Visible to the public Biblio

Found 1398 results

Filters: First Letter Of Last Name is F  [Clear All Filters]
2022-07-29
Ménétrey, Jämes, Pasin, Marcelo, Felber, Pascal, Schiavoni, Valerio.  2021.  Twine: An Embedded Trusted Runtime for WebAssembly. 2021 IEEE 37th International Conference on Data Engineering (ICDE). :205—216.
WebAssembly is an Increasingly popular lightweight binary instruction format, which can be efficiently embedded and sandboxed. Languages like C, C++, Rust, Go, and many others can be compiled into WebAssembly. This paper describes Twine, a WebAssembly trusted runtime designed to execute unmodified, language-independent applications. We leverage Intel SGX to build the runtime environment without dealing with language-specific, complex APIs. While SGX hardware provides secure execution within the processor, Twine provides a secure, sandboxed software runtime nested within an SGX enclave, featuring a WebAssembly system interface (WASI) for compatibility with unmodified WebAssembly applications. We evaluate Twine with a large set of general-purpose benchmarks and real-world applications. In particular, we used Twine to implement a secure, trusted version of SQLite, a well-known full-fledged embeddable database. We believe that such a trusted database would be a reasonable component to build many larger application services. Our evaluation shows that SQLite can be fully executed inside an SGX enclave via WebAssembly and existing system interface, with similar average performance overheads. We estimate that the performance penalties measured are largely compensated by the additional security guarantees and its full compatibility with standard WebAssembly. An indepth analysis of our results indicates that performance can be greatly improved by modifying some of the underlying libraries. We describe and implement one such modification in the paper, showing up to 4.1 × speedup. Twine is open-source, available at GitHub along with instructions to reproduce our experiments.
Badran, Sultan, Arman, Nabil, Farajallah, Mousa.  2021.  An Efficient Approach for Secure Data Outsourcing using Hybrid Data Partitioning. 2021 International Conference on Information Technology (ICIT). :418—423.
This paper presents an implementation of a novel approach, utilizing hybrid data partitioning, to secure sensitive data and improve query performance. In this novel approach, vertical and horizontal data partitioning are combined together in an approach that called hybrid partitioning and the new approach is implemented using Microsoft SQL server to generate divided/partitioned relations. A group of proposed rules is applied to the query request process using query binning (QB) and Metadata of partitioning. The proposed approach is validated using experiments involving a collection of data evaluated by outcomes of advanced stored procedures. The suggested approach results are satisfactory in achieving the properties of defining the data security: non-linkability and indistinguishability. The results of the proposed approach were satisfactory. The proposed novel approach outperforms a well-known approach called PANDA.
Fuhry, Benny, Jayanth Jain, H A, Kerschbaum, Florian.  2021.  EncDBDB: Searchable Encrypted, Fast, Compressed, In-Memory Database Using Enclaves. 2021 51st Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :438—450.
Data confidentiality is an important requirement for clients when outsourcing databases to the cloud. Trusted execution environments, such as Intel SGX, offer an efficient solution to this confidentiality problem. However, existing TEE-based solutions are not optimized for column-oriented, in-memory databases and pose impractical memory requirements on the enclave. We present EncDBDB, a novel approach for client-controlled encryption of a column-oriented, in-memory databases allowing range searches using an enclave. EncDBDB offers nine encrypted dictionaries, which provide different security, performance, and storage efficiency tradeoffs for the data. It is especially suited for complex, read-oriented, analytic queries as present, e.g., in data warehouses. The computational overhead compared to plaintext processing is within a millisecond even for databases with millions of entries and the leakage is limited. Compressed encrypted data requires less space than a corresponding plaintext column. Furthermore, EncDBDB's enclave is very small reducing the potential for security-relevant implementation errors and side-channel leakages.
Rahman, M Sazadur, Li, Henian, Guo, Rui, Rahman, Fahim, Farahmandi, Farimah, Tehranipoor, Mark.  2021.  LL-ATPG: Logic-Locking Aware Test Using Valet Keys in an Untrusted Environment. 2021 IEEE International Test Conference (ITC). :180—189.
The ever-increasing cost and complexity of cutting-edge manufacturing and test processes have migrated the semiconductor industry towards a globalized business model. With many untrusted entities involved in the supply chain located across the globe, original intellectual property (IP) owners face threats such as IP theft/piracy, tampering, counterfeiting, reverse engineering, and overproduction. Logic locking has emerged as a promising solution to protect integrated circuits (ICs) against supply chain vulnerabilities. It inserts key gates to corrupt circuit functionality for incorrect key inputs. A logic-locked chip test can be performed either before or after chip activation (becoming unlocked) by loading the unlocking key into the on-chip tamperproof memory. However, both pre-activation and post-activation tests suffer from lower test coverage, higher test cost, and critical security vulnerabilities. To address the shortcomings, we propose LL-ATPG, a logic-locking aware test method that applies a set of valet (dummy) keys based on a target test coverage to perform manufacturing test in an untrusted environment. LL-ATPG achieves high test coverage and minimizes test time overhead when testing the logic-locked chip before activation without sharing the unlocking key. We perform security analysis of LL-ATPG and experimentally demonstrate that sharing the valet keys with the untrusted foundry does not create additional vulnerability for the underlying locking method.
Fuquan, Huang, Zhiwei, Liu, Jianyong, Zhou, Guoyi, Zhang, Likuan, Gong.  2021.  Vulnerability Analysis of High-Performance Transmission and Bearer Network of 5G Smart Grid Based on Complex Network. 2021 IEEE 9th International Conference on Information, Communication and Networks (ICICN). :292—297.
5G smart grid applications rely on its high-performance transmission and bearer network. With the help of complex network theory, this paper first analyzes the complex network characteristic parameters of 5G smart grid, and explains the necessity and supporting significance of network vulnerability analysis for efficient transmission of 5G network. Then the node importance analysis algorithm based on node degree and clustering coefficient (NIDCC) is proposed. According to the results of simulation analysis, the power network has smaller path length and higher clustering coefficient in terms of static parameters, which indicates that the speed and breadth of fault propagation are significantly higher than that of random network. It further shows the necessity of network vulnerability analysis. By comparing with the other two commonly used algorithms, we can see that NIDCC algorithm can more accurately estimate and analyze the weak links of the network. It is convenient to carry out the targeted transformation of the power grid and the prevention of blackout accidents.
2022-07-15
Tao, Jing, Chen, A, Liu, Kai, Chen, Kailiang, Li, Fengyuan, Fu, Peng.  2021.  Recommendation Method of Honeynet Trapping Component Based on LSTM. 2021 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). :952—957.
With the advancement of network physical social system (npss), a large amount of data privacy has become the targets of hacker attacks. Due to the complex and changeable attack methods of hackers, network security threats are becoming increasingly severe. As an important type of active defense, honeypots use the npss as a carrier to ensure the security of npss. However, traditional honeynet structures are relatively fixed, and it is difficult to trap hackers in a targeted manner. To bridge this gap, this paper proposes a recommendation method for LSTM prediction trap components based on attention mechanism. Its characteristic lies in the ability to predict hackers' attack interest, which increases the active trapping ability of honeynets. The experimental results show that the proposed prediction method can quickly and effectively predict the attacking behavior of hackers and promptly provide the trapping components that hackers are interested in.
Figueiredo, Cainã, Lopes, João Gabriel, Azevedo, Rodrigo, Zaverucha, Gerson, Menasché, Daniel Sadoc, Pfleger de Aguiar, Leandro.  2021.  Software Vulnerabilities, Products and Exploits: A Statistical Relational Learning Approach. 2021 IEEE International Conference on Cyber Security and Resilience (CSR). :41—46.
Data on software vulnerabilities, products and exploits is typically collected from multiple non-structured sources. Valuable information, e.g., on which products are affected by which exploits, is conveyed by matching data from those sources, i.e., through their relations. In this paper, we leverage this simple albeit unexplored observation to introduce a statistical relational learning (SRL) approach for the analysis of vulnerabilities, products and exploits. In particular, we focus on the problem of determining the existence of an exploit for a given product, given information about the relations between products and vulnerabilities, and vulnerabilities and exploits, focusing on Industrial Control Systems (ICS), the National Vulnerability Database and ExploitDB. Using RDN-Boost, we were able to reach an AUC ROC of 0.83 and an AUC PR of 0.69 for the problem at hand. To reach that performance, we indicate that it is instrumental to include textual features, e.g., extracted from the description of vulnerabilities, as well as structured information, e.g., about product categories. In addition, using interpretable relational regression trees we report simple rules that shed insight on factors impacting the weaponization of ICS products.
Fan, Wenqi, Derr, Tyler, Zhao, Xiangyu, Ma, Yao, Liu, Hui, Wang, Jianping, Tang, Jiliang, Li, Qing.  2021.  Attacking Black-box Recommendations via Copying Cross-domain User Profiles. 2021 IEEE 37th International Conference on Data Engineering (ICDE). :1583—1594.
Recommender systems, which aim to suggest personalized lists of items for users, have drawn a lot of attention. In fact, many of these state-of-the-art recommender systems have been built on deep neural networks (DNNs). Recent studies have shown that these deep neural networks are vulnerable to attacks, such as data poisoning, which generate fake users to promote a selected set of items. Correspondingly, effective defense strategies have been developed to detect these generated users with fake profiles. Thus, new strategies of creating more ‘realistic’ user profiles to promote a set of items should be investigated to further understand the vulnerability of DNNs based recommender systems. In this work, we present a novel framework CopyAttack. It is a reinforcement learning based black-box attacking method that harnesses real users from a source domain by copying their profiles into the target domain with the goal of promoting a subset of items. CopyAttack is constructed to both efficiently and effectively learn policy gradient networks that first select, then further refine/craft user profiles from the source domain, and ultimately copy them into the target domain. CopyAttack’s goal is to maximize the hit ratio of the targeted items in the Top-k recommendation list of the users in the target domain. We conducted experiments on two real-world datasets and empirically verified the effectiveness of the proposed framework. The implementation of CopyAttack is available at https://github.com/wenqifan03/CopyAttack.
2022-07-14
Papaspirou, Vassilis, Maglaras, Leandros, Ferrag, Mohamed Amine, Kantzavelou, Ioanna, Janicke, Helge, Douligeris, Christos.  2021.  A novel Two-Factor HoneyToken Authentication Mechanism. 2021 International Conference on Computer Communications and Networks (ICCCN). :1–7.
The majority of systems rely on user authentication on passwords, but passwords have so many weaknesses and widespread use that easily raise significant security concerns, regardless of their encrypted form. Users hold the same password for different accounts, administrators never check password files for flaws that might lead to a successful cracking, and the lack of a tight security policy regarding regular password replacement are a few problems that need to be addressed. The proposed research work aims at enhancing this security mechanism, prevent penetrations, password theft, and attempted break-ins towards securing computing systems. The selected solution approach is two-folded; it implements a two-factor authentication scheme to prevent unauthorized access, accompanied by Honeyword principles to detect corrupted or stolen tokens. Both can be integrated into any platform or web application with the use of QR codes and a mobile phone.
Ahmad, Syed Farhan, Ferjani, Mohamed Yassine, Kasliwal, Keshav.  2021.  Enhancing Security in the Industrial IoT Sector using Quantum Computing. 2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS). :1—5.
The development of edge computing and machine learning technologies have led to the growth of Industrial IoT systems. Autonomous decision making and smart manufacturing are flourishing in the current age of Industry 4.0. By providing more compute power to edge devices and connecting them to the internet, the so-called Cyber Physical Systems are prone to security threats like never before. Security in the current industry is based on cryptographic techniques that use pseudorandom number keys. Keys generated by a pseudo-random number generator pose a security threat as they can be predicted by a malicious third party. In this work, we propose a secure Industrial IoT Architecture that makes use of true random numbers generated by a quantum random number generator (QRNG). CITRIOT's FireConnect IoT node is used to show the proof of concept in a quantum-safe network where the random keys are generated by a cloud based quantum device. We provide an implementation of QRNG on both real quantum computer and quantum simulator. Then, we compare the results with pseudorandom numbers generated by a classical computer.
2022-07-13
Glantz, Edward J., Bartolacci, Michael R., Nasereddin, Mahdi, Fusco, David J., Peca, Joanne C., Kachmar, Devin.  2021.  Wireless Cybersecurity Education: A Focus on Curriculum. 2021 Wireless Telecommunications Symposium (WTS). :1—5.
Higher education is increasingly called upon to enhance cyber education, including hands-on "experiential" training. The good news is that additional tools and techniques are becoming more available, both in-house and through third parties, to provide cyber training environments and simulations at various features and price points. However, the training thus far has only focused on "traditional" Cybersecurity that lightly touches on wireless in undergraduate and master's degree programs, and certifications. The purpose of this research is to identify and recognize nascent cyber training emphasizing a broader spectrum of wireless security and encourage curricular development that includes critical experiential training. Experiential wireless security training is important to keep pace with the growth in wireless communication mediums and associated Internet of Things (IoT) and Cyber Physical System (CPS) applications. Cyber faculty at a university offering undergraduate and master's Cybersecurity degrees authored this paper; both degrees are offered to resident as well as online students.
2022-07-12
Farrukh, Yasir Ali, Ahmad, Zeeshan, Khan, Irfan, Elavarasan, Rajvikram Madurai.  2021.  A Sequential Supervised Machine Learning Approach for Cyber Attack Detection in a Smart Grid System. 2021 North American Power Symposium (NAPS). :1—6.
Modern smart grid systems are heavily dependent on Information and Communication Technology, and this dependency makes them prone to cyber-attacks. The occurrence of a cyber-attack has increased in recent years resulting in substantial damage to power systems. For a reliable and stable operation, cyber protection, control, and detection techniques are becoming essential. Automated detection of cyberattacks with high accuracy is a challenge. To address this, we propose a two-layer hierarchical machine learning model having an accuracy of 95.44 % to improve the detection of cyberattacks. The first layer of the model is used to distinguish between the two modes of operation - normal state or cyberattack. The second layer is used to classify the state into different types of cyberattacks. The layered approach provides an opportunity for the model to focus its training on the targeted task of the layer, resulting in improvement in model accuracy. To validate the effectiveness of the proposed model, we compared its performance against other recent cyber attack detection models proposed in the literature.
T⊘ndel, Inger Anne, Vefsnmo, Hanne, Gjerde, Oddbj⊘rn, Johannessen, Frode, Fr⊘ystad, Christian.  2021.  Hunting Dependencies: Using Bow-Tie for Combined Analysis of Power and Cyber Security. 2020 2nd International Conference on Societal Automation (SA). :1—8.
Modern electric power systems are complex cyber-physical systems. The integration of traditional power and digital technologies result in interdependencies that need to be considered in risk analysis. In this paper we argue the need for analysis methods that can combine the competencies of various experts in a common analysis focusing on the overall system perspective. We report on our experiences on using the Vulnerability Analysis Framework (VAF) and bow-tie diagrams in a combined analysis of the power and cyber security aspects in a realistic case. Our experiences show that an extended version of VAF with increased support for interdependencies is promising for this type of analysis.
Bajard, Jean-Claude, Fukushima, Kazuhide, Kiyomoto, Shinsaku, Plantard, Thomas, Sipasseuth, Arnaud, Susilo, Willy.  2021.  Generating Residue Number System Bases. 2021 IEEE 28th Symposium on Computer Arithmetic (ARITH). :86—93.
Residue number systems provide efficient techniques for speeding up calculations and/or protecting against side channel attacks when used in the context of cryptographic engineering. One of the interests of such systems is their scalability, as the existence of large bases for some specialized systems is often an open question. In this paper, we present highly optimized methods for generating large bases for residue number systems and, in some cases, the largest possible bases. We show their efficiency by demonstrating their improvement over the state-of-the-art bases reported in the literature. This work make it possible to address the problem of the scalability issue of finding new bases for a specific system that arises whenever a parameter changes, and possibly open new application avenues.
Farion-Melnyk, Antonina, Rozheliuk, Viktoria, Slipchenko, Tetiana, Banakh, Serhiy, Farion, Mykhailyna, Bilan, Oksana.  2021.  Ransomware Attacks: Risks, Protection and Prevention Measures. 2021 11th International Conference on Advanced Computer Information Technologies (ACIT). :473—478.
This article is about the current situation of cybercrime activity in the world. Research was planned to seek the possible protection measures taking into account the last events which might create an appropriate background for increasing of ransomware damages and cybercrime attacks. Nowadays, the most spread types of cybercrimes are fishing, theft of personal or payment data, cryptojacking, cyberespionage and ransomware. The last one is the most dangerous. It has ability to spread quickly and causes damages and sufficient financial loses. The major problem of this ransomware type is unpredictability of its behavior. It could be overcome only after the defined ransom was paid. This conditions created an appropriate background for the activation of cyber criminals’ activity even the organization of cyber gangs – professional, well-organized and well-prepared (tactical) group. So, researches conducted in this field have theoretical and practical value in the scientific sphere of research.
2022-07-05
Liu, Weida, Fang, Jian.  2021.  Facial Expression Recognition Method Based on Cascade Convolution Neural Network. 2021 International Wireless Communications and Mobile Computing (IWCMC). :1012—1015.
In view of the problem that the convolution neural network research of facial expression recognition ignores the internal relevance of the key links, which leads to the low accuracy and speed of facial expression recognition, and can't meet the recognition requirements, a series cascade algorithm model for expression recognition of educational robot is constructed and enables the educational robot to recognize multiple students' facial expressions simultaneously, quickly and accurately in the process of movement, in the balance of the accuracy, rapidity and stability of the algorithm, based on the cascade convolution neural network model. Through the CK+ and Oulu-CASIA expression recognition database, the expression recognition experiments of this algorithm are compared with the commonly used STM-ExpLet and FN2EN cascade network algorithms. The results show that the accuracy of the expression recognition method is more than 90%. Compared with the other two commonly used cascade convolution neural network methods, the accuracy of expression recognition is significantly improved.
Fallah, Zahra, Ebrahimpour-Komleh, Hossein, Mousavirad, Seyed Jalaleddin.  2021.  A Novel Hybrid Pyramid Texture-Based Facial Expression Recognition. 2021 5th International Conference on Pattern Recognition and Image Analysis (IPRIA). :1—6.
Automated analysis of facial expressions is one of the most interesting and challenging problems in many areas such as human-computer interaction. Facial images are affected by many factors, such as intensity, pose and facial expressions. These factors make facial expression recognition problem a challenge. The aim of this paper is to propose a new method based on the pyramid local binary pattern (PLBP) and the pyramid local phase quantization (PLPQ), which are the extension of the local binary pattern (LBP) and the local phase quantization (LPQ) as two methods for extracting texture features. LBP operator is used to extract LBP feature in the spatial domain and LPQ operator is used to extract LPQ feature in the frequency domain. The combination of features in spatial and frequency domains can provide important information in both domains. In this paper, PLBP and PLPQ operators are separately used to extract features. Then, these features are combined to create a new feature vector. The advantage of pyramid transform domain is that it can recognize facial expressions efficiently and with high accuracy even for very low-resolution facial images. The proposed method is verified on the CK+ facial expression database. The proposed method achieves the recognition rate of 99.85% on CK+ database.
2022-07-01
Rangi, Anshuka, Franceschetti, Massimo.  2021.  Channel Coding Theorems in Non-stochastic Information Theory. 2021 IEEE International Symposium on Information Theory (ISIT). :1790–1795.
Recently, the δ-mutual information between uncertain variables has been introduced as a generalization of Nair's non-stochastic mutual information functional [1], [2]. Within this framework, we introduce four different notions of capacity and present corresponding coding theorems. Our definitions include an analogue of Shannon's capacity in a non-stochastic setting, and a generalization of the zero-error capacity. The associated coding theorems hold for stationary, memoryless, non-stochastic uncertain channels. These results establish the relationship between the δ-mutual information and our operational definitions, providing a step towards the development of a complete non-stochastic information theory.
2022-06-30
Fang, Xi, Zhou, Yang, Xiao, Ling, Zhao, Cheng, Yu, Zifang.  2021.  Security Enhancement for CO-OFDM/OQAM System using Twice Chaotic Encryption Scheme. 2021 Asia Communications and Photonics Conference (ACP). :1—3.
In this paper, we propose a twice chaotic encryption scheme to improve the security of CO-OFDM/OQAM system. Simulation results show that the proposed scheme enhance the physical-layer security within the acceptable performance penalty.
Xiao, Ling, Fang, Xi, Jin, Jifang, Yu, Zifang, Zhou, Yang.  2021.  Chaotic Constellation Masking Encryption Method for Security-enhanced CO-OFDM/OQAM System. 2021 Asia Communications and Photonics Conference (ACP). :1—3.
In this paper, we propose a Chaotic Constellation Masking (CCM) encryption method based on henon mapping to enhance the security of CO-OFDM/OQAM system. Simulation results indicate the capability of the CCM method improving system security.
2022-06-15
Fan, Wenjun, Chang, Sang-Yoon, Zhou, Xiaobo, Xu, Shouhuai.  2021.  ConMan: A Connection Manipulation-based Attack Against Bitcoin Networking. 2021 IEEE Conference on Communications and Network Security (CNS). :101–109.
Bitcoin is a representative cryptocurrency system using a permissionless peer-to-peer (P2P) network as its communication infrastructure. A number of attacks against Bitcoin have been discovered over the past years, including the Eclipse and EREBUS Attacks. In this paper, we present a new attack against Bitcoin’s P2P networking, dubbed ConMan because it leverages connection manipulation. ConMan achieves the same effect as the Eclipse and EREBUS Attacks in isolating a target (i.e., victim) node from the rest of the Bitcoin network. However, ConMan is different from these attacks because it is an active and deterministic attack, and is more effective and efficient. We validate ConMan through proof-of-concept exploitation in an environment that is coupled with real-world Bitcoin node functions. Experimental results show that ConMan only needs a few minutes to fully control the peer connections of a target node, which is in sharp contrast to the tens of days that are needed by the Eclipse and EREBUS Attacks. Further, we propose several countermeasures against ConMan. Some of them would be effective but incompatible with the design principles of Bitcoin, while the anomaly detection approach is positively achievable. We disclosed ConMan to the Bitcoin Core team and received their feedback, which confirms ConMan and the proposed countermeasures.
Fan, Wenjun, Hong, Hsiang-Jen, Wuthier, Simeon, Zhou, Xiaobo, Bai, Yan, Chang, Sang-Yoon.  2021.  Security Analyses of Misbehavior Tracking in Bitcoin Network. 2021 IEEE International Conference on Blockchain and Cryptocurrency (ICBC). :1–3.
Because Bitcoin P2P networking is permissionless by the application requirement, it is vulnerable against networking threats based on identity/credential manipulations such as Sybil and spoofing attacks. The current Bitcoin implementation keeps track of its peer's networking misbehaviors through ban score. In this paper, we investigate the security problems of the ban-score mechanism and discover that the ban score is not only ineffective against the Bitcoin Message-based DoS attacks but also vulnerable to a Defamation attack. In the Defamation attack, the network adversary can exploit the ban-score mechanism to defame innocent peers.
2022-06-14
Su, Liyilei, Fu, Xianjun, Hu, Qingmao.  2021.  A convolutional generative adversarial framework for data augmentation based on a robust optimal transport metric. 2021 IEEE 23rd Int Conf on High Performance Computing & Communications; 7th Int Conf on Data Science & Systems; 19th Int Conf on Smart City; 7th Int Conf on Dependability in Sensor, Cloud & Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys). :1155–1162.
Enhancement of the vanilla generative adversarial network (GAN) to preserve data variability in the presence of real world noise is of paramount significance in deep learning. In this study, we proposed a new distance metric of cosine distance in the framework of optimal transport (OT), and presented and validated a convolutional neural network (CNN) based GAN framework. In comparison with state-of-the-art methods based on Graphics Processing Units (GPU), the proposed framework could maintain the data diversity and quality best in terms of inception score (IS), Fréchet inception distance (FID) and enhancing the classification network of bone age, and is robust to noise degradation. The proposed framework is independent of hardware and thus could also be extended to more advanced hardware such as specialized Tensor Processing Units (TPU), and could be a potential built-in component of a general deep learning networks for such applications as image classification, segmentation, registration, and object detection.
2022-06-13
Deng, Han, Fang, Fei, Chen, Juan, Zhang, Yazhen.  2021.  A Cloud Data Storage Technology for Alliance Blockchain Technology. 2021 7th IEEE Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS). :174–179.
The rapid development of blockchain application technology promotes continuous exploration in the field of computer application science. Although it is still in the initial stage of development, the technical features of blockchain technology such as decentralization, identity verification, tamper resistance, data integrity, and security are regarded as excellent solutions to today's computer security technical problems. In this paper, we will analyze and compare blockchain data storage and cloud data processing technologies, focusing on the concept and technology of blockchain distributed data storage technology, and analyze and summarize the key issues. The results of this paper will provide a useful reference for the application and research of blockchain technology in cloud storage security.
Fan, Teah Yi, Rana, Muhammad Ehsan.  2021.  Facilitating Role of Cloud Computing in Driving Big Data Emergence. 2021 Third International Sustainability and Resilience Conference: Climate Change. :524–529.
Big data emerges as an important technology that addresses the storage, processing and analytics aspects of massive data characterized by 5V's (volume, velocity, variety, veracity, value) which has grown exponentially beyond the handling capacity traditional data architectures. The most significant technologies include the parallel storage and processing framework which requires entirely new IT infrastructures to facilitate big data adoption. Cloud computing emerges as a successful paradigm in computing technology that shifted the business landscape of IT infrastructures towards service-oriented basis. Cloud service providers build IT infrastructures and technologies and offer them as services which can be accessed through internet to the consumers. This paper discusses on the facilitating role of cloud computing in the field of big data analytics. Cloud deployment models concerning the architectural aspect and the current trend of adoption are introduced. The fundamental cloud services models concerning the infrastructural and technological provisioning are introduced while the emerging cloud services models related to big data are discussed with examples of technology platforms offered by the big cloud service providers - Amazon, Google, Microsoft and Cloudera. The main advantages of cloud adoption in terms of availability and scalability for big data are reiterated. Lastly, the challenges concerning cloud security, data privacy and data governance of consuming and adopting big data in the cloud are highlighted.