Visible to the public Biblio

Found 2371 results

Filters: First Letter Of Last Name is G  [Clear All Filters]
2022-07-13
Smirnov, Ivan A., Cherckesova, Larissa V., Safaryan, Olga A., Korochentsev, Denis A., Chumakov, Vladislav E., Gavlicky, Alexandr I..  2021.  Development of Fast Exponentiation Algorithm «To Center and Back. 2021 IEEE East-West Design & Test Symposium (EWDTS). :1—4.
In the present paper the exponentiation algorithm “To Center and Back” based on the idea of the additive chains exponentiation method is developed. The created by authors algorithm allows to reduce the calculation time and to improve the performance of conventional and cryptographic algorithms, as pre-quantum and quantum, and then post-quantum, in which it is necessary to use the fast exponentiation algorithm.
2022-07-12
Xu, Zhengwei, Ge, Yuan, Cao, Jin, Yang, Shuquan, Lin, Qiyou, Zhou, Xu.  2021.  Robustness Analysis of Cyber-Physical Power System Based on Adjacent Matrix Evolution. 2021 China Automation Congress (CAC). :2104—2109.
Considering the influence of load, This paper proposes a robust analysis method of cyber-physical power system based on the evolution of adjacency matrix. This method uses the load matrix to detect whether the system has overload failure, utilizes the reachable matrix to detect whether the system has unconnected failure, and uses the dependency matrix to reveal the cascading failure mechanism in the system. Finally, analyze the robustness of the cyber-physical power system. The IEEE30 standard node system is taken as an example for simulation experiment, and introduced the connectivity index and the load loss ratio as evaluation indexes. The robustness of the system is evaluated and analyzed by comparing the variation curves of connectivity index and load loss ratio under different tolerance coefficients. The results show that the proposed method is feasible, reduces the complexity of graph-based attack methods, and easy to research and analyze.
T⊘ndel, Inger Anne, Vefsnmo, Hanne, Gjerde, Oddbj⊘rn, Johannessen, Frode, Fr⊘ystad, Christian.  2021.  Hunting Dependencies: Using Bow-Tie for Combined Analysis of Power and Cyber Security. 2020 2nd International Conference on Societal Automation (SA). :1—8.
Modern electric power systems are complex cyber-physical systems. The integration of traditional power and digital technologies result in interdependencies that need to be considered in risk analysis. In this paper we argue the need for analysis methods that can combine the competencies of various experts in a common analysis focusing on the overall system perspective. We report on our experiences on using the Vulnerability Analysis Framework (VAF) and bow-tie diagrams in a combined analysis of the power and cyber security aspects in a realistic case. Our experiences show that an extended version of VAF with increased support for interdependencies is promising for this type of analysis.
Hu, Xiaoyan, Shu, Zhuozhuo, Song, Xiaoyi, Cheng, Guang, Gong, Jian.  2021.  Detecting Cryptojacking Traffic Based on Network Behavior Features. 2021 IEEE Global Communications Conference (GLOBECOM). :01—06.
Bitcoin and other digital cryptocurrencies have de-veloped rapidly in recent years. To reduce hardware and power costs, many criminals use the botnet to infect other hosts to mine cryptocurrency for themselves, which has led to the proliferation of mining botnets and is referred to as cryptojacking. At present, the mechanisms specific to cryptojacking detection include host-based, Deep Packet Inspection (DPI) based, and dynamic network characteristics based. Host-based detection requires detection installation and running at each host, and the other two are heavyweight. Besides, DPI-based detection is a breach of privacy and loses efficacy if encountering encrypted traffic. This paper de-signs a lightweight cryptojacking traffic detection method based on network behavior features for an ISP, without referring to the payload of network traffic. We set up an environment to collect cryptojacking traffic and conduct a cryptojacking traffic study to obtain its discriminative network traffic features extracted from only the first four packets in a flow. Our experimental study suggests that the machine learning classifier, random forest, based on the extracted discriminative network traffic features can accurately and efficiently detect cryptojacking traffic.
2022-07-05
Arabian, H., Wagner-Hartl, V., Geoffrey Chase, J., Möller, K..  2021.  Facial Emotion Recognition Focused on Descriptive Region Segmentation. 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). :3415—3418.
Facial emotion recognition (FER) is useful in many different applications and could offer significant benefit as part of feedback systems to train children with Autism Spectrum Disorder (ASD) who struggle to recognize facial expressions and emotions. This project explores the potential of real time FER based on the use of local regions of interest combined with a machine learning approach. Histogram of Oriented Gradients (HOG) was implemented for feature extraction, along with 3 different classifiers, 2 based on k-Nearest Neighbor and 1 using Support Vector Machine (SVM) classification. Model performance was compared using accuracy of randomly selected validation sets after training on random training sets of the Oulu-CASIA database. Image classes were distributed evenly, and accuracies of up to 98.44% were observed with small variation depending on data distributions. The region selection methodology provided a compromise between accuracy and number of extracted features, and validated the hypothesis a focus on smaller informative regions performs just as well as the entire image.
2022-07-01
Guo, Xingchang, Liu, Ningchun, Hou, Xindi, Gao, Shuai, Zhou, Huachun.  2021.  An Efficient NDN Routing Mechanism Design in P4 Environment. 2021 2nd Information Communication Technologies Conference (ICTC). :28—33.
Name Data Networking (NDN) is a clean-slate network redesign that uses content names for routing and addressing. Facing the fact that TCP/IP is deeply entrenched in the current Internet architecture, NDN has made slow progress in industrial promotion. Meanwhile, new architectures represented by SDN, P4, etc., provide a flexible and programmable approach to network research. As a result, a centralized NDN routing mechanism is needed in the scenario for network integration between NDN and TCP/IP. Combining the NLSR protocol and the P4 environment, we introduce an efficient NDN routing mechanism that offers extensible NDN routing services (e.g., resources-location management and routing calculation) which can be programmed in the control plane. More precisely, the proposed mechanism allows the programmable switches to transmit NLSR packets to the control plane with the extended data plane. The NDN routing services are provided by control plane application which framework bases on resource-location mapping to achieve part of the NLSR mechanism. Experimental results show that the proposed mechanism can reduce the number of routing packets significantly, and introduce a slight overhead in the controller compared with NLSR simulation.
Pinto, Thyago M. S., Vilela, João P., Gomes, Marco A. C., Harrison, Willie K..  2021.  Keyed Polar Coding for Physical-Layer Security without Channel State Information. ICC 2021 - IEEE International Conference on Communications. :1–6.
Polar codes have been shown to provide an effective mechanism for achieving physical-layer security over various wiretap channels. A majority of these schemes require channel state information (CSI) at the encoder for both intended receivers and eavesdroppers. In this paper, we consider a polar coding scheme for secrecy over a Gaussian wiretap channel when no CSI is available. We show that the availability of a shared keystream between friendly parties allows polar codes to be used for both secure and reliable communications, even when the eavesdropper knows a large fraction of the keystream. The scheme relies on a predetermined strategy for partitioning the bits to be encoded into a set of frozen bits and a set of information bits. The frozen bits are filled with bits from the keystream, and we evaluate the security gap when the cyclic redundancy check-aided successive cancellation list decoder is used at both receivers in the wiretap channel model.
Chen, Liquan, Guo, Xing, Lu, Tianyu, Gao, Yuan.  2021.  Formalization of the Secrecy Capacity in Non-degraded Wiretap Channel. 2021 7th International Conference on Computer and Communications (ICCC). :535–538.
Unlike the traditional key-exchange based cryptography, physical layer security is built on information theory and aims to achieve unconditional security by exploiting the physical characteristics of wireless channels. With the growth of the number of wireless devices, physical layer security has been gradually emphasized by researchers. Various physical layer security protocols have been proposed for different communication scenarios. Since these protocols are based on information-theoretic security and the formalization work for information theory were not complete when these protocols were proposed, the security of these protocols lacked formal proofs. In this paper, we propose a formal definition for the secrecy capacity in non-degraded wiretap channel model and a formal proof for the secrecy capacity in binary symmetric channel with the help of SSReflect/Coq theorem prover.
Wu, Zhijun, Cui, Weihang, Gao, Pan.  2021.  Filtration method of DDoS attacks based on time-frequency analysis. 2021 7th IEEE Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS). :75–80.
Traditional DDoS attacks mainly send massive data packets through the attacking machine, consuming the network resources or server resources of the target server, making users unable to use server resources to achieve the purpose of denial of service. This type of attack is called a Flooding-based DDoS (FDDoS) attack. It has the characteristics of large traffic and suddenness. However, Low-rate DDoS (LDDoS) attack is a new type of DDoS attack. LDDoS utilize the TCP congestion control mechanism and sends periodic pulses to attack, which can seriously reduce the TCP flow throughput of the attacked link. It has the characteristics of small traffic and strong concealment. Each of these two DDoS attack methods has its own hard-to-handle characteristics, so that there is currently no particularly effective method to prevent such attacks. This paper uses time-frequency analysis to classify and filter DDoS traffic. The proposed filtering method is designed as a system in the actual environment. Experimental results show that the designed filtering algorithm can resist not only FDDoS attacks, but also LDDoS attacks.
Günlü, Onur, Kliewer, Jörg, Schaefer, Rafael F., Sidorenko, Vladimir.  2021.  Doubly-Exponential Identification via Channels: Code Constructions and Bounds. 2021 IEEE International Symposium on Information Theory (ISIT). :1147—1152.
Consider the identification (ID) via channels problem, where a receiver wants to decide whether the transmitted identifier is its identifier, rather than decoding the identifier. This model allows to transmit identifiers whose size scales doubly-exponentially in the blocklength, unlike common transmission (or channel) codes whose size scales exponentially. It suffices to use binary constant-weight codes (CWCs) to achieve the ID capacity. By relating the parameters of a binary CWC to the minimum distance of a code and using higher-order correlation moments, two upper bounds on the binary CWC size are proposed. These bounds are shown to be upper bounds also on the identifier sizes for ID codes constructed by using binary CWCs. We propose two code constructions based on optical orthogonal codes, which are used in optical multiple access schemes, have constant-weight codewords, and satisfy cyclic cross-correlation and autocorrelation constraints. These constructions are modified and concatenated with outer Reed-Solomon codes to propose new binary CWCs optimal for ID. Improvements to the finite-parameter performance of both our and existing code constructions are shown by using outer codes with larger minimum distance vs. blocklength ratios. We also illustrate ID performance regimes for which our ID code constructions perform significantly better than existing constructions.
2022-06-15
Zou, Kexin, Shi, Jinqiao, Gao, Yue, Wang, Xuebin, Wang, Meiqi, Li, Zeyu, Su, Majing.  2021.  Bit-FP: A Traffic Fingerprinting Approach for Bitcoin Hidden Service Detection. 2021 IEEE Sixth International Conference on Data Science in Cyberspace (DSC). :99–105.
Bitcoin is a virtual encrypted digital currency based on a peer-to-peer network. In recent years, for higher anonymity, more and more Bitcoin users try to use Tor hidden services for identity and location hiding. However, previous studies have shown that Tor are vulnerable to traffic fingerprinting attack, which can identify different websites by identifying traffic patterns using statistical features of traffic. Our work shows that traffic fingerprinting attack is also effective for the Bitcoin hidden nodes detection. In this paper, we proposed a novel lightweight Bitcoin hidden service traffic fingerprinting, using a random decision forest classifier with features from TLS packet size and direction. We test our attack on a novel dataset, including a foreground set of Bitcoin hidden node traffic and a background set of different hidden service websites and various Tor applications traffic. We can detect Bitcoin hidden node from different Tor clients and website hidden services with a precision of 0.989 and a recall of 0.987, which is higher than the previous model.
2022-06-14
Gvozdov, Roman, Poddubnyi, Vadym, Sieverinov, Oleksandr, Buhantsov, Andrey, Vlasov, Andrii, Sukhoteplyi, Vladyslav.  2021.  Method of Biometric Authentication with Digital Watermarks. 2021 IEEE 8th International Conference on Problems of Infocommunications, Science and Technology (PIC S&T). :569–571.
This paper considers methods of fingerprint protection in biometric authentication systems. Including methods of protecting fingerprint templates using zero digital watermarks and cryptography techniques. The paper considers a secure authentication model using cryptography and digital watermarks.
Singh, A K, Goyal, Navneet.  2021.  Detection of Malicious Webpages Using Deep Learning. 2021 IEEE International Conference on Big Data (Big Data). :3370–3379.
Malicious Webpages have been a serious threat on Internet for the past few years. As per the latest Google Transparency reports, they continue to be top ranked amongst online threats. Various techniques have been used till date to identify malicious sites, to include, Static Heuristics, Honey Clients, Machine Learning, etc. Recently, with the rapid rise of Deep Learning, an interest has aroused to explore Deep Learning techniques for detecting Malicious Webpages. In this paper Deep Learning has been utilized for such classification. The model proposed in this research has used a Deep Neural Network (DNN) with two hidden layers to distinguish between Malicious and Benign Webpages. This DNN model gave high accuracy of 99.81% with very low False Positives (FP) and False Negatives (FN), and with near real-time response on test sample. The model outperformed earlier machine learning solutions in accuracy, precision, recall and time performance metrics.
Yasa, Ray Novita, Buana, I Komang Setia, Girinoto, Setiawan, Hermawan, Hadiprakoso, Raden Budiarto.  2021.  Modified RNP Privacy Protection Data Mining Method as Big Data Security. 2021 International Conference on Informatics, Multimedia, Cyber and Information System (ICIMCIS. :30–34.
Privacy-Preserving Data Mining (PPDM) has become an exciting topic to discuss in recent decades due to the growing interest in big data and data mining. A technique of securing data but still preserving the privacy that is in it. This paper provides an alternative perturbation-based PPDM technique which is carried out by modifying the RNP algorithm. The novelty given in this paper are modifications of some steps method with a specific purpose. The modifications made are in the form of first narrowing the selection of the disturbance value. With the aim that the number of attributes that are replaced in each record line is only as many as the attributes in the original data, no more and no need to repeat; secondly, derive the perturbation function from the cumulative distribution function and use it to find the probability distribution function so that the selection of replacement data has a clear basis. The experiment results on twenty-five perturbed data show that the modified RNP algorithm balances data utility and security level by selecting the appropriate disturbance value and perturbation value. The level of security is measured using privacy metrics in the form of value difference, average transformation of data, and percentage of retains. The method presented in this paper is fascinating to be applied to actual data that requires privacy preservation.
2022-06-13
Santos, Nelson, Younis, Waleed, Ghita, Bogdan, Masala, Giovanni.  2021.  Enhancing Medical Data Security on Public Cloud. 2021 IEEE International Conference on Cyber Security and Resilience (CSR). :103–108.

Cloud computing, supported by advancements in virtualisation and distributed computing, became the default options for implementing the IT infrastructure of organisations. Medical data and in particular medical images have increasing storage space and remote access requirements. Cloud computing satisfies these requirements but unclear safeguards on data security can expose sensitive data to possible attacks. Furthermore, recent changes in legislation imposed additional security constraints in technology to ensure the privacy of individuals and the integrity of data when stored in the cloud. In contrast with this trend, current data security methods, based on encryption, create an additional overhead to the performance, and often they are not allowed in public cloud servers. Hence, this paper proposes a mechanism that combines data fragmentation to protect medical images on the public cloud servers, and a NoSQL database to secure an efficient organisation of such data. Results of this paper indicate that the latency of the proposed method is significantly lower if compared with AES, one of the most adopted data encryption mechanisms. Therefore, the proposed method is an optimal trade-off in environments with low latency requirements or limited resources.

Gupta, B. B., Gaurav, Akshat, Peraković, Dragan.  2021.  A Big Data and Deep Learning based Approach for DDoS Detection in Cloud Computing Environment. 2021 IEEE 10th Global Conference on Consumer Electronics (GCCE). :287–290.
Recently, as a result of the COVID-19 pandemic, the internet service has seen an upsurge in use. As a result, the usage of cloud computing apps, which offer services to end users on a subscription basis, rises in this situation. However, the availability and efficiency of cloud computing resources are impacted by DDoS attacks, which are designed to disrupt the availability and processing power of cloud computing services. Because there is no effective way for detecting or filtering DDoS attacks, they are a dependable weapon for cyber-attackers. Recently, researchers have been experimenting with machine learning (ML) methods in order to create efficient machine learning-based strategies for detecting DDoS assaults. In this context, we propose a technique for detecting DDoS attacks in a cloud computing environment using big data and deep learning algorithms. The proposed technique utilises big data spark technology to analyse a large number of incoming packets and a deep learning machine learning algorithm to filter malicious packets. The KDDCUP99 dataset was used for training and testing, and an accuracy of 99.73% was achieved.
2022-06-10
Ge, Yurun, Bertozzi, Andrea L..  2021.  Active Learning for the Subgraph Matching Problem. 2021 IEEE International Conference on Big Data (Big Data). :2641–2649.
The subgraph matching problem arises in a number of modern machine learning applications including segmented images and meshes of 3D objects for pattern recognition, bio-chemical reactions and security applications. This graph-based problem can have a very large and complex solution space especially when the world graph has many more nodes and edges than the template. In a real use-case scenario, analysts may need to query additional information about template nodes or world nodes to reduce the problem size and the solution space. Currently, this query process is done by hand, based on the personal experience of analysts. By analogy to the well-known active learning problem in machine learning classification problems, we present a machine-based active learning problem for the subgraph match problem in which the machine suggests optimal template target nodes that would be most likely to reduce the solution space when it is otherwise overly large and complex. The humans in the loop can then include additional information about those target nodes. We present some case studies for both synthetic and real world datasets for multichannel subgraph matching.
Bures, Tomas, Gerostathopoulos, Ilias, Hnětynka, Petr, Seifermann, Stephan, Walter, Maximilian, Heinrich, Robert.  2021.  Aspect-Oriented Adaptation of Access Control Rules. 2021 47th Euromicro Conference on Software Engineering and Advanced Applications (SEAA). :363–370.
Cyber-physical systems (CPS) and IoT systems are nowadays commonly designed as self-adaptive, endowing them with the ability to dynamically reconFigure to reflect their changing environment. This adaptation concerns also the security, as one of the most important properties of these systems. Though the state of the art on adaptivity in terms of security related to these systems can often deal well with fully anticipated situations in the environment, it becomes a challenge to deal with situations that are not or only partially anticipated. This uncertainty is however omnipresent in these systems due to humans in the loop, open-endedness and only partial understanding of the processes happening in the environment. In this paper, we partially address this challenge by featuring an approach for tackling access control in face of partially unanticipated situations. We base our solution on special kind of aspects that build on existing access control system and create a second level of adaptation that addresses the partially unanticipated situations by modifying access control rules. The approach is based on our previous work where we have analyzed and classified uncertainty in security and trust in such systems and have outlined the idea of access-control related situational patterns. The aspects that we present in this paper serve as means for application-specific specialization of the situational patterns. We showcase our approach on a simplified but real-life example in the domain of Industry 4.0 that comes from one of our industrial projects.
2022-06-09
Başer, Melike, Güven, Ebu Yusuf, Aydın, Muhammed Ali.  2021.  SSH and Telnet Protocols Attack Analysis Using Honeypot Technique: Analysis of SSH AND ℡NET Honeypot. 2021 6th International Conference on Computer Science and Engineering (UBMK). :806–811.
Generally, the defense measures taken against new cyber-attack methods are insufficient for cybersecurity risk management. Contrary to classical attack methods, the existence of undiscovered attack types called’ zero-day attacks’ can invalidate the actions taken. It is possible with honeypot systems to implement new security measures by recording the attacker’s behavior. The purpose of the honeypot is to learn about the methods and tools used by the attacker or malicious activity. In particular, it allows us to discover zero-day attack types and develop new defense methods for them. Attackers have made protocols such as SSH (Secure Shell) and Telnet, which are widely used for remote access to devices, primary targets. In this study, SSHTelnet honeypot was established using Cowrie software. Attackers attempted to connect, and attackers record their activity after providing access. These collected attacker log records and files uploaded to the system are published on Github to other researchers1. We shared the observations and analysis results of attacks on SSH and Telnet protocols with honeypot.
Gupta, Deena Nath, Kumar, Rajendra.  2021.  Sponge based Lightweight Cryptographic Hash Functions for IoT Applications. 2021 International Conference on Intelligent Technologies (CONIT). :1–5.
Hash constructions are used in cryptographic algorithms from very long. Features of Hashes that gives the applications the confidence to use them in security methodologies is “forward secrecy” Forward secrecy comes from one-way hash functions. Examples of earlier hash designs include SHA-3, MD-5, SHA-I, and MAME. Each of these is having their proven record to produce the security for the communication between unconstrained devices. However, this is the era of Internet of Things (IoT) and the requirement of lightweight hash designs are the need of hour. IoT mainly consists of constrained devices. The devices in IoT are having many constrained related to battery power, storage and transmission range. Enabling any security feature in the constrained devices is troublesome. Constrained devices under an IoT environment can work only with less complex and lightweight algorithms. Lightweight algorithms take less power to operate and save a lot of energy of the battery operated devices. SPONGENT, QUARK, HASH-ONE, PHOTON, are some of the well-known lightweight hash designs currently providing security to the IoT devices. In this paper, the authors will present an analysis of the functioning of different lightweight hash designs as well as their suitability to the IoT environment.
Fang, Shiwei, Huang, Jin, Samplawski, Colin, Ganesan, Deepak, Marlin, Benjamin, Abdelzaher, Tarek, Wigness, Maggie B..  2021.  Optimizing Intelligent Edge-clouds with Partitioning, Compression and Speculative Inference. MILCOM 2021 - 2021 IEEE Military Communications Conference (MILCOM). :892–896.
Internet of Battlefield Things (IoBTs) are well positioned to take advantage of recent technology trends that have led to the development of low-power neural accelerators and low-cost high-performance sensors. However, a key challenge that needs to be dealt with is that despite all the advancements, edge devices remain resource-constrained, thus prohibiting complex deep neural networks from deploying and deriving actionable insights from various sensors. Furthermore, deploying sophisticated sensors in a distributed manner to improve decision-making also poses an extra challenge of coordinating and exchanging data between the nodes and server. We propose an architecture that abstracts away these thorny deployment considerations from an end-user (such as a commander or warfighter). Our architecture can automatically compile and deploy the inference model into a set of distributed nodes and server while taking into consideration of the resource availability, variation, and uncertainties.
Gupta, Ragini, Nahrstedt, Klara, Suri, Niranjan, Smith, Jeffrey.  2021.  SVAD: End-to-End Sensory Data Analysis for IoBT-Driven Platforms. 2021 IEEE 7th World Forum on Internet of Things (WF-IoT). :903–908.
The rapid advancement of IoT technologies has led to its flexible adoption in battle field networks, known as Internet of Battlefield Things (IoBT) networks. One important application of IoBT networks is the weather sensory network characterized with a variety of weather, land and environmental sensors. This data contains hidden trends and correlations, needed to provide situational awareness to soldiers and commanders. To interpret the incoming data in real-time, machine learning algorithms are required to automate strategic decision-making. Existing solutions are not well-equipped to provide the fine-grained feedback to military personnel and cannot facilitate a scalable, end-to-end platform for fast unlabeled data collection, cleaning, querying, analysis and threats identification. In this work, we present a scalable end-to-end IoBT data driven platform for SVAD (Storage, Visualization, Anomaly Detection) analysis of heterogeneous weather sensor data. Our SVAD platform includes extensive data cleaning techniques to denoise efficiently data to differentiate data from anomalies and noise data instances. We perform comparative analysis of unsupervised machine learning algorithms for multi-variant data analysis and experimental evaluation of different data ingestion pipelines to show the ability of the SVAD platform for (near) real-time processing. Our results indicate impending turbulent weather conditions that can be detected by early anomaly identification and detection techniques.
Garrocho, Charles Tim Batista, Oliveira, Karine Nogueira, Sena, David José, da Cunha Cavalcanti, Carlos Frederico Marcelo, Oliveira, Ricardo Augusto Rabelo.  2021.  BACE: Blockchain-based Access Control at the Edge for Industrial Control Devices of Industry 4.0. 2021 XI Brazilian Symposium on Computing Systems Engineering (SBESC). :1–8.
The Industrial Internet of Things is expected to attract significant investments for Industry 4.0. In this new environment, the blockchain has immediate potential in industrial applications, providing unchanging, traceable and auditable access control. However, recent work and present in blockchain literature are based on a cloud infrastructure that requires significant investments. Furthermore, due to the placement and distance of the cloud infrastructure to industrial control devices, such approaches present a communication latency that can compromise the strict deadlines for accessing and communicating with this device. In this context, this article presents a blockchain-based access control architecture, which is deployed directly to edge devices positioned close to devices that need access control. Performance assessments of the proposed approach were carried out in practice in an industrial mining environment. The results of this assessment demonstrate the feasibility of the proposal and its performance compared to cloud-based approaches.
Iashvili, Giorgi, Iavich, Maksim, Bocu, Razvan, Odarchenko, Roman, Gnatyuk, Sergiy.  2021.  Intrusion Detection System for 5G with a Focus on DOS/DDOS Attacks. 2021 11th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS). 2:861–864.
The industry of telecommunications is being transformed towards 5G technology, because it has to deal with the emerging and existing use cases. Because, 5G wireless networks need rather large data rates and much higher coverage of the dense base station deployment with the bigger capacity, much better Quality of Service - QoS, and the need very low latency [1–3]. The provision of the needed services which are envisioned by 5G technologies need the new service models of deployment, networking architectures, processing technologies and storage to be defined. These technologies will cause the new problems for the cybersecurity of 5G systems and the security of their functionality. The developers and researchers working in this field make their best to secure 5G systems. The researchers showed that 5G systems have the security challenges. The researchers found the vulnerabilities in 5G systems which allow attackers to integrate malicious code into the system and make the different types of the illegitimate actions. MNmap, Battery drain attacks and MiTM can be successfully implemented on 5G. The paper makes the analysis of the existing cyber security problems in 5G technology. Based on the analysis, we suggest the novel Intrusion Detection System - IDS by means of the machine-learning algorithms. In the related papers the scientists offer to use NSL-KDD in order to train IDS. In our paper we offer to train IDS using the big datasets of DOS/DDOS attacks, besides of training using NSL-KDD. The research also offers the methodology of integration of the offered intrusion detection systems into an standard architecture of 5G. The paper also offers the pseudo code of the designed system.
2022-06-08
Yang, Ruxia, Gao, Xianzhou, Gao, Peng.  2021.  Research on Intelligent Recognition and Tracking Technology of Sensitive Data for Electric Power Big Data. 2021 13th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA). :229–234.
Current power sensitive data security protection adopts classification and grading protection. Company classification and grading are mainly in formulating specifications. Data classification and grading processing is carried out manually, which is heavy and time-consuming, while traditional data identification mainly relies on rules for data identification, the level of automation and intelligence is low, and there are many problems in recognition accuracy. Data classification and classification is the basis of data security protection. Sensitive data identification is the key to data classification and classification, and it is also the first step to achieve accurate data security protection. This paper proposes an intelligent identification and tracking technology of sensitive data for electric power big data, which can improve the ability of data classification and classification, help the realization of data classification and classification, and provide support for the accurate implementation of data security capabilities.