Visible to the public Biblio

Found 2859 results

Filters: First Letter Of Last Name is H  [Clear All Filters]
2018-02-02
Gouglidis, A., Green, B., Busby, J., Rouncefield, M., Hutchison, D., Schauer, S..  2016.  Threat awareness for critical infrastructures resilience. 2016 8th International Workshop on Resilient Networks Design and Modeling (RNDM). :196–202.

Utility networks are part of every nation's critical infrastructure, and their protection is now seen as a high priority objective. In this paper, we propose a threat awareness architecture for critical infrastructures, which we believe will raise security awareness and increase resilience in utility networks. We first describe an investigation of trends and threats that may impose security risks in utility networks. This was performed on the basis of a viewpoint approach that is capable of identifying technical and non-technical issues (e.g., behaviour of humans). The result of our analysis indicated that utility networks are affected strongly by technological trends, but that humans comprise an important threat to them. This provided evidence and confirmed that the protection of utility networks is a multi-variable problem, and thus, requires the examination of information stemming from various viewpoints of a network. In order to accomplish our objective, we propose a systematic threat awareness architecture in the context of a resilience strategy, which ultimately aims at providing and maintaining an acceptable level of security and safety in critical infrastructures. As a proof of concept, we demonstrate partially via a case study the application of the proposed threat awareness architecture, where we examine the potential impact of attacks in the context of social engineering in a European utility company.

Huang, W., Bruck, J..  2016.  Secure RAID schemes for distributed storage. 2016 IEEE International Symposium on Information Theory (ISIT). :1401–1405.

We propose secure RAID, i.e., low-complexity schemes to store information in a distributed manner that is resilient to node failures and resistant to node eavesdropping. We generalize the concept of systematic encoding to secure RAID and show that systematic schemes have significant advantages in the efficiencies of encoding, decoding and random access. For the practical high rate regime, we construct three XOR-based systematic secure RAID schemes with optimal encoding and decoding complexities, from the EVENODD codes and B codes, which are array codes widely used in the RAID architecture. These schemes optimally tolerate two node failures and two eavesdropping nodes. For more general parameters, we construct efficient systematic secure RAID schemes from Reed-Solomon codes. Our results suggest that building “keyless”, information-theoretic security into the RAID architecture is practical.

Hussein, A., Elhajj, I. H., Chehab, A., Kayssi, A..  2016.  SDN Security Plane: An Architecture for Resilient Security Services. 2016 IEEE International Conference on Cloud Engineering Workshop (IC2EW). :54–59.

Software Defined Networking (SDN) is the new promise towards an easily configured and remotely controlled network. Based on Centralized control, SDN technology has proved its positive impact on the world of network communications from different aspects. Security in SDN, as in traditional networks, is an essential feature that every communication system should possess. In this paper, we propose an SDN security design approach, which strikes a good balance between network performance and security features. We show how such an approach can be used to prevent DDoS attacks targeting either the controller or the different hosts in the network, and how to trace back the source of the attack. The solution lies in introducing a third plane, the security plane, in addition to the data plane, which is responsible for forwarding data packets between SDN switches, and parallel to the control plane, which is responsible for rule and data exchange between the switches and the SDN controller. The security plane is designed to exchange security-related data between a third party agent on the switch and a third party software module alongside the controller. Our evaluation shows the capability of the proposed system to enforce different levels of real-time user-defined security with low overhead and minimal configuration.

Tramèr, F., Atlidakis, V., Geambasu, R., Hsu, D., Hubaux, J. P., Humbert, M., Juels, A., Lin, H..  2017.  FairTest: Discovering Unwarranted Associations in Data-Driven Applications. 2017 IEEE European Symposium on Security and Privacy (EuroS P). :401–416.

In a world where traditional notions of privacy are increasingly challenged by the myriad companies that collect and analyze our data, it is important that decision-making entities are held accountable for unfair treatments arising from irresponsible data usage. Unfortunately, a lack of appropriate methodologies and tools means that even identifying unfair or discriminatory effects can be a challenge in practice. We introduce the unwarranted associations (UA) framework, a principled methodology for the discovery of unfair, discriminatory, or offensive user treatment in data-driven applications. The UA framework unifies and rationalizes a number of prior attempts at formalizing algorithmic fairness. It uniquely combines multiple investigative primitives and fairness metrics with broad applicability, granular exploration of unfair treatment in user subgroups, and incorporation of natural notions of utility that may account for observed disparities. We instantiate the UA framework in FairTest, the first comprehensive tool that helps developers check data-driven applications for unfair user treatment. It enables scalable and statistically rigorous investigation of associations between application outcomes (such as prices or premiums) and sensitive user attributes (such as race or gender). Furthermore, FairTest provides debugging capabilities that let programmers rule out potential confounders for observed unfair effects. We report on use of FairTest to investigate and in some cases address disparate impact, offensive labeling, and uneven rates of algorithmic error in four data-driven applications. As examples, our results reveal subtle biases against older populations in the distribution of error in a predictive health application and offensive racial labeling in an image tagger.

2018-01-23
Erola, A., Agrafiotis, I., Happa, J., Goldsmith, M., Creese, S., Legg, P. A..  2017.  RicherPicture: Semi-automated cyber defence using context-aware data analytics. 2017 International Conference On Cyber Situational Awareness, Data Analytics And Assessment (Cyber SA). :1–8.

In a continually evolving cyber-threat landscape, the detection and prevention of cyber attacks has become a complex task. Technological developments have led organisations to digitise the majority of their operations. This practice, however, has its perils, since cybespace offers a new attack-surface. Institutions which are tasked to protect organisations from these threats utilise mainly network data and their incident response strategy remains oblivious to the needs of the organisation when it comes to protecting operational aspects. This paper presents a system able to combine threat intelligence data, attack-trend data and organisational data (along with other data sources available) in order to achieve automated network-defence actions. Our approach combines machine learning, visual analytics and information from business processes to guide through a decision-making process for a Security Operation Centre environment. We test our system on two synthetic scenarios and show that correlating network data with non-network data for automated network defences is possible and worth investigating further.

Huang, He, Youssef, Amr M., Debbabi, Mourad.  2017.  BinSequence: Fast, Accurate and Scalable Binary Code Reuse Detection. Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security. :155–166.

Code reuse detection is a key technique in reverse engineering. However, existing source code similarity comparison techniques are not applicable to binary code. Moreover, compilers have made this problem even more difficult due to the fact that different assembly code and control flow structures can be generated by the compilers even when implementing the same functionality. To address this problem, we present a fuzzy matching approach to compare two functions. We first obtain an initial mapping between basic blocks by leveraging the concept of longest common subsequence on the basic block level and execution path level. We then extend the achieved mapping using neighborhood exploration. To make our approach applicable to large data sets, we designed an effective filtering process using Minhashing. Based on the proposed approach, we implemented a tool named BinSequence and conducted extensive experiments with it. Our results show that given a large assembly code repository with millions of functions, BinSequence is efficient and can attain high quality similarity ranking of assembly functions with an accuracy of above 90%. We also present several practical use cases including patch analysis, malware analysis and bug search.

Zhu, Ruiyu, Huang, Yan, Cassel, Darion.  2017.  Pool: Scalable On-Demand Secure Computation Service Against Malicious Adversaries. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. :245–257.

This paper considers the problem of running a long-term on-demand service for executing actively-secure computations. We examined state-of-the-art tools and implementations for actively-secure computation and identified a set of key features indispensable to offer meaningful service like this. Since no satisfactory tools exist for the purpose, we developed Pool, a new tool for building and executing actively-secure computation protocols at extreme scales with nearly zero offline delay. With Pool, we are able to obliviously execute, for the first time, reactive computations like ORAM in the malicious threat model. Many technical benefits of Pool can be attributed to the concept of pool-based cut-and-choose. We show with experiments that this idea has significantly improved the scalability and usability of JIMU, a state-of-the-art LEGO protocol.

Hossain, M., Hasan, R..  2017.  Boot-IoT: A Privacy-Aware Authentication Scheme for Secure Bootstrapping of IoT Nodes. 2017 IEEE International Congress on Internet of Things (ICIOT). :1–8.

The Internet of Things (IoT) devices perform security-critical operations and deal with sensitive information in the IoT-based systems. Therefore, the increased deployment of smart devices will make them targets for cyber attacks. Adversaries can perform malicious actions, leak private information, and track devices' and their owners' location by gaining unauthorized access to IoT devices and networks. However, conventional security protocols are not primarily designed for resource constrained devices and therefore cannot be applied directly to IoT systems. In this paper, we propose Boot-IoT - a privacy-preserving, lightweight, and scalable security scheme for limited resource devices. Boot-IoT prevents a malicious device from joining an IoT network. Boot-IoT enables a device to compute a unique identity for authentication each time the device enters a network. Moreover, during device to device communication, Boot-IoT provides a lightweight mutual authentication scheme that ensures privacy-preserving identity usages. We present a detailed analysis of the security strength of BootIoT. We implemented a prototype of Boot-IoT on IoT devices powered by Contiki OS and provided an extensive comparative analysis of Boot-IoT with contemporary authentication methods. Our results show that Boot-IoT is resource efficient and provides better scalability compared to current solutions.

Ślezak, D., Chadzyńska-Krasowska, A., Holland, J., Synak, P., Glick, R., Perkowski, M..  2017.  Scalable cyber-security analytics with a new summary-based approximate query engine. 2017 IEEE International Conference on Big Data (Big Data). :1840–1849.

A growing need for scalable solutions for both machine learning and interactive analytics exists in the area of cyber-security. Machine learning aims at segmentation and classification of log events, which leads towards optimization of the threat monitoring processes. The tools for interactive analytics are required to resolve the uncertain cases, whereby machine learning algorithms are not able to provide a convincing outcome and human expertise is necessary. In this paper we focus on a case study of a security operations platform, whereby typical layers of information processing are integrated with a new database engine dedicated to approximate analytics. The engine makes it possible for the security experts to query massive log event data sets in a standard relational style. The query outputs are received orders of magnitude faster than any of the existing database solutions running with comparable resources and, in addition, they are sufficiently accurate to make the right decisions about suspicious corner cases. The engine internals are driven by the principles of information granulation and summary-based processing. They also refer to the ideas of data quantization, approximate computing, rough sets and probability propagation. In the paper we study how the engine's parameters can influence its performance within the considered environment. In addition to the results of experiments conducted on large data sets, we also discuss some of our high level design decisions including the choice of an approximate query result accuracy measure that should reflect the specifics of the considered threat monitoring operations.

Hoel, Tore, Griffiths, Dai, Chen, Weiqin.  2017.  The Influence of Data Protection and Privacy Frameworks on the Design of Learning Analytics Systems. Proceedings of the Seventh International Learning Analytics & Knowledge Conference. :243–252.

Learning analytics open up a complex landscape of privacy and policy issues, which, in turn, influence how learning analytics systems and practices are designed. Research and development is governed by regulations for data storage and management, and by research ethics. Consequently, when moving solutions out the research labs implementers meet constraints defined in national laws and justified in privacy frameworks. This paper explores how the OECD, APEC and EU privacy frameworks seek to regulate data privacy, with significant implications for the discourse of learning, and ultimately, an impact on the design of tools, architectures and practices that now are on the drawing board. A detailed list of requirements for learning analytics systems is developed, based on the new legal requirements defined in the European General Data Protection Regulation, which from 2018 will be enforced as European law. The paper also gives an initial account of how the privacy discourse in Europe, Japan, South-Korea and China is developing and reflects upon the possible impact of the different privacy frameworks on the design of LA privacy solutions in these countries. This research contributes to knowledge of how concerns about privacy and data protection related to educational data can drive a discourse on new approaches to privacy engineering based on the principles of Privacy by Design. For the LAK community, this study represents the first attempt to conceptualise the issues of privacy and learning analytics in a cross-cultural context. The paper concludes with a plan to follow up this research on privacy policies and learning analytics systems development with a new international study.

Karam, R., Hoque, T., Ray, S., Tehranipoor, M., Bhunia, S..  2017.  MUTARCH: Architectural diversity for FPGA device and IP security. 2017 22nd Asia and South Pacific Design Automation Conference (ASP-DAC). :611–616.
Field Programmable Gate Arrays (FPGAs) are being increasingly deployed in diverse applications including the emerging Internet of Things (IoT), biomedical, and automotive systems. However, security of the FPGA configuration file (i.e. bitstream), especially during in-field reconfiguration, as well as effective safeguards against unauthorized tampering and piracy during operation, are notably lacking. The current practice of bitstreram encryption is only available in high-end FPGAs, incurs unacceptably high overhead for area/energy-constrained devices, and is susceptible to side channel attacks. In this paper, we present a fundamentally different and novel approach to FPGA security that can protect against all major attacks on FPGA, namely, unauthorized in-field reprogramming, piracy of FPGA intellectual property (IP) blocks, and targeted malicious modification of the bitstream. Our approach employs the security through diversity principle to FPGA, which is often used in the software domain. We make each device architecturally different from the others using both physical (static) and logical (time-varying) configuration keys, ensuring that attackers cannot use a priori knowledge about one device to mount an attack on another. It therefore mitigates the economic motivation for attackers to reverse engineering the bitstream and IP. The approach is compatible with modern remote upgrade techniques, and requires only small modifications to existing FPGA tool flows, making it an attractive addition to the FPGA security suite. Our experimental results show that the proposed approach achieves provably high security against tampering and piracy with worst-case 14% latency overhead and 13% area overhead.
Zhang, Dongrong, He, Miao, Wang, Xiaoxiao, Tehranipoor, M..  2017.  Dynamically obfuscated scan for protecting IPs against scan-based attacks throughout supply chain. 2017 IEEE 35th VLSI Test Symposium (VTS). :1–6.

Scan-based test is commonly used to increase testability and fault coverage, however, it is also known to be a liability for chip security. Research has shown that intellectual property (IP) or secret keys can be leaked through scan-based attacks. In this paper, we propose a dynamically-obfuscated scan design for protecting IPs against scan-based attacks. By perturbing all test patterns/responses and protecting the obfuscation key, the proposed architecture is proven to be robust against existing non-invasive scan attacks, and can protect all scan data from attackers in foundry, assembly, and system developers (i.e., OEMs) without compromising the testability. Furthermore, the proposed architecture can be easily plugged into EDA generated scan chains without having a noticeable impact on conventional integrated circuit (IC) design, manufacturing, and test flow. Finally, detailed security and experimental analyses have been performed on several benchmarks. The results demonstrate that the proposed method can protect chips from existing brute force, differential, and other scan-based attacks that target the obfuscation key. The proposed design is of low overhead on area, power consumption, and pattern generation time, and there is no impact on test time.

Moon, Hyungon, Lee, Jinyong, Hwang, Dongil, Jung, Seonhwa, Seo, Jiwon, Paek, Yunheung.  2017.  Architectural Supports to Protect OS Kernels from Code-Injection Attacks and Their Applications. ACM Trans. Des. Autom. Electron. Syst.. 23:10:1–10:25.

The kernel code injection is a common behavior of kernel-compromising attacks where the attackers aim to gain their goals by manipulating an OS kernel. Several security mechanisms have been proposed to mitigate such threats, but they all suffer from non-negligible performance overhead. This article introduces a hardware reference monitor, called Kargos, which can detect the kernel code injection attacks with nearly zero performance cost. Kargos monitors the behaviors of an OS kernel from outside the CPU through the standard bus interconnect and debug interface available with most major microprocessors. By watching the execution traces and memory access events in the monitored target system, Kargos uncovers attempts to execute malicious code with the kernel privilege. On top of this, we also applied the architectural supports for Kargos to the detection of ROP attacks. KS-Stack is the hardware component that builds and maintains the shadow stacks using the existing supports to detect this ROP attacks. According to our experiments, Kargos detected all the kernel code injection attacks that we tested, yet just increasing the computational loads on the target CPU by less than 1% on average. The performance overhead of the KS-Stack was also less than 1%.

Huber, Manuel, Horsch, Julian, Wessel, Sascha.  2017.  Protecting Suspended Devices from Memory Attacks. Proceedings of the 10th European Workshop on Systems Security. :10:1–10:6.

Today's computing devices keep considerable amounts of sensitive data unencrypted in RAM. When stolen, lost or simply unattended, attackers are capable of accessing the data in RAM with ease. Valuable and possibly classified data falling into the wrongs hands can lead to severe consequences, for instance when disclosed or reused to log in to accounts or to make transactions. We present a lightweight and hardware-independent mechanism to protect confidential data on suspended Linux devices against physical attackers. Our mechanism rapidly encrypts the contents of RAM during suspension and thereby prevents attackers from retrieving confidential data from the device. Existing systems can easily be extended with our mechanism while fully preserving the usability for end users.

Hu, X., Tang, W., Liu, H., Zhang, D., Lian, S., He, Y..  2017.  Construction of bulk power grid security defense system under the background of AC/DC hybrid EHV transmission system and new energy. IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society. :5713–5719.

With the rapid development of bulk power grid under extra-high voltage (EHV) AC/DC hybrid power system and extensive access of distributed energy resources (DER), operation characteristics of power grid have become increasingly complicated. To cope with new severe challenges faced by safe operation of interconnected bulk power grids, an in-depth analysis of bulk power grid security defense system under the background of EHV and new energy resources was implemented from aspects of management and technology in this paper. Supported by big data and cloud computing, bulk power grid security defense system was divided into two parts: one is the prevention and control of operation risks. Power grid risks are eliminated and influence of random faults is reduced through measures such as network planning, power-cut scheme, risk pre-warning, equipment status monitoring, voltage control, frequency control and adjustment of operating mode. The other is the fault recovery control. By updating “three defense lines”, intelligent relay protection is used to deal with the challenges brought by EHV AC/DC hybrid grid and new energy resources. And then security defense system featured by passive defense is promoted to active type power grid security defense system.

Falk, E., Repcek, S., Fiz, B., Hommes, S., State, R., Sasnauskas, R..  2017.  VSOC - A Virtual Security Operating Center. GLOBECOM 2017 - 2017 IEEE Global Communications Conference. :1–6.

Security in virtualised environments is becoming increasingly important for institutions, not only for a firm's own on-site servers and network but also for data and sites that are hosted in the cloud. Today, security is either handled globally by the cloud provider, or each customer needs to invest in its own security infrastructure. This paper proposes a Virtual Security Operation Center (VSOC) that allows to collect, analyse and visualize security related data from multiple sources. For instance, a user can forward log data from its firewalls, applications and routers in order to check for anomalies and other suspicious activities. The security analytics provided by the VSOC are comparable to those of commercial security incident and event management (SIEM) solutions, but are deployed as a cloud-based solution with the additional benefit of using big data processing tools to handle large volumes of data. This allows us to detect more complex attacks that cannot be detected with todays signature-based (i.e. rules) SIEM solutions.

Hemanth, D. J., Popescu, D. E., Mittal, M., Maheswari, S. U..  2017.  Analysis of wavelet, ridgelet, curvelet and bandelet transforms for QR code based image steganography. 2017 14th International Conference on Engineering of Modern Electric Systems (EMES). :121–126.

Transform based image steganography methods are commonly used in security applications. However, the application of several recent transforms for image steganography remains unexplored. This paper presents bit-plane based steganography method using different transforms. In this work, the bit-plane of the transform coefficients is selected to embed the secret message. The characteristics of four transforms used in the steganography have been analyzed and the results of the four transforms are compared. This has been proven in the experimental results.

Aledhari, M., Marhoon, A., Hamad, A., Saeed, F..  2017.  A New Cryptography Algorithm to Protect Cloud-Based Healthcare Services. 2017 IEEE/ACM International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE). :37–43.

The revolution of smart devices has a significant and positive impact on the lives of many people, especially in regard to elements of healthcare. In part, this revolution is attributed to technological advances that enable individuals to wear and use medical devices to monitor their health activities, but remotely. Also, these smart, wearable medical devices assist health care providers in monitoring their patients remotely, thereby enabling physicians to respond quickly in the event of emergencies. An ancillary advantage is that health care costs will be reduced, another benefit that, when paired with prompt medical treatment, indicates significant advances in the contemporary management of health care. However, the competition among manufacturers of these medical devices creates a complexity of small and smart wearable devices such as ECG and EMG. This complexity results in other issues such as patient security, privacy, confidentiality, and identity theft. In this paper, we discuss the design and implementation of a hybrid real-time cryptography algorithm to secure lightweight wearable medical devices. The proposed system is based on an emerging innovative technology between the genomic encryptions and the deterministic chaos method to provide a quick and secure cryptography algorithm for real-time health monitoring that permits for threats to patient confidentiality to be addressed. The proposed algorithm also considers the limitations of memory and size of the wearable health devices. The experimental results and the encryption analysis indicate that the proposed algorithm provides a high level of security for the remote health monitoring system.

Wang, B., Song, W., Lou, W., Hou, Y. T..  2017.  Privacy-preserving pattern matching over encrypted genetic data in cloud computing. IEEE INFOCOM 2017 - IEEE Conference on Computer Communications. :1–9.

Personalized medicine performs diagnoses and treatments according to the DNA information of the patients. The new paradigm will change the health care model in the future. A doctor will perform the DNA sequence matching instead of the regular clinical laboratory tests to diagnose and medicate the diseases. Additionally, with the help of the affordable personal genomics services such as 23andMe, personalized medicine will be applied to a great population. Cloud computing will be the perfect computing model as the volume of the DNA data and the computation over it are often immense. However, due to the sensitivity, the DNA data should be encrypted before being outsourced into the cloud. In this paper, we start from a practical system model of the personalize medicine and present a solution for the secure DNA sequence matching problem in cloud computing. Comparing with the existing solutions, our scheme protects the DNA data privacy as well as the search pattern to provide a better privacy guarantee. We have proved that our scheme is secure under the well-defined cryptographic assumption, i.e., the sub-group decision assumption over a bilinear group. Unlike the existing interactive schemes, our scheme requires only one round of communication, which is critical in practical application scenarios. We also carry out a simulation study using the real-world DNA data to evaluate the performance of our scheme. The simulation results show that the computation overhead for real world problems is practical, and the communication cost is small. Furthermore, our scheme is not limited to the genome matching problem but it applies to general privacy preserving pattern matching problems which is widely used in real world.

Backes, M., Berrang, P., Bieg, M., Eils, R., Herrmann, C., Humbert, M., Lehmann, I..  2017.  Identifying Personal DNA Methylation Profiles by Genotype Inference. 2017 IEEE Symposium on Security and Privacy (SP). :957–976.

Since the first whole-genome sequencing, the biomedical research community has made significant steps towards a more precise, predictive and personalized medicine. Genomic data is nowadays widely considered privacy-sensitive and consequently protected by strict regulations and released only after careful consideration. Various additional types of biomedical data, however, are not shielded by any dedicated legal means and consequently disseminated much less thoughtfully. This in particular holds true for DNA methylation data as one of the most important and well-understood epigenetic element influencing human health. In this paper, we show that, in contrast to the aforementioned belief, releasing one's DNA methylation data causes privacy issues akin to releasing one's actual genome. We show that already a small subset of methylation regions influenced by genomic variants are sufficient to infer parts of someone's genome, and to further map this DNA methylation profile to the corresponding genome. Notably, we show that such re-identification is possible with 97.5% accuracy, relying on a dataset of more than 2500 genomes, and that we can reject all wrongly matched genomes using an appropriate statistical test. We provide means for countering this threat by proposing a novel cryptographic scheme for privately classifying tumors that enables a privacy-respecting medical diagnosis in a common clinical setting. The scheme relies on a combination of random forests and homomorphic encryption, and it is proven secure in the honest-but-curious model. We evaluate this scheme on real DNA methylation data, and show that we can keep the computational overhead to acceptable values for our application scenario.

2018-01-16
Zouari, J., Hamdi, M., Kim, T. H..  2017.  A privacy-preserving homomorphic encryption scheme for the Internet of Things. 2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC). :1939–1944.

The Internet of Things is a disruptive paradigm based on the cooperation of a plethora of heterogeneous smart things to collect, transmit, and analyze data from the ambient environment. To this end, many monitored variables are combined by a data analysis module in order to implement efficient context-aware decision mechanisms. To ensure resource efficiency, aggregation is a long established solution, however it is applicable only in the case of one sensed variable. We extend the use of aggregation to the complex context of IoT by proposing a novel approach for secure cooperation of smart things while granting confidentiality and integrity. Traditional solutions for data concealment in resource constrained devices rely on hop-by-hop or end-to-end encryption, which are shown to be inefficient in our context. We use a more sophisticated scheme relying on homomorphic encryption which is not compromise resilient. We combine fully additive encryption with fully additive secret sharing to fulfill the required properties. Thorough security analysis and performance evaluation show a viable tradeoff between security and efficiency for our scheme.

Hesamifard, Ehsan, Takabi, Hassan, Ghasemi, Mehdi, Jones, Catherine.  2017.  Privacy-preserving Machine Learning in Cloud. Proceedings of the 2017 on Cloud Computing Security Workshop. :39–43.

Machine learning algorithms based on deep neural networks (NN) have achieved remarkable results and are being extensively used in different domains. On the other hand, with increasing growth of cloud services, several Machine Learning as a Service (MLaaS) are offered where training and deploying machine learning models are performed on cloud providers' infrastructure. However, machine learning algorithms require access to raw data which is often privacy sensitive and can create potential security and privacy risks. To address this issue, we develop new techniques to provide solutions for applying deep neural network algorithms to the encrypted data. In this paper, we show that it is feasible and practical to train neural networks using encrypted data and to make encrypted predictions, and also return the predictions in an encrypted form. We demonstrate applicability of the proposed techniques and evaluate its performance. The empirical results show that it provides accurate privacy-preserving training and classification.

Emura, Keita, Hayashi, Takuya, Kunihiro, Noboru, Sakuma, Jun.  2017.  Mis-operation Resistant Searchable Homomorphic Encryption. Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security. :215–229.

Let us consider a scenario that a data holder (e.g., a hospital) encrypts a data (e.g., a medical record) which relates a keyword (e.g., a disease name), and sends its ciphertext to a server. We here suppose not only the data but also the keyword should be kept private. A receiver sends a query to the server (e.g., average of body weights of cancer patients). Then, the server performs the homomorphic operation to the ciphertexts of the corresponding medical records, and returns the resultant ciphertext. In this scenario, the server should NOT be allowed to perform the homomorphic operation against ciphertexts associated with different keywords. If such a mis-operation happens, then medical records of different diseases are unexpectedly mixed. However, in the conventional homomorphic encryption, there is no way to prevent such an unexpected homomorphic operation, and this fact may become visible after decrypting a ciphertext, or as the most serious case it might be never detected. To circumvent this problem, in this paper, we propose mis-operation resistant homomorphic encryption, where even if one performs the homomorphic operations against ciphertexts associated with keywords ω' and ω, where ω -ω', the evaluation algorithm detects this fact. Moreover, even if one (intentionally or accidentally) performs the homomorphic operations against such ciphertexts, a ciphertext associated with a random keyword is generated, and the decryption algorithm rejects it. So, the receiver can recognize such a mis-operation happens in the evaluation phase. In addition to mis-operation resistance, we additionally adopt secure search functionality for keywords since it is desirable when one would like to delegate homomorphic operations to a third party. So, we call the proposed primitive mis-operation resistant searchable homomorphic encryption (MR-SHE). We also give our implementation result of inner products of encrypted vectors. In the case when both vectors are encrypted, the running time of the receiver is millisecond order for relatively small-dimensional (e.g., 26) vectors. In the case when one vector is encrypted, the running time of the receiver is approximately 5 msec even for relatively high-dimensional (e.g., 213) vectors.

Landsborough, Jason, Harding, Stephen, Fugate, Sunny.  2017.  Learning from Super-mutants: Searching Post-apocalyptic Software Ecosystems for Novel Semantics-preserving Transforms. Proceedings of the Genetic and Evolutionary Computation Conference Companion. :1529–1536.

In light of recent advances in genetic-algorithm-driven automated program modification, our team has been actively exploring the art, engineering, and discovery of novel semantics-preserving transforms. While modern compilers represent some of the best ideas we have for automated program modification, current approaches represent only a small subset of the types of transforms which can be achieved. In the wilderness of post-apocalyptic software ecosystems of genetically-modified and mutant programs, there exist a broad array of potentially useful software mutations, including semantics-preserving transforms that may play an important role in future software design, development, and most importantly, evolution.

Chevalier, Ronny, Villatel, Maugan, Plaquin, David, Hiet, Guillaume.  2017.  Co-processor-based Behavior Monitoring: Application to the Detection of Attacks Against the System Management Mode. Proceedings of the 33rd Annual Computer Security Applications Conference. :399–411.

Highly privileged software, such as firmware, is an attractive target for attackers. Thus, BIOS vendors use cryptographic signatures to ensure firmware integrity at boot time. Nevertheless, such protection does not prevent an attacker from exploiting vulnerabilities at runtime. To detect such attacks, we propose an event-based behavior monitoring approach that relies on an isolated co-processor. We instrument the code executed on the main CPU to send information about its behavior to the monitor. This information helps to resolve the semantic gap issue. Our approach does not depend on a specific model of the behavior nor on a specific target. We apply this approach to detect attacks targeting the System Management Mode (SMM), a highly privileged x86 execution mode executing firmware code at runtime. We model the behavior of SMM using invariants of its control-flow and relevant CPU registers (CR3 and SMBASE). We instrument two open-source firmware implementations: EDKII and coreboot. We evaluate the ability of our approach to detect state-of-the-art attacks and its runtime execution overhead by simulating an x86 system coupled with an ARM Cortex A5 co-processor. The results show that our solution detects intrusions from the state of the art, without any false positives, while remaining acceptable in terms of performance overhead in the context of the SMM (i.e., less than the 150 us threshold defined by Intel).