accelerators. As hardware accelerators push the performance limits with strict power constraints, reliability is often compromised. In particular, power-constrained DNN accelerators are more vulnerable to transient and intermittent hardware faults due to particle hits, manufacturing variations, and fluctuations in power supply voltage and temperature. Methods such as hardware replication have been used to deal with these reliability problems in the past. Unfortunately, the duplication approach is untenable in a power constrained environment. This paper introduces a low-cost error-resiliency scheme that targets MAC units employed in conventional DNN accelerators. We evaluate the reliability improvements from the proposed architecture using a set of 6 CNNs over varying bit error rates (BER) and demonstrate that our proposed solution can achieve more than 99% of fault coverage with a 5-bits arithmetic code, complying with the ASIL-D level of ISO26262 standards with a negligible area and power overhead. Additionally, we evaluate the proposed detection mechanism coupled with a word masking correction scheme, demonstrating no loss of accuracy up to a BER of 10-2.
Almuhtadi, Wahab, Bahri, Surbhi, Fenwick, Wynn, Henderson, Liam, Henley-Vachon, Liam, Mukasa, Joshua.  2021.  Malware Detection and Security Analysis Capabilities in a Continuous Integration / Delivery Context Using Assemblyline. 2021 IEEE International Conference on Consumer Electronics (ICCE). :1—5.
Risk management is an essential part of software security. Assemblyline is a software security tool developed by the Canadian Centre for Cyber Security (CCCS) for malware detection and analysis. In this paper, we examined the performance of Assemblyline for assessing the risk of executable files. We developed and examined use-cases where Assemblyline is included as part of a security safety net assessing vulnerabilities that would lead to risk. Finally, we considered Assemblyline’s utility in a continuous integration / delivery context using our test results.
2022-11-08
Javaheripi, Mojan, Samragh, Mohammad, Fields, Gregory, Javidi, Tara, Koushanfar, Farinaz.  2020.  CleaNN: Accelerated Trojan Shield for Embedded Neural Networks. 2020 IEEE/ACM International Conference On Computer Aided Design (ICCAD). :1–9.
We propose Cleann, the first end-to-end framework that enables online mitigation of Trojans for embedded Deep Neural Network (DNN) applications. A Trojan attack works by injecting a backdoor in the DNN while training; during inference, the Trojan can be activated by the specific backdoor trigger. What differentiates Cleann from the prior work is its lightweight methodology which recovers the ground-truth class of Trojan samples without the need for labeled data, model retraining, or prior assumptions on the trigger or the attack. We leverage dictionary learning and sparse approximation to characterize the statistical behavior of benign data and identify Trojan triggers. Cleann is devised based on algorithm/hardware co-design and is equipped with specialized hardware to enable efficient real-time execution on resource-constrained embedded platforms. Proof of concept evaluations on Cleann for the state-of-the-art Neural Trojan attacks on visual benchmarks demonstrate its competitive advantage in terms of attack resiliency and execution overhead.
2022-10-20
Butora, Jan, Fridrich, Jessica.  2020.  Steganography and its Detection in JPEG Images Obtained with the "TRUNC" Quantizer. ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :2762—2766.
Many portable imaging devices use the operation of "trunc" (rounding towards zero) instead of rounding as the final quantizer for computing DCT coefficients during JPEG compression. We show that this has rather profound consequences for steganography and its detection. In particular, side-informed steganography needs to be redesigned due to the different nature of the rounding error. The steganographic algorithm J-UNIWARD becomes vulnerable to steganalysis with the JPEG rich model and needs to be adjusted for this source. Steganalysis detectors need to be retrained since a steganalyst unaware of the existence of the trunc quantizer will experience 100% false alarm.
Liu, Xiyao, Fang, Yaokun, He, Feiyi, Li, Zhaoying, Zhang, Yayun, Zeng, Xiongfei.  2021.  High capacity coverless image steganography method based on geometrically robust and chaotic encrypted image moment feature. 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC). :1455—1460.
In recent years, coverless image steganography attracts significant attentions due to its distortion-free trait on carrier images to avoid the detection by steganalysis tools. Despite this advantage, current coverless methods face several challenges, e.g., vulnerability to geometrical attacks and low hidden capacity. In this paper, we propose a novel coverless steganography algorithm based on chaotic encrypted dual radial harmonic Fourier moments (DRHFM) to tackle the challenges. In specific, we build mappings between the extracted DRHFM features and secret messages. These features are robust to various of attacks, especially to geometrical attacks. We further deploy the DRHFM parameters to adjust the feature length, thus ensuring the high hidden capacity. Moreover, we introduce a chaos encryption algorithm to enhance the security of the mapping features. The experimental results demonstrate that our proposed scheme outperforms the state-of-the-art coverless steganography based on image mapping in terms of robustness and hidden capacity.
Florin Ilca, Lucian, Balan, Titus.  2021.  Windows Communication Foundation Penetration Testing Methodology. 2021 16th International Conference on Engineering of Modern Electric Systems (EMES). :1—4.
Windows Communication Foundation (WCF) is a communication framework for building connected, service-oriented applications, initially released by Microsoft as part of.NET Framework, but now open source. The WCF message-based communication is a very popular solution used for sending asynchronous messages from one service endpoint to another. Because WCF provides many functionalities it has a large-consuming development model and often the security measures implemented in applications are not proper. In this study we propose a methodology for offensive security analysis of an WCF endpoint or service, from red team perspective. A step by step approach, empirical information, and detailed analysis report of WCF vulnerabilities are presented. We conclude by proposing recommendations for mitigating attacks and securing endpoints.
2022-10-16
Shekarisaz, Mohsen, Talebian, Fatemeh, Jabariani, Marjan, Mehri, Farzad, Faghih, Fathiyeh, Kargahi, Mehdi.  2020.  Program Energy-Hotspot Detection and Removal: A Static Analysis Approach. 2020 CSI/CPSSI International Symposium on Real-Time and Embedded Systems and Technologies (RTEST). :1–8.
The major energy-hungry components in today's battery-operated embedded devices are mostly peripheral modules like LTE, WiFi, GPS, etc. Inefficient use of these modules causes energy hotspots, namely segments of the embedded software in which the module wastes energy. We study two such hotspots in the current paper, and provide the corresponding detection and removal algorithms based on static analysis techniques. The program code hotspots occur due to unnecessary releasing and re-acquiring of a module (which puts the module in power saving mode for a while) and misplaced acquiring of the module (which makes the module or processor to waste energy in idle mode). The detections are performed according to some relation between extreme (worst-case/best-case) execution times of some program segments and time/energy specifications of the module. The experimental results on our benchmarks show about 28 percent of energy reduction after the hotspot removals.
Natalino, Carlos, di Giglio, Andrea, Schiano, Marco, Furdek, Marija.  2020.  Root Cause Analysis for Autonomous Optical Networks: A Physical Layer Security Use Case. 2020 European Conference on Optical Communications (ECOC). :1–4.
To support secure and reliable operation of optical networks, we propose a framework for autonomous anomaly detection, root cause analysis and visualization of the anomaly impact on optical signal parameters. Verification on experimental physical layer security data reveals important properties of different attack profiles.