Visible to the public Biblio

Found 2320 results

Filters: First Letter Of Last Name is P  [Clear All Filters]
2021-10-12
Rajkumar, Vetrivel Subramaniam, Tealane, Marko, \c Stefanov, Alexandru, Presekal, Alfan, Palensky, Peter.  2020.  Cyber Attacks on Power System Automation and Protection and Impact Analysis. 2020 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe). :247–254.
Power system automation and communication standards are spearheading the power system transition towards a smart grid. IEC 61850 is one such standard, which is widely used for substation automation and protection. It enables real-time communication and data exchange between critical substation automation and protection devices within digital substations. However, IEC 61850 is not cyber secure. In this paper, we demonstrate the dangerous implications of not securing IEC 61850 standard. Cyber attacks may exploit the vulnerabilities of the Sampled Values (SV) and Generic Object-Oriented Substation Event (GOOSE) protocols of IEC 61850. The cyber attacks may be realised by injecting spoofed SV and GOOSE data frames into the substation communication network at the bay level. We demonstrate that such cyber attacks may lead to obstruction or tripping of multiple protective relays. Coordinated cyber attacks against the protection system in digital substations may cause generation and line disconnections, triggering cascading failures in the power grid. This may eventually result in a partial or complete blackout. The attack model, impact on system dynamics and cascading failures are veri ed experimentally through a proposed cyber-physical experimental framework that closely resembles real-world conditions within a digital substation, including Intelligent Electronic Devices (IEDs) and protection schemes. It is implemented through Hardware-in-the-Loop (HIL) simulations of commercial relays with a Real-Time Digital Simulator (RTDS).
Paul, Shuva, Ni, Zhen, Ding, Fei.  2020.  An Analysis of Post Attack Impacts and Effects of Learning Parameters on Vulnerability Assessment of Power Grid. 2020 IEEE Power Energy Society Innovative Smart Grid Technologies Conference (ISGT). :1–5.
Due to the increasing number of heterogeneous devices connected to electric power grid, the attack surface increases the threat actors. Game theory and machine learning are being used to study the power system failures caused by external manipulation. Most of existing works in the literature focus on one-shot process of attacks and fail to show the dynamic evolution of the defense strategy. In this paper, we focus on an adversarial multistage sequential game between the adversaries of the smart electric power transmission and distribution system. We study the impact of exploration rate and convergence of the attack strategies (sequences of action that creates large scale blackout based on the system capacity) based on the reinforcement learning approach. We also illustrate how the learned attack actions disrupt the normal operation of the grid by creating transmission line outages, bus voltage violations, and generation loss. This simulation studies are conducted on IEEE 9 and 39 bus systems. The results show the improvement of the defense strategy through the learning process. The results also prove the feasibility of the learned attack actions by replicating the disturbances created in simulated power system.
2021-10-04
Lovetsky, I.V., Bukvina, E.A., Ponomarchuk, Y.V..  2020.  On Providing Information Security for Decentralized Databases. 2020 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon). :1–5.
The paper discusses a prototype of a database, which can be used for operation in a decentralized mode for an information system. In this project, the focus is on creation of a data structure model that provides flexibility of business processes. The research is based on the development of a model for decentralized access rights distribution by including users in groups where they are assigned similar roles using consensus of other group members. This paper summarizes the main technologies that were used to ensure information security of the decentralized storage, the mechanisms for fixing access rights to an object access (the minimum entity of the system), describes a process of the data access control at the role level and an algorithm for managing the consensus for applying changes.
Farahmandi, Farimah, Sinanoglu, Ozgur, Blanton, Ronald, Pagliarini, Samuel.  2020.  Design Obfuscation versus Test. 2020 IEEE European Test Symposium (ETS). :1–10.
The current state of the integrated circuit (IC) ecosystem is that only a handful of foundries are at the forefront, continuously pushing the state of the art in transistor miniaturization. Establishing and maintaining a FinFET-capable foundry is a billion dollar endeavor. This scenario dictates that many companies and governments have to develop their systems and products by relying on 3rd party IC fabrication. The major caveat within this practice is that the procured silicon cannot be blindly trusted: a malicious foundry can effectively modify the layout of the IC, reverse engineer its IPs, and overproduce the entire chip. The Hardware Security community has proposed many countermeasures to these threats. Notably, obfuscation has gained a lot of traction - here, the intent is to hide the functionality from the untrusted foundry such that the aforementioned threats are hindered or mitigated. In this paper, we summarize the research efforts of three independent research groups towards achieving trustworthy ICs, even when fabricated in untrusted offshore foundries. We extensively address the use of logic locking and its many variants, as well as the use of high-level synthesis (HLS) as an obfuscation approach of its own.
Karfa, Chandan, Chouksey, Ramanuj, Pilato, Christian, Garg, Siddharth, Karri, Ramesh.  2020.  Is Register Transfer Level Locking Secure? 2020 Design, Automation Test in Europe Conference Exhibition (DATE). :550–555.
Register Transfer Level (RTL) locking seeks to prevent intellectual property (IP) theft of a design by locking the RTL description that functions correctly on the application of a key. This paper evaluates the security of a state-of-the-art RTL locking scheme using a satisfiability modulo theories (SMT) based algorithm to retrieve the secret key. The attack first obtains the high-level behavior of the locked RTL, and then use an SMT based formulation to find so-called distinguishing input patterns (DIP)1 The attack methodology has two main advantages over the gate-level attacks. First, since the attack handles the design at the RTL, the method scales to large designs. Second, the attack does not apply separate unlocking strategies for the combinational and sequential parts of a design; it handles both styles via a unifying abstraction. We demonstrate the attack on locked RTL generated by TAO [1], a state-of-the-art RTL locking solution. Empirical results show that we can partially or completely break designs locked by TAO.
Sweeney, Joseph, Mohammed Zackriya, V, Pagliarini, Samuel, Pileggi, Lawrence.  2020.  Latch-Based Logic Locking. 2020 IEEE International Symposium on Hardware Oriented Security and Trust (HOST). :132–141.
Globalization of IC manufacturing has led to increased security concerns, notably IP theft. Several logic locking techniques have been developed for protecting designs, but they typically display very large overhead, and are generally susceptible to deciphering attacks. In this paper, we propose latch-based logic locking, which manipulates both the flow of data and logic in the design. This method converts an interconnected subset of existing flip-flops to pairs of latches with programmable phase. In tandem, decoy latches and logic are added, inhibiting an attacker from determining the actual design functionality. To validate this technique, we developed and verified a locking insertion flow, analyzed PPA and ATPG overhead on benchmark circuits and industry cores, extended existing attacks to account for the technique, and taped out a demonstration chip. Importantly, we show that the design overhead with this approach is significantly less than with previous logic locking schemes, while resisting model checker-based, oracle-driven attacks. With minimal delay overhead, large numbers of decoy latches can be added, cheaply increasing attack resistance.
2021-09-30
Zuo, Xinbin, Pang, Xue, Zhang, Pengping, Zhang, Junsan, Dong, Tao, Zhang, Peiying.  2020.  A Security-Aware Software-Defined IoT Network Architecture. 2020 IEEE Computing, Communications and IoT Applications (ComComAp). :1–5.
With the improvement of people's living standards, more and more network users access the network, including a large number of infrastructure, these devices constitute the Internet of things(IoT). With the rapid expansion of devices in the IoT, the data transmission between the IoT has become more complex, and the security issues are facing greater challenges. SDN as a mature network architecture, its security has been affirmed by the industry, it separates the data layer from the control layer, thus greatly improving the security of the network. In this paper, we apply the SDN to the IoT, and propose a IoT network architecture based on SDN. In this architecture, we not only make use of the security features of SDN, but also deploy different security modules in each layer of SDN to integrate, analyze and plan various data through the IoT, which undoubtedly improves the security performance of the network. In the end, we give a comprehensive introduction to the system and verify its performance.
Pan, Zhicheng, Deng, Jun, Chu, Jinwei, Zhang, Zhanlong, Dong, Zijian.  2020.  Research on Correlation Analysis of Vibration Signals at Multiple Measuring Points and Black Box Model of Flexible-DC Transformer. 2020 IEEE 4th Conference on Energy Internet and Energy System Integration (EI2). :3238–3242.
The internal structure of the flexible-DC transformer is complicated and the lack of a reliable vibration calculation model limits the application of the vibration analysis method in the fault diagnosis of the flexible-DC transformer. In response to this problem, this paper analyzes the correlation between the vibration signals of multiple measuring points and establishes a ``black box'' model of transformer vibration detection. Using the correlation analysis of multiple measuring points and BP neural network, a ``black box'' model that simulates the internal vibration transmission relationship of the transformer is established. The vibration signal of the multiple measuring points can be used to calculate the vibration signal of the target measuring point under specific working conditions. This can provide effective information for fault diagnosis and judgment of the running status of the flexible-DC transformer.
Boespflug, Etienne, Ene, Cristian, Mounier, Laurent, Potet, Marie-Laure.  2020.  Countermeasures Optimization in Multiple Fault-Injection Context. 2020 Workshop on Fault Detection and Tolerance in Cryptography (FDTC). :26–34.
Fault attacks consist in changing the program behavior by injecting faults at run-time, either at hardware or at software level. Their goal is to change the correct progress of the algorithm and hence, either to allow gaining some privilege access or to allow retrieving some secret information based on an analysis of the deviation of the corrupted behavior with respect to the original one. Countermeasures have been proposed to protect embedded systems by adding spatial, temporal or information redundancy at hardware or software level. First we define Countermeasures Check Point (CCP) and CCPs-based countermeasures as an important subclass of countermeasures. Then we propose a methodology to generate an optimal protection scheme for CCPs-based countermeasure. Finally we evaluate our work on a benchmark of code examples with respect to several Control Flow Integrity (CFI) oriented existing protection schemes.
Engels, Susanne, Schellenberg, Falk, Paar, Christof.  2020.  SPFA: SFA on Multiple Persistent Faults. 2020 Workshop on Fault Detection and Tolerance in Cryptography (FDTC). :49–56.
For classical fault analysis, a transient fault is required to be injected during runtime, e.g., only at a specific round. Instead, Persistent Fault Analysis (PFA) introduces a powerful class of fault attacks that allows for a fault to be present throughout the whole execution. One limitation of original PFA as introduced by Zhang et al. at CHES'18 is that the adversary needs know (or brute-force) the faulty values prior to the analysis. While this was addressed at a follow-up work at CHES'20, the solution is only applicable to a single faulty value. Instead, we use the potency of Statistical Fault Analysis (SFA) in the persistent fault setting, presenting Statistical Persistent Fault Analysis (SPFA) as a more general approach of PFA. As a result, any or even a multitude of unknown faults that cause an exploitable bias in the targeted round can be used to recover the cipher's secret key. Indeed, the undesired faults in the other rounds that occur due the persistent nature of the attack converge to a uniform distribution as required by SFA. We verify the effectiveness of our attack against LED and AES.
Desnitsky, Vasily A., Kotenko, Igor V., Parashchuk, Igor B..  2020.  Neural Network Based Classification of Attacks on Wireless Sensor Networks. 2020 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). :284–287.
The paper proposes a method for solving problems of classifying multi-step attacks on wireless sensor networks in the conditions of uncertainty (incompleteness and inconsistency) of the observed signs of attacks. The method aims to eliminate the uncertainty of classification of attacks on networks of this class one the base of the use of neural network approaches to the processing of incomplete and contradictory knowledge on possible attack characteristics. It allows increasing objectivity (accuracy and reliability) of information security monitoring in modern software and hardware systems and Internet of Things networks that actively exploit advantages of wireless sensor networks.
Pamukov, Marin, Poulkov, Vladimir, Shterev, Vasil.  2020.  NSNN Algorithm Performance with Different Neural Network Architectures. 2020 43rd International Conference on Telecommunications and Signal Processing (TSP). :280–284.
Internet of Things (IoT) development and the addition of billions of computationally limited devices prohibit the use of classical security measures such as Intrusion Detection Systems (IDS). In this paper, we study the influence of the implementation of different feed-forward type of Neural Networks (NNs) on the detection Rate of the Negative Selection Neural Network (NSNN) algorithm. Feed-forward and cascade forward NN structures with different number of neurons and different number of hidden layers are tested. For training and testing the NSNN algorithm the labeled KDD NSL dataset is applied. The detection rates provided by the algorithm with several NN structures to determine the optimal solution are calculated and compared. The results show how these different feed-forward based NN architectures impact the performance of the NSNN algorithm.
Peng, Cheng, Yongli, Wang, Boyi, Yao, Yuanyuan, Huang, Jiazhong, Lu, Qiao, Peng.  2020.  Cyber Security Situational Awareness Jointly Utilizing Ball K-Means and RBF Neural Networks. 2020 17th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP). :261–265.
Low accuracy and slow speed of predictions for cyber security situational awareness. This paper proposes a network security situational awareness model based on accelerated accurate k-means radial basis function (RBF) neural network, the model uses the ball k-means clustering algorithm to cluster the input samples, to get the nodes of the hidden layer of the RBF neural network, speeding up the selection of the initial center point of the RBF neural network, and optimize the parameters of the RBF neural network structure. Finally, use the training data set to train the neural network, using the test data set to test the accuracy of this neural network structure, the results show that this method has a greater improvement in training speed and accuracy than other neural networks.
Mahmoud, Loreen, Praveen, Raja.  2020.  Network Security Evaluation Using Deep Neural Network. 2020 15th International Conference for Internet Technology and Secured Transactions (ICITST). :1–4.
One of the most significant systems in computer network security assurance is the assessment of computer network security. With the goal of finding an effective method for performing the process of security evaluation in a computer network, this paper uses a deep neural network to be responsible for the task of security evaluating. The DNN will be built with python on Spyder IDE, it will be trained and tested by 17 network security indicators then the output that we get represents one of the security levels that have been already defined. The maj or purpose is to enhance the ability to determine the security level of a computer network accurately based on its selected security indicators. The method that we intend to use in this paper in order to evaluate network security is simple, reduces the human factors interferences, and can obtain the correct results of the evaluation rapidly. We will analyze the results to decide if this method will enhance the process of evaluating the security of the network in terms of accuracy.
Meraj Ahmed, M, Dhavlle, Abhijitt, Mansoor, Naseef, Sutradhar, Purab, Pudukotai Dinakarrao, Sai Manoj, Basu, Kanad, Ganguly, Amlan.  2020.  Defense Against on-Chip Trojans Enabling Traffic Analysis Attacks. 2020 Asian Hardware Oriented Security and Trust Symposium (AsianHOST). :1–6.
Interconnection networks for multi/many-core processors or server systems are the backbone of the system as they enable data communication among the processing cores, caches, memory and other peripherals. Given the criticality of the interconnects, the system can be severely subverted if the interconnection is compromised. The threat of Hardware Trojans (HTs) penetrating complex hardware systems such as multi/many-core processors are increasing due to the increasing presence of third party players in a System-on-chip (SoC) design. Even by deploying naïve HTs, an adversary can exploit the Network-on-Chip (NoC) backbone of the processor and get access to communication patterns in the system. This information, if leaked to an attacker, can reveal important insights regarding the application suites running on the system; thereby compromising the user privacy and paving the way for more severe attacks on the entire system. In this paper, we demonstrate that one or more HTs embedded in the NoC of a multi/many-core processor is capable of leaking sensitive information regarding traffic patterns to an external malicious attacker; who, in turn, can analyze the HT payload data with machine learning techniques to infer the applications running on the processor. Furthermore, to protect against such attacks, we propose a Simulated Annealing-based randomized routing algorithm in the system. The proposed defense is capable of obfuscating the attacker's data processing capabilities to infer the user profiles successfully. Our experimental results demonstrate that the proposed randomized routing algorithm could reduce the accuracy of identifying user profiles by the attacker from \textbackslashtextgreater98% to \textbackslashtextless; 15% in multi/many-core systems.
Rout, Sidhartha Sankar, Singh, Akshat, Patil, Suyog Bhimrao, Sinha, Mitali, Deb, Sujay.  2020.  Security Threats in Channel Access Mechanism of Wireless NoC and Efficient Countermeasures. 2020 IEEE International Symposium on Circuits and Systems (ISCAS). :1–5.
Wireless Network-on-Chip (WNoC) broadly adopts single channel for low overhead data transmission. Sharing of the channel among multiple wireless interfaces (WIs) is controlled by a channel access mechanism (CAM). Such CAM can be malfunctioned by a Hardware Trojan (HT) in a malicious WI or a rogue third party intellectual property (IP) core present on the same System-on-Chip (SoC). This may result in denial-of-service (DoS) or spoofing in WNoC leading to starvation of healthy WIs and under-utilization of wireless channel. Our work demonstrates possible threat model on CAM and proposes low overhead decentralized countermeasures for both DoS and spoofing attacks in WNoC.
Bavishi, Jatna, Shaikh, Mohammed Saad, Patel, Reema.  2020.  Scalable and Efficient Mutual Authentication Strategy in Fog Computing. 2020 8th IEEE International Conference on Mobile Cloud Computing, Services, and Engineering (MobileCloud). :77–83.
Fog Computing paradigm extends the cloud computing to the edge of the network to resolve the problem of latency but this introduces new security and privacy issues. So, it is necessary that a user must be authenticated before initiating data exchange in order to preserve the integrity. Secondly, in fog computing, fog node must also be authorized for ensuring the proper behaviour of fog node and validate that the fog node is not corrupted. Hence, we proposed a mutual authentication scheme which verifies both the fog node and the end user before the transfer of data. Traditional authentication protocol uses digital certificate and digital signature which faces the problem of scalability and more complexity respectively. So, in the proposed architecture, the problem of scalability and complexity is reduced to a greater extent compared to traditional authentication techniques. The proposed scheme also ensures multi-factor authentication of the user before sending the data and it is way too efficient.
Jagadamba, G, Sheeba, R, Brinda, K N, Rohini, K C, Pratik, S K.  2020.  Adaptive E-Learning Authentication and Monitoring. 2020 2nd International Conference on Innovative Mechanisms for Industry Applications (ICIMIA). :277–283.
E-learning enables the transfer of skills, knowledge, and education to a large number of recipients. The E-Learning platform has the tendency to provide face-to-face learning through a learning management system (LMS) and facilitated an improvement in traditional educational methods. The LMS saves organization time, money and easy administration. LMS also saves user time to move across the learning place by providing a web-based environment. However, a few students could be willing to exploit such a system's weakness in a bid to cheat if the conventional authentication methods are employed. In this scenario user authentication and surveillance of end user is more challenging. A system with the simultaneous authentication is put forth through multifactor adaptive authentication methods. The proposed system provides an efficient, low cost and human intervention adaptive for e-learning environment authentication and monitoring system.
Jain, Pranut, Pötter, Henrique, Lee, Adam J., Mósse, Daniel.  2020.  MAFIA: Multi-Layered Architecture For IoT-Based Authentication. 2020 Second IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA). :199–208.
Multi-factor authentication (MFA) systems are being deployed for user authentication in online and personal device systems, whereas physical spaces mostly rely on single-factor authentication; examples are entering offices and homes, airport security, and classroom attendance. The Internet of Things (IoT) growth and market interest has created a diverse set of low-cost and flexible sensors and actuators that can be used for MFA. However, combining multiple authentication factors in a physical space adds several challenges, such as complex deployment, reduced usability, and increased energy consumption. We introduce MAFIA (Multi-layered Architecture For IoT-based Authentication), a novel architecture for co-located user authentication composed of multiple IoT devices. In MAFIA, we improve the security of physical spaces while considering usability, privacy, energy consumption, and deployment complexity. MAFIA is composed of three layers that define specific purposes for devices, guiding developers in the authentication design while providing a clear understanding of the trade-offs for different configurations. We describe a case study for an Automated Classroom Attendance System, where we evaluated three distinct types of authentication setups and showed that the most secure setup had a greater usability penalty, while the other two setups had similar attributes in terms of security, privacy, complexity, and usability but varied highly in their energy consumption.
2021-09-21
Petrenko, Sergei A., Petrenko, Alexey S., Makoveichuk, Krystina A., Olifirov, Alexander V..  2020.  "Digital Bombs" Neutralization Method. 2020 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). :446–451.
The article discusses new models and methods for timely identification and blocking of malicious code of critically important information infrastructure based on static and dynamic analysis of executable program codes. A two-stage method for detecting malicious code in the executable program codes (the so-called "digital bombs") is described. The first step of the method is to build the initial program model in the form of a control graph, the construction is carried out at the stage of static analysis of the program. The article discusses the purpose, features and construction criteria of an ordered control graph. The second step of the method is to embed control points in the program's executable code for organizing control of the possible behavior of the program using a specially designed recognition automaton - an automaton of dynamic control. Structural criteria for the completeness of the functional control of the subprogram are given. The practical implementation of the proposed models and methods was completed and presented in a special instrumental complex IRIDA.
Ramadhan, Beno, Purwanto, Yudha, Ruriawan, Muhammad Faris.  2020.  Forensic Malware Identification Using Naive Bayes Method. 2020 International Conference on Information Technology Systems and Innovation (ICITSI). :1–7.
Malware is a kind of software that, if installed on a malware victim's device, might carry malicious actions. The malicious actions might be data theft, system failure, or denial of service. Malware analysis is a process to identify whether a piece of software is a malware or not. However, with the advancement of malware technologies, there are several evasion techniques that could be implemented by malware developers to prevent analysis, such as polymorphic and oligomorphic. Therefore, this research proposes an automatic malware detection system. In the system, the malware characteristics data were obtained through both static and dynamic analysis processes. Data from the analysis process were classified using Naive Bayes algorithm to identify whether the software is a malware or not. The process of identifying malware and benign files using the Naive Bayes machine learning method has an accuracy value of 93 percent for the detection process using static characteristics and 85 percent for detection through dynamic characteristics.
Patil, Rajvardhan, Deng, Wei.  2020.  Malware Analysis using Machine Learning and Deep Learning techniques. 2020 SoutheastCon. 2:1–7.
In this era, where the volume and diversity of malware is rising exponentially, new techniques need to be employed for faster and accurate identification of the malwares. Manual heuristic inspection of malware analysis are neither effective in detecting new malware, nor efficient as they fail to keep up with the high spreading rate of malware. Machine learning approaches have therefore gained momentum. They have been used to automate static and dynamic analysis investigation where malware having similar behavior are clustered together, and based on the proximity unknown malwares get classified to their respective families. Although many such research efforts have been conducted where data-mining and machine-learning techniques have been applied, in this paper we show how the accuracy can further be improved using deep learning networks. As deep learning offers superior classification by constructing neural networks with a higher number of potentially diverse layers it leads to improvement in automatic detection and classification of the malware variants.In this research, we present a framework which extracts various feature-sets such as system calls, operational codes, sections, and byte codes from the malware files. In the experimental and result section, we compare the accuracy obtained from each of these features and demonstrate that feature vector for system calls yields the highest accuracy. The paper concludes by showing how deep learning approach performs better than the traditional shallow machine learning approaches.
Sathya, K, Premalatha, J, Suwathika, S.  2020.  Reinforcing Cyber World Security with Deep Learning Approaches. 2020 International Conference on Communication and Signal Processing (ICCSP). :0766–0769.
In the past decade, the Machine Learning (ML) and Deep learning (DL) has produced much research interest in the society and attracted them. Now-a-days, the Internet and social life make a lead in most of their life but it has serious social threats. It is a challenging thing to protect the sensitive information, data network and the computers which are in unauthorized cyber-attacks. For protecting the data's we need the cyber security. For these problems, the recent technologies of Deep learning and Machine Learning are integrated with the cyber-attacks to provide the solution for the problems. This paper gives a synopsis of utilizing deep learning to enhance the security of cyber world and various challenges in integrating deep learning into cyber security are analyzed.
2021-09-16
Grusho, A., Nikolaev, A., Piskovski, V., Sentchilo, V., Timonina, E..  2020.  Endpoint Cloud Terminal as an Approach to Secure the Use of an Enterprise Private Cloud. 2020 International Scientific and Technical Conference Modern Computer Network Technologies (MoNeTeC). :1–4.
Practical activities usually require the ability to simultaneously work with internal, distributed information resources and access to the Internet. The need to solve this problem necessitates the use of appropriate administrative and technical methods to protect information. Such methods relate to the idea of domain isolation. This paper considers the principles of implementation and properties of an "Endpoint Cloud Terminal" that is general-purpose software tool with built-in security instruments. This apparatus solves the problem by combining an arbitrary number of isolated and independent workplaces on one hardware unit, a personal computer.
Patel, Ashok R.  2020.  Biometrics Based Access Framework for Secure Cloud Computing. 2020 International Conference on Computational Science and Computational Intelligence (CSCI). :1318–1321.
This paper is focused on the topic of the use of biometrics framework and strategy for secure access identity management of cloud computing services. This paper present's a description of cloud computing security issues and explored a review of previous works that represented various ideas for a cloud access framework. This paper discusses threats like a malicious insider, data breaches, and describes ways to protect them. It describes an innovative way portrayed a framework that fingerprint access-based authentication to protect Cloud services from unauthorized access and DOS, DDoS attacks. This biometrics-based framework as an extra layer of protection, added then it can be robust to prevent unauthorized access to cloud services.