Gvozdov, Roman, Poddubnyi, Vadym, Sieverinov, Oleksandr, Buhantsov, Andrey, Vlasov, Andrii, Sukhoteplyi, Vladyslav.
2021.
Method of Biometric Authentication with Digital Watermarks. 2021 IEEE 8th International Conference on Problems of Infocommunications, Science and Technology (PIC S&T). :569–571.
This paper considers methods of fingerprint protection in biometric authentication systems. Including methods of protecting fingerprint templates using zero digital watermarks and cryptography techniques. The paper considers a secure authentication model using cryptography and digital watermarks.
Singh, A K, Goyal, Navneet.
2021.
Detection of Malicious Webpages Using Deep Learning. 2021 IEEE International Conference on Big Data (Big Data). :3370–3379.
Malicious Webpages have been a serious threat on Internet for the past few years. As per the latest Google Transparency reports, they continue to be top ranked amongst online threats. Various techniques have been used till date to identify malicious sites, to include, Static Heuristics, Honey Clients, Machine Learning, etc. Recently, with the rapid rise of Deep Learning, an interest has aroused to explore Deep Learning techniques for detecting Malicious Webpages. In this paper Deep Learning has been utilized for such classification. The model proposed in this research has used a Deep Neural Network (DNN) with two hidden layers to distinguish between Malicious and Benign Webpages. This DNN model gave high accuracy of 99.81% with very low False Positives (FP) and False Negatives (FN), and with near real-time response on test sample. The model outperformed earlier machine learning solutions in accuracy, precision, recall and time performance metrics.
Yasa, Ray Novita, Buana, I Komang Setia, Girinoto, Setiawan, Hermawan, Hadiprakoso, Raden Budiarto.
2021.
Modified RNP Privacy Protection Data Mining Method as Big Data Security. 2021 International Conference on Informatics, Multimedia, Cyber and Information System (ICIMCIS. :30–34.
Privacy-Preserving Data Mining (PPDM) has become an exciting topic to discuss in recent decades due to the growing interest in big data and data mining. A technique of securing data but still preserving the privacy that is in it. This paper provides an alternative perturbation-based PPDM technique which is carried out by modifying the RNP algorithm. The novelty given in this paper are modifications of some steps method with a specific purpose. The modifications made are in the form of first narrowing the selection of the disturbance value. With the aim that the number of attributes that are replaced in each record line is only as many as the attributes in the original data, no more and no need to repeat; secondly, derive the perturbation function from the cumulative distribution function and use it to find the probability distribution function so that the selection of replacement data has a clear basis. The experiment results on twenty-five perturbed data show that the modified RNP algorithm balances data utility and security level by selecting the appropriate disturbance value and perturbation value. The level of security is measured using privacy metrics in the form of value difference, average transformation of data, and percentage of retains. The method presented in this paper is fascinating to be applied to actual data that requires privacy preservation.