Biblio
Filters: First Letter Of Last Name is L [Clear All Filters]
LSB-Reused Protection Technique in Secure SAR ADC against Power Side-Channel Attack. 2022 Asian Hardware Oriented Security and Trust Symposium (AsianHOST). :1—6.
.
2022. Successive approximation register analog-to-digital converter (SAR ADC) is widely adopted in the Internet of Things (IoT) systems due to its simple structure and high energy efficiency. Unfortunately, SAR ADC dissipates various and unique power features when it converts different input signals, leading to severe vulnerability to power side-channel attack (PSA). The adversary can accurately derive the input signal by only measuring the power information from the analog supply pin (AVDD), digital supply pin (DVDD), and/or reference pin (Ref) which feed to the trained machine learning models. This paper first presents the detailed mathematical analysis of power side-channel attack (PSA) to SAR ADC, concluding that the power information from AVDD is the most vulnerable to PSA compared with the other supply pin. Then, an LSB-reused protection technique is proposed, which utilizes the characteristic of LSB from the SAR ADC itself to protect against PSA. Lastly, this technique is verified in a 12-bit 5 MS/s secure SAR ADC implemented in 65nm technology. By using the current waveform from AVDD, the adopted convolutional neural network (CNN) algorithms can achieve \textgreater99% prediction accuracy from LSB to MSB in the SAR ADC without protection. With the proposed protection, the bit-wise accuracy drops to around 50%.
Colored Petri Net Reusing for Service Function Chaining Validation. 2022 IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC). :1531—1535.
.
2022. With the development of software defined network and network function virtualization, network operators can flexibly deploy service function chains (SFC) to provide network security services more than before according to the network security requirements of business systems. At present, most research on verifying the correctness of SFC is based on whether the logical sequence between service functions (SF) in SFC is correct before deployment, and there is less research on verifying the correctness after SFC deployment. Therefore, this paper proposes a method of using Colored Petri Net (CPN) to establish a verification model offline and verify whether each SF deployment in SFC is correct after online deployment. After the SFC deployment is completed, the information is obtained online and input into the established model for verification. The experimental results show that the SFC correctness verification method proposed in this paper can effectively verify whether each SF in the deployed SFC is deployed correctly. In this process, the correctness of SF model is verified by using SF model in the model library, and the model reuse technology is preliminarily discussed.
Research on Defending Code Reuse Attack Based on Binary Rewriting. 2022 IEEE 8th International Conference on Computer and Communications (ICCC). :1682—1686.
.
2022. At present, code reuse attacks, such as Return Oriented Programming (ROP), execute attacks through the code of the application itself, bypassing the traditional defense mechanism and seriously threatening the security of computer software. The existing two mainstream defense mechanisms, Address Space Layout Randomization (ASLR), are vulnerable to information disclosure attacks, and Control-Flow Integrity (CFI) will bring high overhead to programs. At the same time, due to the widespread use of software of unknown origin, there is no source code provided or available, so it is not always possible to secure the source code. In this paper, we propose FRCFI, an effective method based on binary rewriting to prevent code reuse attacks. FRCFI first disrupts the program's memory space layout through function shuffling and NOP insertion, then verifies the execution of the control-flow branch instruction ret and indirect call/jmp instructions to ensure that the target address is not modified by attackers. Experiment show shows that FRCFI can effectively defend against code reuse attacks. After randomization, the survival rate of gadgets is only 1.7%, and FRCFI adds on average 6.1% runtime overhead on SPEC CPU2006 benchmark programs.
Game-theoretic and Learning-aided Physical Layer Security for Multiple Intelligent Eavesdroppers. 2022 IEEE Globecom Workshops (GC Wkshps). :233—238.
.
2022. Artificial Intelligence (AI) technology is developing rapidly, permeating every aspect of human life. Although the integration between AI and communication contributes to the flourishing development of wireless communication, it induces severer security problems. As a supplement to the upper-layer cryptography protocol, physical layer security has become an intriguing technology to ensure the security of wireless communication systems. However, most of the current physical layer security research does not consider the intelligence and mobility of collusive eavesdroppers. In this paper, we consider a MIMO system model with a friendly intelligent jammer against multiple collusive intelligent eavesdroppers, and zero-sum game is exploited to formulate the confrontation of them. The Nash equilibrium is derived by convex optimization and alternative optimization in the free-space scenario of a single user system. We propose a zero-sum game deep learning algorithm (ZGDL) for general situations to solve non-convex game problems. In terms of the effectiveness, simulations are conducted to confirm that the proposed algorithm can obtain the Nash equilibrium.
Attacking Masked Cryptographic Implementations: Information-Theoretic Bounds. 2022 IEEE International Symposium on Information Theory (ISIT). :654—659.
.
2022. Measuring the information leakage is critical for evaluating the practical security of cryptographic devices against side-channel analysis. Information-theoretic measures can be used (along with Fano’s inequality) to derive upper bounds on the success rate of any possible attack in terms of the number of side-channel measurements. Equivalently, this gives lower bounds on the number of queries for a given success probability of attack. In this paper, we consider cryptographic implementations protected by (first-order) masking schemes, and derive several information-theoretic bounds on the efficiency of any (second-order) attack. The obtained bounds are generic in that they do not depend on a specific attack but only on the leakage and masking models, through the mutual information between side-channel measurements and the secret key. Numerical evaluations confirm that our bounds reflect the practical performance of optimal maximum likelihood attacks.
An Insider Threat Detection Method Based on Heterogeneous Graph Embedding. 2022 IEEE 8th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS). :11—16.
.
2022. Insider threats have high risk and concealment characteristics, which makes traditional anomaly detection methods less effective in insider threat detection. Existing detection methods ignore the logical relationship between user behaviors and the consistency of behavior sequences among homogeneous users, resulting in poor model effects. We propose an insider threat detection method based on internal user heterogeneous graph embedding. Firstly, according to the characteristics of CERT data, comprehensively consider the relationship between users, the time sequence, and logical relationship, and construct a heterogeneous graph. In the second step, according to the characteristics of heterogeneous graphs, the embedding learning of graph nodes is carried out according to random walk and Word2vec. Finally, we propose an Insider Threat Detection Design (ITDD) model which can map and the user behavior sequence information into a high-dimensional feature space. In the CERT r5.2 dataset, compared with a variety of traditional machine learning methods, the effect of our method is significantly better than the final result.
Access Control Supported by Information Service Entity in Named Data Networking. 2022 5th International Conference on Hot Information-Centric Networking (HotICN). :30–35.
.
2022. Named Data Networking (NDN) has been viewed as a promising future Internet architecture. It requires a new access control scheme to prevent the injection of unauthorized data request. In this paper, an access control supported by information service entity (ACISE) is proposed for NDN networks. A trust entity, named the information service entity (ISE), is deployed in each domain for the registration of the consumer and the edge router. The identity-based cryptography (IBC) is used to generate a private key for the authorized consumer at the ISE and to calculate a signature encapsulated in the Interest packet at the consumer. Therefore, the edge router could support the access control by the signature verification of the Interest packets so that no Interest packet from unauthorized consumer could be forwarded or replied. Moreover, shared keys are negotiated between authorized consumers and their edge routers. The subsequent Interest packets would be verified by the message authentication code (MAC) instead of the signature. The simulation results have shown that the ACISE scheme would achieve a similar response delay to the original NDN scheme when the NDN is under no attacks. However, the ACISE scheme is immune to the cache pollution attacks so that it could maintain a much smaller response delay compared to the other schemes when the NDN network is under the attacks.
ISSN: 2831-4395
A Named In-Network Computing Service Deployment Scheme for NDN-Enabled Software Router. 2022 5th International Conference on Hot Information-Centric Networking (HotICN). :25–29.
.
2022. Named in-network computing is an emerging technology of Named Data Networking (NDN). Through deploying the named computing services/functions on NDN router, the router can utilize its free resources to provide nearby computation for users while relieving the pressure of cloud and network edge. Benefitted from the characteristic of named addressing, named computing services/functions can be easily discovered and migrated in the network. To implement named in-network computing, integrating the computing services as Virtual Machines (VMs) into the software router is a feasible way, but how to effectively deploy the service VMs to optimize the local processing capability is still a challenge. Focusing on this problem, we first give the design of NDN-enabled software router in this paper, then propose a service earning based named service deployment scheme (SE-NSD). For available service VMs, SE-NSD not only considers their popularities but further evaluates their service earnings (processed data amount per CPU cycle). Through modelling the deployment problem as the knapsack problem, SE-NSD determines the optimal service VMs deployment scheme. The simulation results show that, comparing with the popularity-based deployment scheme, SE-NSD can promote about 30% in-network computing capability while slightly reducing the service invoking RTT of user.
ISSN: 2831-4395
3CL-Net: A Four-in-One Networking Paradigm for 6G System. 2022 5th International Conference on Hot Information-Centric Networking (HotICN). :132–136.
.
2022. The 6G wireless communication networks are being studied to build a powerful networking system with global coverage, enhanced spectral/energy/cost efficiency, better intelligent level and security. This paper presents a four-in-one networking paradigm named 3CL-Net that would broaden and strengthen the capabilities of current networking by introducing ubiquitous computing, caching, and intelligence over the communication connection to build 6G-required capabilities. To evaluate the practicability of 3CL-Net, this paper designs a platform based on the 3CL-Net architecture. The platform adopts leader-followers structure that could support all functions of 3CL-Net, but separate missions of 3CL-Net into two parts. Moreover, this paper has implemented part of functions as a prototype, on which some experiments are carried out. The results demonstrate that 3CL-Net is potential to be a practical and effective network paradigm to meet future requirements, meanwhile, 3CL-Net could motivate designs of related platforms as well.
ISSN: 2831-4395
Overview Of Vanet Network Security. 2022 International Conference on Information Science and Communications Technologies (ICISCT). :1–6.
.
2022. This article provides an overview of the security of VANET, which is a vehicle network. When reviewing this topic, publications of various researchers were considered. The article provides information security requirements for VANET, an overview of security research, an overview of existing attacks, methods for detecting attacks and appropriate countermeasures against such threats.
Research on network security behavior audit method of power industrial control system operation support cloud platform based on FP-Growth association rule algorithm. 2022 International Conference on Artificial Intelligence, Information Processing and Cloud Computing (AIIPCC). :409–412.
.
2022. With the introduction of the national “carbon peaking and carbon neutrality” strategic goals and the accelerated construction of the new generation of power systems, cloud applications built on advanced IT technologies play an increasingly important role in meeting the needs of digital power business. In view of the characteristics of the current power industrial control system operation support cloud platform with wide coverage, large amount of log data, and low analysis intelligence, this paper proposes a cloud platform network security behavior audit method based on FP-Growth association rule algorithm, aiming at the uniqueness of the operating data of the cloud platform that directly interacts with the isolated system environment of power industrial control system. By using the association rule algorithm to associate and classify user behaviors, our scheme formulates abnormal behavior judgment standards, establishes an automated audit strategy knowledge base, and improves the security audit efficiency of power industrial control system operation support cloud platform. The intelligent level of log data analysis enables effective discovery, traceability and management of internal personnel operational risks.
A virtualization-based security architecture for industrial control systems. 2022 7th IEEE International Conference on Data Science in Cyberspace (DSC). :94–101.
.
2022. The Industrial Internet expands the attack surface of industrial control systems(ICS), bringing cybersecurity threats to industrial controllers located in operation technology(OT) networks. Honeypot technology is an important means to detect network attacks. However, the existing honeypot system cannot simulate business logic and is difficult to resist highly concealed APT attacks. This paper proposes a high-simulation ICS security defense framework based on virtualization technology. The framework utilizes virtualization technology to build twins for protected control systems. The architecture can infer the execution results of control instructions in advance based on actual production data, so as to discover hidden attack behaviors in time. This paper designs and implements a prototype system and demonstrates the effectiveness and potential of this architecture for ICS security.
Research on industrial Robot system security based on Industrial Internet Platform. 2022 7th IEEE International Conference on Data Science in Cyberspace (DSC). :214–218.
.
2022. The industrial Internet platform has been applied to various fields of industrial production, effectively improving the data flow of all elements in the production process, improving production efficiency, reducing production costs, and ensuring the market competitiveness of enterprises. The premise of the effective application of the industrial Internet platform is the interconnection of industrial equipment. In the industrial Internet platform, industrial robot is a very common industrial control device. These industrial robots are connected to the control network of the industrial Internet platform, which will have obvious advantages in production efficiency and equipment maintenance, but at the same time will cause more serious network security problems. The industrial robot system based on the industrial Internet platform not only increases the possibility of industrial robots being attacked, but also aggravates the loss and harm caused by industrial robots being attacked. At the same time, this paper illustrates the effects and scenarios of industrial robot attacks based on industrial interconnection platforms from four different scenarios of industrial robots being attacked. Availability and integrity are related to the security of the environment.
Data traceability scheme of industrial control system based on digital watermark. 2022 7th IEEE International Conference on Data Science in Cyberspace (DSC). :322–325.
.
2022. The fourth industrial revolution has led to the rapid development of industrial control systems. While the large number of industrial system devices connected to the Internet provides convenience for production management, it also exposes industrial control systems to more attack surfaces. Under the influence of multiple attack surfaces, sensitive data leakage has a more serious and time-spanning negative impact on industrial production systems. How to quickly locate the source of information leakage plays a crucial role in reducing the loss from the attack, so there are new requirements for tracing sensitive data in industrial control information systems. In this paper, we propose a digital watermarking traceability scheme for sensitive data in industrial control systems to address the above problems. In this scheme, we enhance the granularity of traceability by classifying sensitive data types of industrial control systems into text, image and video data with differentiated processing, and achieve accurate positioning of data sources by combining technologies such as national secret asymmetric encryption and hash message authentication codes, and mitigate the impact of mainstream watermarking technologies such as obfuscation attacks and copy attacks on sensitive data. It also mitigates the attacks against the watermarking traceability such as obfuscation attacks and copy attacks. At the same time, this scheme designs a data flow watermark monitoring module on the post-node of the data source to monitor the unauthorized sensitive data access behavior caused by other attacks.
Exploration of the principle of 6G communication technology and its development prospect. 2022 International Conference on Electronics and Devices, Computational Science (ICEDCS). :100–103.
.
2022. Nowadays, 5G has been widely used in various fields. People are starting to turn their attention to 6G. Therefore, at the beginning, this paper describes in detail the principle and performance of 6G, and introduces the key technologies of 6G, Cavity technology and THz technology. Based on the high-performance indicators of 6G, we then study the possible application changes brought by 6G, for example, 6G technology will make remote surgery and remote control possible. 6G technology will make remote surgery and remote control possible. 6G will speed up the interconnection of everything, allowing closer and faster connection between cars. Next, virtual reality is discussed. 6G technology will enable better development of virtual reality technology and enhance people's immersive experience. Finally, we present the issues that need to be addressed with 6G technology, such as cybersecurity issues and energy requirements. As well as the higher challenges facing 6G technology, such as connectivity and communication on a larger social plane.
Application of Biometric System to Enhance the Security in Virtual World. 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE). :719–723.
.
2022. Virtual worlds was becoming increasingly popular in a variety of fields, including education, business, space exploration, and video games. Establishing the security of virtual worlds was becoming more critical as they become more widely used. Virtual users were identified using a behavioral biometric system. Improve the system's ability to identify objects by fusing scores from multiple sources. Identification was based on a review of user interactions in virtual environments and a comparison with previous recordings in the database. For behavioral biometric systems like the one described, it appears that score-level biometric fusion was a promising tool for improving system performance. As virtual worlds become more immersive, more people will want to participate in them, and more people will want to be able to interact with each other. Each region of the Meta-verse was given a glimpse of the current state of affairs and the trends to come. As hardware performance and institutional and public interest continue to improve, the Meta-verse's development is hampered by limitations like computational method limits and a lack of realized collaboration between virtual world stakeholders and developers alike. A major goal of the proposed research was to verify the accuracy of the biometric system to enhance the security in virtual world. In this study, the precision of the proposed work was compared to that of previous work.
Cloud Storage I/O Load Prediction Based on XB-IOPS Feature Engineering. 2022 IEEE 8th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS). :54—60.
.
2022. With the popularization of cloud computing and the deepening of its application, more and more cloud block storage systems have been put into use. The performance optimization of cloud block storage systems has become an important challenge facing today, which is manifested in the reduction of system performance caused by the unbalanced resource load of cloud block storage systems. Accurately predicting the I/O load status of the cloud block storage system can effectively avoid the load imbalance problem. However, the cloud block storage system has the characteristics of frequent random reads and writes, and a large amount of I/O requests, which makes prediction difficult. Therefore, we propose a novel I/O load prediction method for XB-IOPS feature engineering. The feature engineering is designed according to the I/O request pattern, I/O size and I/O interference, and realizes the prediction of the actual load value at a certain moment in the future and the average load value in the continuous time interval in the future. Validated on a real dataset of Alibaba Cloud block storage system, the results show that the XB-IOPS feature engineering prediction model in this paper has better performance in Alibaba Cloud block storage devices where random I/O and small I/O dominate. The prediction performance is better, and the prediction time is shorter than other prediction models.
An OpenPLC-based Active Real-time Anomaly Detection Framework for Industrial Control Systems. 2022 China Automation Congress (CAC). :5899—5904.
.
2022. In recent years, the design of anomaly detectors has attracted a tremendous surge of interest due to security issues in industrial control systems (ICS). Restricted by hardware resources, most anomaly detectors can only be deployed at the remote monitoring ends, far away from the control sites, which brings potential threats to anomaly detection. In this paper, we propose an active real-time anomaly detection framework deployed in the controller of OpenPLC, which is a standardized open-source PLC and has high scalability. Specifically, we add adaptive active noises to control signals, and then identify a linear dynamic system model of the plant offline and implement it in the controller. Finally, we design two filters to process the estimated residuals based on the obtained model and use χ2 detector for anomaly detection. Extensive experiments are conducted on an industrial control virtual platform to show the effectiveness of the proposed detection framework.
Semi-supervised Trojan Nets Classification Using Anomaly Detection Based on SCOAP Features. 2022 IEEE International Symposium on Circuits and Systems (ISCAS). :2423—2427.
.
2022. Recently, hardware Trojan has become a serious security concern in the integrated circuit (IC) industry. Due to the globalization of semiconductor design and fabrication processes, ICs are highly vulnerable to hardware Trojan insertion by malicious third-party vendors. Therefore, the development of effective hardware Trojan detection techniques is necessary. Testability measures have been proven to be efficient features for Trojan nets classification. However, most of the existing machine-learning-based techniques use supervised learning methods, which involve time-consuming training processes, need to deal with the class imbalance problem, and are not pragmatic in real-world situations. Furthermore, no works have explored the use of anomaly detection for hardware Trojan detection tasks. This paper proposes a semi-supervised hardware Trojan detection method at the gate level using anomaly detection. We ameliorate the existing computation of the Sandia Controllability/Observability Analysis Program (SCOAP) values by considering all types of D flip-flops and adopt semi-supervised anomaly detection techniques to detect Trojan nets. Finally, a novel topology-based location analysis is utilized to improve the detection performance. Testing on 17 Trust-Hub Trojan benchmarks, the proposed method achieves an overall 99.47% true positive rate (TPR), 99.99% true negative rate (TNR), and 99.99% accuracy.
Anomaly Detection based on Robust Spatial-temporal Modeling for Industrial Control Systems. 2022 IEEE 19th International Conference on Mobile Ad Hoc and Smart Systems (MASS). :355—363.
.
2022. Industrial Control Systems (ICS) are increasingly facing the threat of False Data Injection (FDI) attacks. As an emerging intrusion detection scheme for ICS, process-based Intrusion Detection Systems (IDS) can effectively detect the anomalies caused by FDI attacks. Specifically, such IDS establishes anomaly detection model which can describe the normal pattern of industrial processes, then perform real-time anomaly detection on industrial process data. However, this method suffers low detection accuracy due to the complexity and instability of industrial processes. That is, the process data inherently contains sophisticated nonlinear spatial-temporal correlations which are hard to be explicitly described by anomaly detection model. In addition, the noise and disturbance in process data prevent the IDS from distinguishing the real anomaly events. In this paper, we propose an Anomaly Detection approach based on Robust Spatial-temporal Modeling (AD-RoSM). Concretely, to explicitly describe the spatial-temporal correlations within the process data, a neural based state estimation model is proposed by utilizing 1D CNN for temporal modeling and multi-head self attention mechanism for spatial modeling. To perform robust anomaly detection in the presence of noise and disturbance, a composite anomaly discrimination model is designed so that the outputs of the state estimation model can be analyzed with a combination of threshold strategy and entropy-based strategy. We conducted extensive experiments on two benchmark ICS security datasets to demonstrate the effectiveness of our approach.
Error Prevalence in NIDS datasets: A Case Study on CIC-IDS-2017 and CSE-CIC-IDS-2018. 2022 IEEE Conference on Communications and Network Security (CNS). :254—262.
.
2022. Benchmark datasets are heavily depended upon by the research community to validate theoretical findings and track progression in the state-of-the-art. NIDS dataset creation presents numerous challenges on account of the volume, heterogeneity, and complexity of network traffic, making the process labor intensive, and thus, prone to error. This paper provides a critical review of CIC-IDS-2017 and CIC-CSE-IDS-2018, datasets which have seen extensive usage in the NIDS literature, and are currently considered primary benchmarking datasets for NIDS. We report a large number of previously undocumented errors throughout the dataset creation lifecycle, including in attack orchestration, feature generation, documentation, and labeling. The errors destabilize the results and challenge the findings of numerous publications that have relied on it as a benchmark. We demonstrate the implications of these errors through several experiments. We provide comprehensive documentation to summarize the discovery of these issues, as well as a fully-recreated dataset, with labeling logic that has been reverse-engineered, corrected, and made publicly available for the first time. We demonstrate the implications of dataset errors through a series of experiments. The findings serve to remind the research community of common pitfalls with dataset creation processes, and of the need to be vigilant when adopting new datasets. Lastly, we strongly recommend the release of labeling logic for any dataset released, to ensure full transparency.
Odd-Even Hash Algorithm: A Improvement of Cuckoo Hash Algorithm. 2021 Ninth International Conference on Advanced Cloud and Big Data (CBD). :1—6.
.
2022. Hash-based data structures and algorithms are currently flourishing on the Internet. It is an effective way to store large amounts of information, especially for applications related to measurement, monitoring and security. At present, there are many hash table algorithms such as: Cuckoo Hash, Peacock Hash, Double Hash, Link Hash and D-left Hash algorithm. However, there are still some problems in these hash table algorithms, such as excessive memory space, long insertion and query operations, and insertion failures caused by infinite loops that require rehashing. This paper improves the kick-out mechanism of the Cuckoo Hash algorithm, and proposes a new hash table structure- Odd-Even Hash (OE Hash) algorithm. The experimental results show that OE Hash algorithm is more efficient than the existing Link Hash algorithm, Linear Hash algorithm, Cuckoo Hash algorithm, etc. OE Hash algorithm takes into account the performance of both query time and insertion time while occupying the least space, and there is no insertion failure that leads to rehashing, which is suitable for massive data storage.
Known Plaintext Attacks on the Omar and abed Homomorphic Encryption Scheme. 2022 13th International Conference on Information and Communication Technology Convergence (ICTC). :1154—1157.
.
2022. In 2020, Omar and abed proposed a new noise-free fully homomorphic encryption scheme that allows arbitrary computations on encrypted data without decryption. However, they did not provide a sufficient security analysis of the proposed scheme and just stated that it is secure under the integer factorization assumption. In this paper, we present known plaintext attacks on their scheme and illustrate them with toy examples. Our attack algorithms are quite simple: They require several times of greatest common divisor (GCD) computations using only a few pair of message and ciphertext.
Game Theory Based Multi-agent Cooperative Anti-jamming for Mobile Ad Hoc Networks. 2022 IEEE 8th International Conference on Computer and Communications (ICCC). :901–905.
.
2022. Currently, mobile ad hoc networks (MANETs) are widely used due to its self-configuring feature. However, it is vulnerable to the malicious jammers in practice. Traditional anti-jamming approaches, such as channel hopping based on deterministic sequences, may not be the reliable solution against intelligent jammers due to its fixed patterns. To address this problem, we propose a distributed game theory-based multi-agent anti-jamming (DMAA) algorithm in this paper. It enables each user to exploit all information from its neighboring users before the network attacks, and derive dynamic local policy knowledge to overcome intelligent jamming attacks efficiently as well as guide the users to cooperatively hop to the same channel with high probability. Simulation results demonstrate that the proposed algorithm can learn an optimal policy to guide the users to avoid malicious jamming more efficiently and rapidly than the random and independent Q-learning baseline algorithms,
Traceability Method of Network Attack Based on Evolutionary Game. 2022 International Conference on Networking and Network Applications (NaNA). :232–236.
.
2022. Cyberspace is vulnerable to continuous malicious attacks. Traceability of network attacks is an effective defense means to curb and counter network attacks. In this paper, the evolutionary game model is used to analyze the network attack and defense behavior. On the basis of the quantification of attack and defense benefits, the replication dynamic learning mechanism is used to describe the change process of the selection probability of attack and defense strategies, and finally the evolutionary stability strategies and their solution curves of both sides are obtained. On this basis, the attack behavior is analyzed, and the probability curve of attack strategy and the optimal attack strategy are obtained, so as to realize the effective traceability of attack behavior.