Visible to the public Biblio

Found 2371 results

Filters: First Letter Of Last Name is G  [Clear All Filters]
2022-12-02
Taleb, Sylia Mekhmoukh, Meraihi, Yassine, Mirjalili, Seyedali, Acheli, Dalila, Ramdane-Cherif, Amar, Gabis, Asma Benmessaoud.  2022.  Enhanced Honey Badger Algorithm for mesh routers placement problem in wireless mesh networks. 2022 International Conference on Advanced Aspects of Software Engineering (ICAASE). :1—6.
This paper proposes an improved version of the newly developed Honey Badger Algorithm (HBA), called Generalized opposition Based-Learning HBA (GOBL-HBA), for solving the mesh routers placement problem. The proposed GOBLHBA is based on the integration of the generalized opposition-based learning strategy into the original HBA. GOBL-HBA is validated in terms of three performance metrics such as user coverage, network connectivity, and fitness value. The evaluation is done using various scenarios with different number of mesh clients, number of mesh routers, and coverage radius values. The simulation results revealed the efficiency of GOBL-HBA when compared with the classical HBA, Genetic Algorithm (GA), and Particle Swarm optimization (PSO).
Fang, Wengao, Guan, Xiaojuan.  2022.  Research on iOS Remote Security Access Technology Based on Zero Trust. 2022 IEEE 6th Information Technology and Mechatronics Engineering Conference (ITOEC). 6:238—241.

Under the situation of regular epidemic prevention and control, teleworking has gradually become a normal working mode. With the development of modern information technologies such as big data, cloud computing and mobile Internet, it's become a problem that how to build an effective security defense system to ensure the information security of teleworking in complex network environment while ensuring the availability, collaboration and efficiency of teleworking. One of the solutions is Zero Trust Network(ZTN), most enterprise infrastructures will operate in a hybrid zero trust/perimeter-based mode while continuing to invest in IT modernization initiatives and improve organization business processes. In this paper, we have systematically studied the zero trust principles, the logical components of zero trust architecture and the key technology of zero trust network. Based on the abstract model of zero trust architecture and information security technologies, a prototype has been realized which suitable for iOS terminals to access enterprise resources safely in teleworking mode.

2022-12-01
Culler, Megan J., Morash, Sean, Smith, Brian, Cleveland, Frances, Gentle, Jake.  2021.  A Cyber-Resilience Risk Management Architecture for Distributed Wind. 2021 Resilience Week (RWS). :1–8.
Distributed wind is an electric energy resource segment with strong potential to be deployed in many applications, but special consideration of resilience and cybersecurity is needed to address the unique conditions associated with distributed wind. Distributed wind is a strong candidate to help meet renewable energy and carbon-free energy goals. However, care must be taken as more systems are installed to ensure that the systems are reliable, resilient, and secure. The physical and communications requirements for distributed wind mean that there are unique cybersecurity considerations, but there is little to no existing guidance on best practices for cybersecurity risk management for distributed wind systems specifically. This research develops an architecture for managing cyber risks associated with distributed wind systems through resilience functions. The architecture takes into account the configurations, challenges, and standards for distributed wind to create a risk-focused perspective that considers threats, vulnerabilities, and consequences. We show how the resilience functions of identification, preparation, detection, adaptation, and recovery can mitigate cyber threats. We discuss common distributed wind architectures and interconnections to larger power systems. Because cybersecurity cannot exist independently, the cyber-resilience architecture must consider the system holistically. Finally, we discuss risk assessment recommendations with special emphasis on what sets distributed wind systems apart from other distributed energy resources (DER).
Gray, Wayne, Tsokanos, Athanasios, Kirner, Raimund.  2021.  Multi-Link Failure Effects on MPLS Resilient Fast-Reroute Network Architectures. 2021 IEEE 24th International Symposium on Real-Time Distributed Computing (ISORC). :29–33.
MPLS has been in the forefront of high-speed Wide Area Networks (WANs), for almost two decades [1], [12]. The performance advantages in implementing Multi-Protocol Label Switching (MPLS) are mainly its superior speed based on fast label switching and its capability to perform Fast Reroute rapidly when failure(s) occur - in theory under 50 ms [16], [17], which makes MPLS also interesting for real-time applications. We investigate the aforementioned advantages of MPLS by creating two real testbeds using actual routers that commercial Internet Service Providers (ISPs) use, one with a ring and one with a partial mesh architecture. In those two testbeds we compare the performance of MPLS channels versus normal routing, both using the Open Shortest Path First (OSPF) routing protocol. The speed of the Fast Reroute mechanism for MPLS when failures are occurring is investigated. Firstly, baseline experiments are performed consisting of MPLS versus normal routing. Results are evaluated and compared using both single and dual failure scenarios within the two architectures. Our results confirm recovery times within 50 ms.
Jia, Yaoqi, Tople, Shruti, Moataz, Tarik, Gong, Deli, Saxena, Prateek, Liang, Zhenkai.  2020.  Robust P2P Primitives Using SGX Enclaves. 2020 IEEE 40th International Conference on Distributed Computing Systems (ICDCS). :1185–1186.
Peer-to-peer (P2P) systems such as BitTorrent and Bitcoin are susceptible to serious attacks from byzantine nodes that join as peers. Due to well-known impossibility results for designing P2P primitives in unrestricted byzantine settings, research has explored many adversarial models with additional assumptions, ranging from mild (such as pre-established PKI) to strong (such as the existence of common random coins). One such widely-studied model is the general-omission model, which yields simple protocols with good efficiency, but has been considered impractical or unrealizable since it artificially limits the adversary only to omitting messages.In this work, we study the setting of a synchronous network wherein peer nodes have CPUs equipped with a recent trusted computing mechanism called Intel SGX. In this model, we observe that the byzantine adversary reduces to the adversary in the general-omission model. As a first result, we show that by leveraging SGX features, we eliminate any source of advantage for a byzantine adversary beyond that gained by omitting messages, making the general-omission model realizable. Our evaluation of 1000 nodes running on 40 DeterLab machines confirms theoretical efficiency claim.
2022-11-25
Shipunov, Ilya S., Nyrkov, Anatoliy P., Ryabenkov, Maksim U., Morozova, Elena V., Goloskokov, Konstantin P..  2021.  Investigation of Computer Incidents as an Important Component in the Security of Maritime Transportation. 2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus). :657—660.
The risk of detecting incidents in the field of computer technology in Maritime transport is considered. The structure of the computer incident investigation system and its functions are given. The system of conducting investigations of computer incidents on sea transport is considered. A possible algorithm for investigating the incident using the tools of forensic science and an algorithm for transmitting the received data for further processing are presented.
2022-11-22
Aftab, Muhammad Usman, Hussain, Mehdi, Lindgren, Anders, Ghafoor, Abdul.  2021.  Towards A Distributed Ledger Based Verifiable Trusted Protocol For VANET. 2021 International Conference on Digital Futures and Transformative Technologies (ICoDT2). :1—6.
To ensure traffic safety and proper operation of vehicular networks, safety messages or beacons are periodically broadcasted in Vehicular Adhoc Networks (VANETs) to neighboring nodes and road side units (RSU). Thus, authenticity and integrity of received messages along with the trust in source nodes is crucial and highly required in applications where a failure can result in life-threatening situations. Several digital signature based approaches have been described in literature to achieve the authenticity of these messages. In these schemes, scenarios having high level of vehicle density are handled by RSU where aggregated signature verification is done. However, most of these schemes are centralized and PKI based where our goal is to develop a decentralized dynamic system. Along with authenticity and integrity, trust management plays an important role in VANETs which enables ways for secure and verified communication. A number of trust management models have been proposed but it is still an ongoing matter of interest, similarly authentication which is a vital security service to have during communication is not mostly present in the literature work related to trust management systems. This paper proposes a secure and publicly verifiable communication scheme for VANET which achieves source authentication, message authentication, non repudiation, integrity and public verifiability. All of these are achieved through digital signatures, Hash Message Authentication Code (HMAC) technique and logging mechanism which is aided by blockchain technology.
2022-11-18
De la Parra, Cecilia, El-Yamany, Ahmed, Soliman, Taha, Kumar, Akash, Wehn, Norbert, Guntoro, Andre.  2021.  Exploiting Resiliency for Kernel-Wise CNN Approximation Enabled by Adaptive Hardware Design. 2021 IEEE International Symposium on Circuits and Systems (ISCAS). :1–5.
Efficient low-power accelerators for Convolutional Neural Networks (CNNs) largely benefit from quantization and approximation, which are typically applied layer-wise for efficient hardware implementation. In this work, we present a novel strategy for efficient combination of these concepts at a deeper level, which is at each channel or kernel. We first apply layer-wise, low bit-width, linear quantization and truncation-based approximate multipliers to the CNN computation. Then, based on a state-of-the-art resiliency analysis, we are able to apply a kernel-wise approximation and quantization scheme with negligible accuracy losses, without further retraining. Our proposed strategy is implemented in a specialized framework for fast design space exploration. This optimization leads to a boost in estimated power savings of up to 34% in residual CNN architectures for image classification, compared to the base quantized architecture.
Goldstein, Brunno F., Ferreira, Victor C., Srinivasan, Sudarshan, Das, Dipankar, Nery, Alexandre S., Kundu, Sandip, França, Felipe M. G..  2021.  A Lightweight Error-Resiliency Mechanism for Deep Neural Networks. 2021 22nd International Symposium on Quality Electronic Design (ISQED). :311–316.
In recent years, Deep Neural Networks (DNNs) have made inroads into a number of applications involving pattern recognition - from facial recognition to self-driving cars. Some of these applications, such as self-driving cars, have real-time requirements, where specialized DNN hardware accelerators help meet those requirements. Since DNN execution time is dominated by convolution, Multiply-and-Accumulate (MAC) units are at the heart of these accelerators. As hardware accelerators push the performance limits with strict power constraints, reliability is often compromised. In particular, power-constrained DNN accelerators are more vulnerable to transient and intermittent hardware faults due to particle hits, manufacturing variations, and fluctuations in power supply voltage and temperature. Methods such as hardware replication have been used to deal with these reliability problems in the past. Unfortunately, the duplication approach is untenable in a power constrained environment. This paper introduces a low-cost error-resiliency scheme that targets MAC units employed in conventional DNN accelerators. We evaluate the reliability improvements from the proposed architecture using a set of 6 CNNs over varying bit error rates (BER) and demonstrate that our proposed solution can achieve more than 99% of fault coverage with a 5-bits arithmetic code, complying with the ASIL-D level of ISO26262 standards with a negligible area and power overhead. Additionally, we evaluate the proposed detection mechanism coupled with a word masking correction scheme, demonstrating no loss of accuracy up to a BER of 10-2.
Mezhuev, Pavel, Gerasimov, Alexander, Privalov, Petr, Butkevich, Veronika.  2021.  A dynamic algorithm for source code static analysis. 2021 Ivannikov Memorial Workshop (IVMEM). :57–60.
A source code static analysis became an industrial standard for program source code issues early detection. As one of requirements to such kind of analysis is high performance to provide response of automatic code checking tool as early as possible as far as such kind of tools integrates to Continuous testing and Integration systems. In this paper we propose a source code static analysis algorithm for solving performance issue of source code static analysis tool in general way.
Gandhi, Vidhyotma, Ramkumar, K.R., Kaur, Amanpreet, Kaushal, Payal, Chahal, Jasmeen Kaur, Singh, Jaiteg.  2021.  Security and privacy in IoT, Cloud and Augmented Reality. 2021 6th International Conference on Signal Processing, Computing and Control (ISPCC). :131—135.
Internet of Things (IoT), Cloud and Augmented Reality (AR) are the emerging and developing technologies and are at the horizon and hype of their life cycle. Lots of commercial applications based on IoT, cloud and AR provide unrestricted access to data. The real-time applications based on these technologies are at the cusp of their innovations. The most frequent security attacks for IoT, cloud and AR applications are DDoS attacks. In this paper a detailed account of various DDoS attacks that can be the hindrance of many important sensitive services and can degrade the overall performance of recent services which are purely based on network communications. The DDoS attacks should be dealt with carefully and a set of a new generations of algorithm need to be developed to mitigate the problems caused by non-repudiation kinds of attacks.
Mishina, Ryuya, Tanimoto, Shigeaki, Goromaru, Hideki, Sato, Hiroyuki, Kanai, Atsushi.  2021.  Risk Management of Silent Cyber Risks in Consideration of Emerging Risks. 2021 10th International Congress on Advanced Applied Informatics (IIAI-AAI). :710—716.
In recent years, new cyber attacks such as targeted attacks have caused extensive damage. With the continuing development of the IoT society, various devices are now connected to the network and are being used for various purposes. The Internet of Things has the potential to link cyber risks to actual property damage, as cyberspace risks are connected to physical space. With this increase in unknown cyber risks, the demand for cyber insurance is increasing. One of the most serious emerging risks is the silent cyber risk, and it is likely to increase in the future. However, at present, security measures against silent cyber risks are insufficient. In this study, we conducted a risk management of silent cyber risk for organizations with the objective of contributing to the development of risk management methods for new cyber risks that are expected to increase in the future. Specifically, we modeled silent cyber risk by focusing on state transitions to different risks. We newly defined two types of silent cyber risk, namely, Alteration risk and Combination risk, and conducted risk assessment. Our assessment identified 23 risk factors, and after analyzing them, we found that all of them were classified as Risk Transference. We clarified that the most effective risk countermeasure for Alteration risk was insurance and for Combination risk was measures to reduce the impact of the risk factors themselves. Our evaluation showed that the silent cyber risk could be reduced by about 50%, thus demonstrating the effectiveness of the proposed countermeasures.
Goman, Maksim.  2021.  How to Improve Risk Management in IT Frameworks. 2021 62nd International Scientific Conference on Information Technology and Management Science of Riga Technical University (ITMS). :1—6.
This paper continues analysis of approaches of IT risk assessment and management in modern IT management frameworks. Building on systematicity principles and the review of concepts of risk and methods of risk analysis in the frameworks, we discuss applicability of the methods for business decision-making in the real world and propose ways to their improvement.
2022-11-08
Wei, Yijie, Cao, Qiankai, Gu, Jie, Otseidu, Kofi, Hargrove, Levi.  2020.  A Fully-integrated Gesture and Gait Processing SoC for Rehabilitation with ADC-less Mixed-signal Feature Extraction and Deep Neural Network for Classification and Online Training. 2020 IEEE Custom Integrated Circuits Conference (CICC). :1–4.
An ultra-low-power gesture and gait classification SoC is presented for rehabilitation application featuring (1) mixed-signal feature extraction and integrated low-noise amplifier eliminating expensive ADC and digital feature extraction, (2) an integrated distributed deep neural network (DNN) ASIC supporting a scalable multi-chip neural network for sensor fusion with distortion resiliency for low-cost front end modules, (3) onchip learning of DNN engine allowing in-situ training of user specific operations. A 12-channel 65nm CMOS test chip was fabricated with 1μW power per channel, less than 3ms computation latency, on-chip training for user-specific DNN model and multi-chip networking capability.
Drakopoulos, Georgios, Giannoukou, Ioanna, Mylonas, Phivos, Sioutas, Spyros.  2020.  A Graph Neural Network For Assessing The Affective Coherence Of Twitter Graphs. 2020 IEEE International Conference on Big Data (Big Data). :3618–3627.
Graph neural networks (GNNs) is an emerging class of iterative connectionist models taking full advantage of the interaction patterns in an underlying domain. Depending on their configuration GNNs aggregate local state information to obtain robust estimates of global properties. Since graphs inherently represent high dimensional data, GNNs can effectively perform dimensionality reduction for certain aggregator selections. One such task is assigning sentiment polarity labels to the vertices of a large social network based on local ground truth state vectors containing structural, functional, and affective attributes. Emotions have been long identified as key factors in the overall social network resiliency and determining such labels robustly would be a major indicator of it. As a concrete example, the proposed methodology has been applied to two benchmark graphs obtained from political Twitter with topic sampling regarding the Greek 1821 Independence Revolution and the US 2020 Presidential Elections. Based on the results recommendations for researchers and practitioners are offered.
2022-11-02
Agarwal, Samaksh, Girdhar, Nancy, Raghav, Himanshu.  2021.  A Novel Neural Model based Framework for Detection of GAN Generated Fake Images. 2021 11th International Conference on Cloud Computing, Data Science & Engineering (Confluence). :46–51.
With the advancement in Generative Adversarial Networks (GAN), it has become easier than ever to generate fake images. These images are more realistic and non-discernible by untrained eyes and can be used to propagate fake information on the Internet. In this paper, we propose a novel method to detect GAN generated fake images by using a combination of frequency spectrum of image and deep learning. We apply Discrete Fourier Transform to each of 3 color channels of the image to obtain its frequency spectrum which shows if the image has been upsampled, a common trend in most GANs, and then train a Capsule Network model with it. Conducting experiments on a dataset of almost 1000 images based on Unconditional data modeling (StyleGan2 - ADA) gave results indicating that the model is promising with accuracy over 99% when trained on the state-of-the-art GAN model. In theory, our model should give decent results when trained with one dataset and tested on another.
2022-10-20
Chen, Wenhao, Lin, Li, Newman, Jennifer, Guan, Yong.  2021.  Automatic Detection of Android Steganography Apps via Symbolic Execution and Tree Matching. 2021 IEEE Conference on Communications and Network Security (CNS). :254—262.
The recent focus of cyber security on automated detection of malware for Android apps has omitted the study of some apps used for “legitimate” purposes, such as steganography apps. Mobile steganography apps can be used for delivering harmful messages, and while current research on steganalysis targets the detection of stego images using academic algorithms and well-built benchmarking image data sets, the community has overlooked uncovering a mobile app itself for its ability to perform steganographic embedding. Developing automatic tools for identifying the code in a suspect app as a stego app can be very challenging: steganography algorithms can be represented in a variety of ways, and there exists many image editing algorithms which appear similar to steganography algorithms.This paper proposes the first automated approach to detect Android steganography apps. We use symbolic execution to summarize an app’s image operation behavior into expression trees, and match the extracted expression trees with reference trees that represents the expected behavior of a steganography embedding process. We use a structural feature based similarity measure to calculate the similarity between expression trees. Our experiments show that, the propose approach can detect real world Android stego apps that implement common spatial domain and frequency domain embedding algorithms with a high degree of accuracy. Furthermore, our procedure describes a general framework that has the potential to be applied to other similar questions when studying program behaviors.
Tiwari, Krishnakant, Gangurde, Sahil J..  2021.  LSB Steganography Using Pixel Locator Sequence with AES. 2021 2nd International Conference on Secure Cyber Computing and Communications (ICSCCC). :302—307.
Image steganography is a technique of hiding confidential data in the images. We do this by incorporating the LSB(Least Significant Bit) of the image pixels. LSB steganography has been there for a while, and much progress has been made in it. In this paper, we try to increase the security of the LSB steganography process by incorporating a random data distribution method which we call pixel locator sequence (PLS). This method scatters the data to be infused into the image by randomly picking up the pixels and changing their LSB value accordingly. This random distribution makes it difficult for unknowns to look for the data. This PLS file is also encrypted using AES and is key for the data encryption/decryption process between the two parties. This technique is not very space-efficient and involves sending meta-data (PLS), but that trade-off was necessary for the additional security. We evaluated the proposed approach using two criteria: change in image dynamics and robustness against steganalysis attacks. To assess change in image dynamics, we measured the MSE and PSNR values. To find the robustness of the proposed method, we used the tool StegExpose which uses the stego image produced from the proposed algorithm and analyzes them using the major steganalysis attacks such as Primary Sets, Chi-Square, Sample Pairs, and RS Analysis. Finally, we show that this method has good security metrics for best known LSB steganography detection tools and techniques.
Ma, Tengchao, Xu, Changqiao, Zhou, Zan, Kuang, Xiaohui, Zhong, Lujie, Grieco, Luigi Alfredo.  2020.  Intelligent-Driven Adapting Defense Against the Client-Side DNS Cache Poisoning in the Cloud. GLOBECOM 2020 - 2020 IEEE Global Communications Conference. :1—6.
A new Domain Name System (DNS) cache poisoning attack aiming at clients has emerged recently. It induced cloud users to visit fake web sites and thus reveal information such as account passwords. However, the design of current DNS defense architecture does not formally consider the protection of clients. Although the DNS traffic encryption technology can alleviate this new attack, its deployment is as slow as the new DNS architecture. Thus we propose a lightweight adaptive intelligent defense strategy, which only needs to be deployed on the client without any configuration support of DNS. Firstly, we model the attack and defense process as a static stochastic game with incomplete information under bounded rationality conditions. Secondly, to solve the problem caused by uncertain attack strategies and large quantities of game states, we adopt a deep reinforcement learning (DRL) with guaranteed monotonic improvement. Finally, through the prototype system experiment in Alibaba Cloud, the effectiveness of our method is proved against multiple attack modes with a success rate of 97.5% approximately.
Barr-Smith, Frederick, Ugarte-Pedrero, Xabier, Graziano, Mariano, Spolaor, Riccardo, Martinovic, Ivan.  2021.  Survivalism: Systematic Analysis of Windows Malware Living-Off-The-Land. 2021 IEEE Symposium on Security and Privacy (SP). :1557—1574.
As malware detection algorithms and methods become more sophisticated, malware authors adopt equally sophisticated evasion mechanisms to defeat them. Anecdotal evidence claims Living-Off-The-Land (LotL) techniques are one of the major evasion techniques used in many malware attacks. These techniques leverage binaries already present in the system to conduct malicious actions. We present the first large-scale systematic investigation of the use of these techniques by malware on Windows systems.In this paper, we analyse how common the use of these native system binaries is across several malware datasets, containing a total of 31,805,549 samples. We identify an average 9.41% prevalence. Our results show that the use of LotL techniques is prolific, particularly in Advanced Persistent Threat (APT) malware samples where the prevalence is 26.26%, over twice that of commodity malware.To illustrate the evasive potential of LotL techniques, we test the usage of LotL techniques against several fully patched Windows systems in a local sandboxed environment and show that there is a generalised detection gap in 10 of the most popular anti-virus products.
2022-10-16
Hauschild, Florian, Garb, Kathrin, Auer, Lukas, Selmke, Bodo, Obermaier, Johannes.  2021.  ARCHIE: A QEMU-Based Framework for Architecture-Independent Evaluation of Faults. 2021 Workshop on Fault Detection and Tolerance in Cryptography (FDTC). :20–30.
Fault injection is a major threat to embedded system security since it can lead to modified control flows and leakage of critical security parameters, such as secret keys. However, injecting physical faults into devices is cumbersome and difficult since it requires a lot of preparation and manual inspection of the assembly instructions. Furthermore, a single fault injection method cannot cover all possible fault types. Simulating fault injection in comparison, is, in general, less costly, more time-efficient, and can cover a large amount of possible fault combinations. Hence, many different fault injection tools have been developed for this purpose. However, previous tools have several drawbacks since they target only individual architectures or cover merely a limited amount of the possible fault types for only specific memory types. In this paper, we present ARCHIE, a QEMU-based architecture-independent fault evaluation tool, that is able to simulate transient and permanent instruction and data faults in RAM, flash, and processor registers. ARCHIE supports dynamic code analysis and parallelized execution. It makes use of the Tiny Code Generator (TCG) plugin, which we extended with our fault plugin to enable read and write operations from and to guest memory. We demonstrate ARCHIE’s capabilities through automatic binary analysis of two exemplary applications, TinyAES and a secure bootloader, and validate our tool’s results in a laser fault injection experiment. We show that ARCHIE can be run both on a server with extensive resources and on a common laptop. ARCHIE can be applied to a wide range of use cases for analyzing and enhancing open source and proprietary firmware in white, grey, or black box tests.
Trautsch, Alexander, Herbold, Steffen, Grabowski, Jens.  2020.  Static source code metrics and static analysis warnings for fine-grained just-in-time defect prediction. 2020 IEEE International Conference on Software Maintenance and Evolution (ICSME). :127–138.
Software quality evolution and predictive models to support decisions about resource distribution in software quality assurance tasks are an important part of software engineering research. Recently, a fine-grained just-in-time defect prediction approach was proposed which has the ability to find bug-inducing files within changes instead of only complete changes. In this work, we utilize this approach and improve it in multiple places: data collection, labeling and features. We include manually validated issue types, an improved SZZ algorithm which discards comments, whitespaces and refactorings. Additionally, we include static source code metrics as well as static analysis warnings and warning density derived metrics as features. To assess whether we can save cost we incorporate a specialized defect prediction cost model. To evaluate our proposed improvements of the fine-grained just-in-time defect prediction approach we conduct a case study that encompasses 38 Java projects, 492,241 file changes in 73,598 commits and spans 15 years. We find that static source code metrics and static analysis warnings are correlated with bugs and that they can improve the quality and cost saving potential of just-in-time defect prediction models.
Shi, Yongpeng, Gao, Ya, Xia, Yujie.  2020.  Secrecy Performance Analysis in Internet of Satellites: Physical Layer Security Perspective. 2020 IEEE/CIC International Conference on Communications in China (ICCC). :1185–1189.
As the latest evolving architecture of space networks, Internet of Satellites (IoSat) is regarded as a promising paradigm in the future beyond 5G and 6G wireless systems. However, due to the extremely large number of satellites and open links, it is challenging to ensure communication security in IoSat, especially for wiretap resisting. To the best of our knowledge, it is an entirely new problem to study the security issue in IoSat, since existing works concerning physical layer security (PLS) in satellite networks mainly focused on the space-to-terrestrial links. It is also noted that, we are the first to investigate PLS problem in IoSat. In light of this, we present in this paper an analytical model of PLS in IoSat where a terrestrial transmitter delivers its information to multi-satellite in the presence of eavesdroppers. By adopting the key parameters such as satellites' deployment density, minimum elevation angle, and orbit height, two major secrecy metric including average secrecy capacity and probability are derived and analyzed. As demonstrated by extensive numerical results, the presented theoretical framework can be utilized to efficiently evaluate the secrecy performance of IoSat, and guide the design and optimization for communication security in such systems.
Lipps, Christoph, Mallikarjun, Sachinkumar Bavikatti, Strufe, Matthias, Heinz, Christopher, Grimm, Christoph, Schotten, Hans Dieter.  2020.  Keep Private Networks Private: Secure Channel-PUFs, and Physical Layer Security by Linear Regression Enhanced Channel Profiles. 2020 3rd International Conference on Data Intelligence and Security (ICDIS). :93–100.
In the context of a rapidly changing and increasingly complex (industrial) production landscape, securing the (communication) infrastructure is becoming an ever more important but also more challenging task - accompanied by the application of radio communication. A worthwhile and promising approach to overcome the arising attack vectors, and to keep private networks private, are Physical Layer Security (PhySec) implementations. The paper focuses on the transfer of the IEEE802.11 (WLAN) PhySec - Secret Key Generation (SKG) algorithms to Next Generation Mobile Networks (NGMNs), as they are the driving forces and key enabler of future industrial networks. Based on a real world Long Term Evolution (LTE) testbed, improvements of the SKG algorithms are validated. The paper presents and evaluates significant improvements in the establishment of channel profiles, whereby especially the Bit Disagreement Rate (BDR) can be improved substantially. The combination of the Discrete Cosine Transformation (DCT) and the supervised Machine Learning (ML) algorithm - Linear Regression (LR) - provides outstanding results, which can be used beyond the SKG application. The evaluation also emphasizes the appropriateness of PhySec for securing private networks.
Guo, Zhen, Cho, Jin–Hee.  2021.  Game Theoretic Opinion Models and Their Application in Processing Disinformation. 2021 IEEE Global Communications Conference (GLOBECOM). :01–07.
Disinformation, fake news, and unverified rumors spread quickly in online social networks (OSNs) and manipulate people's opinions and decisions about life events. The solid mathematical solutions of the strategic decisions in OSNs have been provided under game theory models, including multiple roles and features. This work proposes a game-theoretic opinion framework to model subjective opinions and behavioral strategies of attackers, users, and a defender. The attackers use information deception models to disseminate disinformation. We investigate how different game-theoretic opinion models of updating people's subject opinions can influence a way for people to handle disinformation. We compare the opinion dynamics of the five different opinion models (i.e., uncertainty, homophily, assertion, herding, and encounter-based) where an opinion is formulated based on Subjective Logic that offers the capability to deal with uncertain opinions. Via our extensive experiments, we observe that the uncertainty-based opinion model shows the best performance in combating disinformation among all in that uncertainty-based decisions can significantly help users believe true information more than disinformation.