Visible to the public Biblio

Found 2320 results

Filters: First Letter Of Last Name is P  [Clear All Filters]
2021-07-07
Suciu, George, Hussain, Ijaz, Petrescu, Gabriel.  2020.  Role of Ubiquitous Computing and Mobile WSN Technologies and Implementation. 2020 International Conference on Electrical, Communication, and Computer Engineering (ICECCE). :1–6.
Computing capabilities such as real time data, unlimited connection, data from sensors, environmental analysis, automated decisions (machine learning) are demanded by many areas like industry for example decision making, machine learning, by research and military, for example GPS, sensor data collection. The possibility to make these features compatible with each domain that demands them is known as ubiquitous computing. Ubiquitous computing includes network topologies such as wireless sensor networks (WSN) which can help further improving the existing communication, for example the Internet. Also, ubiquitous computing is included in the Internet of Things (IoT) applications. In this article, it is discussed the mobility of WSN and its advantages and innovations, which make possible implementations for smart home and office. Knowing the growing number of mobile users, we place the mobile phone as the key factor of the future ubiquitous wireless networks. With secure computing, communicating, and storage capacities of mobile devices, they can be taken advantage of in terms of architecture in the sense of scalability, energy efficiency, packet delay, etc. Our work targets to present a structure from a ubiquitous computing point of view for researchers who have an interest in ubiquitous computing and want to research on the analysis, to implement a novel method structure for the ubiquitous computing system in military sectors. Also, this paper presents security and privacy issues in ubiquitous sensor networks (USN).
2021-07-02
Braeken, An, Porambage, Pawani, Puvaneswaran, Amirthan, Liyanage, Madhusanka.  2020.  ESSMAR: Edge Supportive Secure Mobile Augmented Reality Architecture for Healthcare. 2020 5th International Conference on Cloud Computing and Artificial Intelligence: Technologies and Applications (CloudTech). :1—7.
The recent advances in mobile devices and wireless communication sector transformed Mobile Augmented Reality (MAR) from science fiction to reality. Among the other MAR use cases, the incorporation of this MAR technology in the healthcare sector can elevate the quality of diagnosis and treatment for the patients. However, due to the highly sensitive nature of the data available in this process, it is also highly vulnerable to all types of security threats. In this paper, an edge-based secure architecture is presented for a MAR healthcare application. Based on the ESSMAR architecture, a secure key management scheme is proposed for both the registration and authentication phases. Then the security of the proposed scheme is validated using formal and informal verification methods.
Yao, Xiaoyong, Pei, Yuwen, Wu, Pingdong, Huang, Man-ling.  2020.  Study on Integrative Control between the Stereoscopic Image and the Tactile Feedback in Augmented Reality. 2020 IEEE 3rd International Conference on Electronics and Communication Engineering (ICECE). :177—180.
The precise integrative control between the stereoscopic image and the tactile feedback is very essential in augmented reality[1]-[4]. In order to study this question, this paper will introduce a stereoscopic-imaging and tactile integrative augmented-reality system, and a stereoscopic-imaging and tactile integrative algorithm. The system includes a stereoscopic-imaging part and a string-based tactile part. The integrative algorithm is used to precisely control the interaction between the two parts. The results for testing the system and the algorithm demonstrate the system to be perfect through 5 testers' operation and will be presented in the last part of the paper.
2021-06-30
Aswal, Kiran, Dobhal, Dinesh C., Pathak, Heman.  2020.  Comparative analysis of machine learning algorithms for identification of BOT attack on the Internet of Vehicles (IoV). 2020 International Conference on Inventive Computation Technologies (ICICT). :312—317.
In this digital era, technology is upgrading day by day and becoming more agile and intelligent. Smart devices and gadgets are now being used to find solutions to complex problems in various domains such as health care, industries, entertainment, education, etc. The Transport system, which is the biggest challenge for any governing authority of a state, is also not untouched with this development. There are numerous challenges and issues with the existing transport system, which can be addressed by developing intelligent and autonomous vehicles. The existing vehicles can be upgraded to use sensors and the latest communication techniques. The advancements in the Internet of Things (IoT) have the potential to completely transform the existing transport system to a more advanced and intelligent transport system that is the Internet of Vehicles (IoV). Due to the connectivity with the Internet, the Internet of Vehicles (IoV) is exposed to various security threats. Security is the primary issue, which requires to be addressed for success and adoption of the IoV. In this paper, the applicability of machine learning based solutions to address the security issue of IoV is analyzed. The performance of six machine-learning algorithms to detect Bot threats is validated by the k-fold cross-validation method in python.
Biroon, Roghieh A., Pisu, Pierluigi, Abdollahi, Zoleikha.  2020.  Real-time False Data Injection Attack Detection in Connected Vehicle Systems with PDE modeling. 2020 American Control Conference (ACC). :3267—3272.
Connected vehicles as a promising concept of Intelligent Transportation System (ITS), are a potential solution to address some of the existing challenges of emission, traffic congestion as well as fuel consumption. To achieve these goals, connectivity among vehicles through the wireless communication network is essential. However, vehicular communication networks endure from reliability and security issues. Cyber-attacks with purposes of disrupting the performance of the connected vehicles, lead to catastrophic collision and traffic congestion. In this study, we consider a platoon of connected vehicles equipped with Cooperative Adaptive Cruise Control (CACC) which are subjected to a specific type of cyber-attack namely "False Data Injection" attack. We developed a novel method to model the attack with ghost vehicles injected into the connected vehicles network to disrupt the performance of the whole system. To aid the analysis, we use a Partial Differential Equation (PDE) model. Furthermore, we present a PDE model-based diagnostics scheme capable of detecting the false data injection attack and isolating the injection point of the attack in the platoon system. The proposed scheme is designed based on a PDE observer with measured velocity and acceleration feedback. Lyapunov stability theory has been utilized to verify the analytically convergence of the observer under no attack scenario. Eventually, the effectiveness of the proposed algorithm is evaluated with simulation study.
Wang, Chenguang, Pan, Kaikai, Tindemans, Simon, Palensky, Peter.  2020.  Training Strategies for Autoencoder-based Detection of False Data Injection Attacks. 2020 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe). :1—5.
The security of energy supply in a power grid critically depends on the ability to accurately estimate the state of the system. However, manipulated power flow measurements can potentially hide overloads and bypass the bad data detection scheme to interfere the validity of estimated states. In this paper, we use an autoencoder neural network to detect anomalous system states and investigate the impact of hyperparameters on the detection performance for false data injection attacks that target power flows. Experimental results on the IEEE 118 bus system indicate that the proposed mechanism has the ability to achieve satisfactory learning efficiency and detection accuracy.
Wang, Chenguang, Tindemans, Simon, Pan, Kaikai, Palensky, Peter.  2020.  Detection of False Data Injection Attacks Using the Autoencoder Approach. 2020 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS). :1—6.
State estimation is of considerable significance for the power system operation and control. However, well-designed false data injection attacks can utilize blind spots in conventional residual-based bad data detection methods to manipulate measurements in a coordinated manner and thus affect the secure operation and economic dispatch of grids. In this paper, we propose a detection approach based on an autoencoder neural network. By training the network on the dependencies intrinsic in `normal' operation data, it effectively overcomes the challenge of unbalanced training data that is inherent in power system attack detection. To evaluate the detection performance of the proposed mechanism, we conduct a series of experiments on the IEEE 118-bus power system. The experiments demonstrate that the proposed autoencoder detector displays robust detection performance under a variety of attack scenarios.
2021-06-28
Alshehri, Mohammed, Panda, Brajendra.  2020.  Minimizing Data Breach by a Malicious Fog Node within a Fog Federation. 2020 7th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/2020 6th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom). :36–43.
Fog computing was emerged as mini-clouds deployed close to the ground to reduce communication overhead and time latency between the cloud and end-users' devices. Because fog computing is an extension of cloud computing, it inherits the security and privacy issues cloud computing has faced. If a Fog Node (FN) serving end-devices goes rogue or becomes maliciously compromised, this would hinder individuals' and organizations' data security (e.g., Confidentiality, Integrity, and Availability). This paper presents a novel scheme based on the Ciphertext-Policy-Attribute-Based-Encryption (CP-ABE) and hashing cryptographic primitives to minimize the amount of data in danger of breach by rogue fog nodes with maintaining the fog computing services provided to end-users' devices. This scheme manages to oust rogue Fog Nodes (FNs) and to prevent them from violating end-users' data security while guarantying the features provided by the fog computing paradigm. We demonstrate our scheme's applicability and efficiency by carrying out performance analysis and analyzing its security, and communication overhead.
Lee, Hyunjun, Bere, Gomanth, Kim, Kyungtak, Ochoa, Justin J., Park, Joung-hu, Kim, Taesic.  2020.  Deep Learning-Based False Sensor Data Detection for Battery Energy Storage Systems. 2020 IEEE CyberPELS (CyberPELS). :1–6.
Battery energy storage systems are facing risks of unreliable battery sensor data which might be caused by sensor faults in an embedded battery management system, communication failures, and even cyber-attacks. It is crucial to evaluate the trustworthiness of battery sensor data since inaccurate sensor data could lead to not only serious damages to battery energy storage systems, but also threaten the overall reliability of their applications (e.g., electric vehicles or power grids). This paper introduces a battery sensor data trust framework enabling detecting unreliable data using a deep learning algorithm. The proposed sensor data trust mechanism could potentially improve safety and reliability of the battery energy storage systems. The proposed deep learning-based battery sensor fault detection algorithm is validated by simulation studies using a convolutional neural network.
P N, Renjith, K, Ramesh.  2020.  Trust based Security framework for IoT data. 2020 4th International Conference on Computer, Communication and Signal Processing (ICCCSP). :1–5.
With an incredible growth in MEMS and Internet, IoT has developed to an inevitable invention and resource for human needs. IoT reframes the communication and created a new way of machine to machine communication. IoT utilizes smart sensor to monitor and track environmental changes in any area of interest. The high volume of sensed information is processed, formulated and presented to the user for decision making. In this paper a model is designed to perform trust evaluation and data aggregation with confidential transmission of secured information in to the network and enables higher secure and reliable data transmission for effective analysis and decision making. The Sensors in IoT devices, senses the same information and forwards redundant data in to the network. This results in higher network congestion and causes transmission overhead. This could be control by introducing data aggregation. A gateway sensor node can act as aggregator and a forward unique information to the base station. However, when the network is adulterated with malicious node, these malicious nodes tend to injects false data in to the network. In this paper, a trust based malicious node detection technique has been introduced to isolate the malicious node from forwarding false information into the network. Simulation results proves the proposed protocol can be used to reduce malicious attack with increased throughput and performance.
2021-06-24
Nilă, Constantin, Patriciu, Victor.  2020.  Taking advantage of unsupervised learning in incident response. 2020 12th International Conference on Electronics, Computers and Artificial Intelligence (ECAI). :1–6.
This paper looks at new ways to improve the necessary time for incident response triage operations. By employing unsupervised K-means, enhanced by both manual and automated feature extraction techniques, the incident response team can quickly and decisively extrapolate malicious web requests that concluded to the investigated exploitation. More precisely, we evaluated the benefits of different visualization enhancing methods that can improve feature selection and other dimensionality reduction techniques. Furthermore, early tests of the gross framework have shown that the necessary time for triage is diminished, more so if a hybrid multi-model is employed. Our case study revolved around the need for unsupervised classification of unknown web access logs. However, the demonstrated principals may be considered for other applications of machine learning in the cybersecurity domain.
Połap, Dawid, Srivastava, Gautam, Jolfaei, Alireza, Parizi, Reza M..  2020.  Blockchain Technology and Neural Networks for the Internet of Medical Things. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :508–513.
In today's technological climate, users require fast automation and digitization of results for large amounts of data at record speeds. Especially in the field of medicine, where each patient is often asked to undergo many different examinations within one diagnosis or treatment. Each examination can help in the diagnosis or prediction of further disease progression. Furthermore, all produced data from these examinations must be stored somewhere and available to various medical practitioners for analysis who may be in geographically diverse locations. The current medical climate leans towards remote patient monitoring and AI-assisted diagnosis. To make this possible, medical data should ideally be secured and made accessible to many medical practitioners, which makes them prone to malicious entities. Medical information has inherent value to malicious entities due to its privacy-sensitive nature in a variety of ways. Furthermore, if access to data is distributively made available to AI algorithms (particularly neural networks) for further analysis/diagnosis, the danger to the data may increase (e.g., model poisoning with fake data introduction). In this paper, we propose a federated learning approach that uses decentralized learning with blockchain-based security and a proposition that accompanies that training intelligent systems using distributed and locally-stored data for the use of all patients. Our work in progress hopes to contribute to the latest trend of the Internet of Medical Things security and privacy.
Stöckle, Patrick, Grobauer, Bernd, Pretschner, Alexander.  2020.  Automated Implementation of Windows-related Security-Configuration Guides. 2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE). :598—610.
Hardening is the process of configuring IT systems to ensure the security of the systems' components and data they process or store. The complexity of contemporary IT infrastructures, however, renders manual security hardening and maintenance a daunting task. In many organizations, security-configuration guides expressed in the SCAP (Security Content Automation Protocol) are used as a basis for hardening, but these guides by themselves provide no means for automatically implementing the required configurations. In this paper, we propose an approach to automatically extract the relevant information from publicly available security-configuration guides for Windows operating systems using natural language processing. In a second step, the extracted information is verified using the information of available settings stored in the Windows Administrative Template files, in which the majority of Windows configuration settings is defined. We show that our implementation of this approach can extract and implement 83% of the rules without any manual effort and 96% with minimal manual effort. Furthermore, we conduct a study with 12 state-of-the-art guides consisting of 2014 rules with automatic checks and show that our tooling can implement at least 97% of them correctly. We have thus significantly reduced the effort of securing systems based on existing security-configuration guides. In many organizations, security-configuration guides expressed in the SCAP (Security Content Automation Protocol) are used as a basis for hardening, but these guides by themselves provide no means for automatically implementing the required configurations. In this paper, we propose an approach to automatically extract the relevant information from publicly available security-configuration guides for Windows operating systems using natural language processing. In a second step, the extracted information is verified using the information of available settings stored in the Windows Administrative Template files, in which the majority of Windows configuration settings is defined. We show that our implementation of this approach can extract and implement 83% of the rules without any manual effort and 96% with minimal manual effort. Furthermore, we conduct a study with 12 state-of-the-art guides consisting of 2014 rules with automatic checks and show that our tooling can implement at least 97% of them correctly. We have thus significantly reduced the effort of securing systems based on existing security-configuration guides. In this paper, we propose an approach to automatically extract the relevant information from publicly available security-configuration guides for Windows operating systems using natural language processing. In a second step, the extracted information is verified using the information of available settings stored in the Windows Administrative Template files, in which the majority of Windows configuration settings is defined. We show that our implementation of this approach can extract and implement 83% of the rules without any manual effort and 96% with minimal manual effort. Furthermore, we conduct a study with 12 state-of-the-art guides consisting of 2014 rules with automatic checks and show that our tooling can implement at least 97% of them correctly. We have thus significantly reduced the effort of securing systems based on existing security-configuration guides. We show that our implementation of this approach can extract and implement 83% of the rules without any manual effort and 96% with minimal manual effort. Furthermore, we conduct a study with 12 state-of-the-art guides consisting of 2014 rules with automatic checks and show that our tooling can implement at least 97% of them correctly. We have thus significantly reduced the effort of securing systems based on existing security-configuration guides.
Pashchenko, Ivan, Scandariato, Riccardo, Sabetta, Antonino, Massacci, Fabio.  2021.  Secure Software Development in the Era of Fluid Multi-party Open Software and Services. 2021 IEEE/ACM 43rd International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER). :91—95.
Pushed by market forces, software development has become fast-paced. As a consequence, modern development projects are assembled from 3rd-party components. Security & privacy assurance techniques once designed for large, controlled updates over months or years, must now cope with small, continuous changes taking place within a week, and happening in sub-components that are controlled by third-party developers one might not even know they existed. In this paper, we aim to provide an overview of the current software security approaches and evaluate their appropriateness in the face of the changed nature in software development. Software security assurance could benefit by switching from a process-based to an artefact-based approach. Further, security evaluation might need to be more incremental, automated and decentralized. We believe this can be achieved by supporting mechanisms for lightweight and scalable screenings that are applicable to the entire population of software components albeit there might be a price to pay.
Moran, Kevin, Palacio, David N., Bernal-Cárdenas, Carlos, McCrystal, Daniel, Poshyvanyk, Denys, Shenefiel, Chris, Johnson, Jeff.  2020.  Improving the Effectiveness of Traceability Link Recovery using Hierarchical Bayesian Networks. 2020 IEEE/ACM 42nd International Conference on Software Engineering (ICSE). :873—885.
Traceability is a fundamental component of the modern software development process that helps to ensure properly functioning, secure programs. Due to the high cost of manually establishing trace links, researchers have developed automated approaches that draw relationships between pairs of textual software artifacts using similarity measures. However, the effectiveness of such techniques are often limited as they only utilize a single measure of artifact similarity and cannot simultaneously model (implicit and explicit) relationships across groups of diverse development artifacts. In this paper, we illustrate how these limitations can be overcome through the use of a tailored probabilistic model. To this end, we design and implement a HierarchiCal PrObabilistic Model for SoftwarE Traceability (Comet) that is able to infer candidate trace links. Comet is capable of modeling relationships between artifacts by combining the complementary observational prowess of multiple measures of textual similarity. Additionally, our model can holistically incorporate information from a diverse set of sources, including developer feedback and transitive (often implicit) relationships among groups of software artifacts, to improve inference accuracy. We conduct a comprehensive empirical evaluation of Comet that illustrates an improvement over a set of optimally configured baselines of ≈14% in the best case and ≈5% across all subjects in terms of average precision. The comparative effectiveness of Comet in practice, where optimal configuration is typically not possible, is likely to be higher. Finally, we illustrate Comet's potential for practical applicability in a survey with developers from Cisco Systems who used a prototype Comet Jenkins plugin.
Jang, Dongsoo, Shin, Michael, Pathirage, Don.  2020.  Security Fault Tolerance for Access Control. 2020 IEEE International Conference on Autonomic Computing and Self-Organizing Systems Companion (ACSOS-C). :212—217.
This paper describes an approach to the security fault tolerance of access control in which the security breaches of an access control are tolerated by means of a security fault tolerant (SFT) access control. Though an access control is securely designed and implemented, it can contain faults in development or be contaminated in operation. The threats to an access control are analyzed to identify possible security breaches. To tolerate the security breaches, an SFT access control is made to be semantically identical to an access control. Our approach is described using role-based access control (RBAC) and extended access control list (EACL). A healthcare system is used to demonstrate our approach.
2021-06-02
Applebaum, Benny, Kachlon, Eliran, Patra, Arpita.  2020.  The Round Complexity of Perfect MPC with Active Security and Optimal Resiliency. 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS). :1277—1284.
In STOC 1988, Ben-Or, Goldwasser, and Wigderson (BGW) established an important milestone in the fields of cryptography and distributed computing by showing that every functionality can be computed with perfect (information-theoretic and error-free) security at the presence of an active (aka Byzantine) rushing adversary that controls up to n/3 of the parties. We study the round complexity of general secure multiparty computation in the BGW model. Our main result shows that every functionality can be realized in only four rounds of interaction, and that some functionalities cannot be computed in three rounds. This completely settles the round-complexity of perfect actively-secure optimally-resilient MPC, resolving a long line of research. Our lower-bound is based on a novel round-reduction technique that allows us to lift existing three-round lower-bounds for verifiable secret sharing to four-round lower-bounds for general MPC. To prove the upper-bound, we develop new round-efficient protocols for computing degree-2 functionalities over large fields, and establish the completeness of such functionalities. The latter result extends the recent completeness theorem of Applebaum, Brakerski and Tsabary (TCC 2018, Eurocrypt 2019) that was limited to the binary field.
Das, Sima, Panda, Ganapati.  2020.  An Initiative Towards Privacy Risk Mitigation Over IoT Enabled Smart Grid Architecture. 2020 International Conference on Renewable Energy Integration into Smart Grids: A Multidisciplinary Approach to Technology Modelling and Simulation (ICREISG). :168—173.
The Internet of Things (IoT) has transformed many application domains with realtime, continuous, automated control and information transmission. The smart grid is one such futuristic application domain in execution, with a large-scale IoT network as its backbone. By leveraging the functionalities and characteristics of IoT, the smart grid infrastructure benefits not only consumers, but also service providers and power generation organizations. The confluence of IoT and smart grid comes with its own set of challenges. The underlying cyberspace of IoT, though facilitates communication (information propagation) among devices of smart grid infrastructure, it undermines the privacy at the same time. In this paper we propose a new measure for quantifying the probability of privacy leakage based on the behaviors of the devices involved in the communication process. We construct a privacy stochastic game model based on the information shared by the device, and the access to the compromised device. The existence of Nash Equilibrium strategy of the game is proved theoretically. We experimentally validate the effectiveness of the privacy stochastic game model.
Priyanka, J., Rajeshwari, K.Raja, Ramakrishnan, M..  2020.  Operative Access Regulator for Attribute Based Generalized Signcryption Using Rough Set Theory. 2020 International Conference on Electronics and Sustainable Communication Systems (ICESC). :458—460.
The personal health record has been shared and preserved easily with cloud core storage. Privacy and security have been one of the main demerits of core CloudHealthData storage. By increasing the security concerns in this paper experimented Operative Access Regulator for Attribute Based Generalized Signcryption Using rough set theory. By using rough set theory, the classifications of the attribute have been improved as well as the compulsory attribute has been formatted for decrypting process by using reduct and core. The Generalized signcryption defined priority wise access to diminish the cost and rise the effectiveness of the proposed model. The PHR has been stored under the access priorities of Signature only, encryption only and signcryption only mode. The proposed ABGS performance fulfills the secrecy, authentication and also other security principles.
2021-06-01
Plager, Trenton, Zhu, Ying, Blackmon, Douglas A..  2020.  Creating a VR Experience of Solitary Confinement. 2020 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW). :692—693.
The goal of this project is to create a realistic VR experience of solitary confinement and study its impact on users. Although there have been active debates and studies on this subject, very few people have personal experience of solitary confinement. Our first aim is to create such an experience in VR to raise the awareness of solitary confinement. We also want to conduct user studies to compare the VR solitary confinement experience with other types of media experiences, such as films or personal narrations. Finally, we want to study people’s sense of time in such a VR environment.
Pandey, Pragya, Kaur, Inderjeet.  2020.  Improved MODLEACH with Effective Energy Utilization Technique for WSN. 2020 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO). :987—992.
Wireless sensor network (WSNs) formed from an enormous number of sensor hub with the capacity to detect and process information in the physical world in a convenient way. The sensor nodes contain a battery imperative, which point of confinement the system lifetime. Because of vitality limitations, the arrangement of WSNs will required development methods to keep up the system lifetime. The vitality productive steering is the need of the innovative WSN systems to build the process time of system. The WSN system is for the most part battery worked which should be ration as conceivable as to cause system to continue longer and more. WSN has developed as a significant figuring stage in the ongoing couple of years. WSN comprises of countless sensor points, which are worked by a little battery. The vitality of the battery worked nodes is the defenseless asset of the WSN, which is exhausted at a high rate when data is transmitted, because transmission vitality is subject to the separation of transmission. Sensor nodes can be sent in the cruel condition. When they are conveyed, it ends up difficult to supplant or energize its battery. Therefore, the battery intensity of sensor hub ought to be utilized proficiently. Many steering conventions have been proposed so far to boost the system lifetime and abatement the utilization vitality, the fundamental point of the sensor hubs is information correspondence, implies move of information packs from one hub to other inside the system. This correspondence is finished utilizing grouping and normal vitality of a hub. Each bunch chooses a pioneer called group head. The group heads CHs are chosen based by and large vitality and the likelihood. There are number of bunching conventions utilized for the group Head determination, the principle idea is the existence time of a system which relies on the normal vitality of the hub. In this work we proposed a model, which utilizes the leftover vitality for group head choice and LZW pressure Technique during the transmission of information bundles from CHs to base station. Work enhanced the throughput and life time of system and recoveries the vitality of hub during transmission and moves more information in less vitality utilization. The Proposed convention is called COMPRESSED MODLEACH.
Chandrasekaran, Selvamani, Ramachandran, K.I., Adarsh, S., Puranik, Ashish Kumar.  2020.  Avoidance of Replay attack in CAN protocol using Authenticated Encryption. 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1—6.
Controller Area Network is the prominent communication protocol in automotive systems. Its salient features of arbitration, message filtering, error detection, data consistency and fault confinement provide robust and reliable architecture. Despite of this, it lacks security features and is vulnerable to many attacks. One of the common attacks over the CAN communication is the replay attack. It can happen even after the implementation of encryption or authentication. This paper proposes a methodology of supressing the replay attacks by implementing authenticated encryption embedded with timestamp and pre-shared initialisation vector as a primary key. The major advantage of this system is its flexibility and configurability nature where in each layer can be chosen with the help of cryptographic algorithms to up to the entire size of the keys.
Thakare, Vaishali Ravindra, Singh, K. John, Prabhu, C S R, Priya, M..  2020.  Trust Evaluation Model for Cloud Security Using Fuzzy Theory. 2020 International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE). :1–4.
Cloud computing is a new kind of computing model which allows users to effectively rent virtualized computing resources on pay as you go model. It offers many advantages over traditional models in IT industries and healthcare as well. However, there is lack of trust between CSUs and CSPs to prevent the extensive implementation of cloud technologies amongst industries. Different models are developed to overcome the uncertainty and complexity between CSP and CSU regarding suitability. Several researchers focused on resource optimization, scheduling and service dependability in cloud computing by using fuzzy logic. But, data storage and security using fuzzy logic have been ignored. In this paper, a trust evaluation model is proposed for cloud computing security using fuzzy theory. Authors evaluates how fuzzy logic increases efficiency in trust evaluation. To validate the effectiveness of proposed FTEM, authors presents a case study of healthcare organization.
Sharma, Rajesh Kumar, Pippal, Ravi Singh.  2020.  Malicious Attack and Intrusion Prevention in IoT Network using Blockchain based Security Analysis. 2020 12th International Conference on Computational Intelligence and Communication Networks (CICN). :380–385.
The Internet of Things (IoT) as a demanding technology require the best features of information security for effective development of the IoT based smart city and technological activity. There are huge number of recent security threats searching for some loopholes which are ready to exploit any network. Against the back-drop of recent rapidly growing technological advancement of IoT, security-threats have become a critical challenge which demand responsive and continuous action. As privacy and security exhibit an ever-present flourishing issue, so loopholes detection and analysis are indispensable process in the network. This paper presents Block chain based security analysis of data generated from IoT devices to prevent malicious attacks and intrusion in the IoT network.
Cideron, Geoffrey, Seurin, Mathieu, Strub, Florian, Pietquin, Olivier.  2020.  HIGhER: Improving instruction following with Hindsight Generation for Experience Replay. 2020 IEEE Symposium Series on Computational Intelligence (SSCI). :225–232.
Language creates a compact representation of the world and allows the description of unlimited situations and objectives through compositionality. While these characterizations may foster instructing, conditioning or structuring interactive agent behavior, it remains an open-problem to correctly relate language understanding and reinforcement learning in even simple instruction following scenarios. This joint learning problem is alleviated through expert demonstrations, auxiliary losses, or neural inductive biases. In this paper, we propose an orthogonal approach called Hindsight Generation for Experience Replay (HIGhER) that extends the Hindsight Experience Replay approach to the language-conditioned policy setting. Whenever the agent does not fulfill its instruction, HIGhER learns to output a new directive that matches the agent trajectory, and it relabels the episode with a positive reward. To do so, HIGhER learns to map a state into an instruction by using past successful trajectories, which removes the need to have external expert interventions to relabel episodes as in vanilla HER. We show the efficiency of our approach in the BabyAI environment, and demonstrate how it complements other instruction following methods.