Biblio
Since remote ages, queues and delays have been a rather exasperating reality of human daily life. Today, they pursue us everywhere: in technical, social, socio-technical, and even control systems, dramatically deteriorating their performance. In this variety, it is the computer systems that are sure to cause the growing anxiety in our digital era. Although for our everyday Internet surfing, experiencing long-lasting and annoying delays is an unpleasant but not dangerous situation, for industrial control systems, especially those dealing with critical infrastructures, such behavior is unacceptable. The article presents a deterministic approach to solving some digital control system problems associated with delays and backlogs. Being based on Network calculus, in contrast to statistical methods of Queuing theory, it provides worst-case results, which are eminently desirable for critical infrastructures. The article covers the basics of a theory of deterministic queuing systems Network calculus, its evolution regarding the relationship between backlog bound and delay, and a technique for handling empirical data. The problems being solved by the deterministic approach: standard calculation of network performance measures, estimation of database maximum updating time, and cybersecurity assessment including such issues as the CIA triad representation, operational technology influence, and availability understanding focusing on its correlation with a delay are thoroughly discussed as well.
Deep learning methods are increasingly becoming solutions to complex problems, including the search for anomalies. While fully-connected and convolutional neural networks have already found their application in classification problems, their applicability to the problem of detecting anomalies is limited. In this regard, it is proposed to use autoencoders, previously used only in problems of reducing the dimension and removing noise, as a method for detecting anomalies in the industrial control system. A new method based on autoencoders is proposed for detecting anomalies in the operation of industrial control systems (ICS). Several neural networks based on auto-encoders with different architectures were trained, and the effectiveness of each of them in the problem of detecting anomalies in the work of process control systems was evaluated. Auto-encoders can detect the most complex and non-linear dependencies in the data, and as a result, can show the best quality for detecting anomalies. In some cases, auto-encoders require fewer machine resources.
Safety and security of complex critical infrastructures is very important for economic, environmental and social reasons. The interdisciplinary and inter-system dependencies within these infrastructures introduce difficulties in the safety and security design. Late discovery of safety and security design weaknesses can lead to increased costs, additional system complexity, ineffective mitigation measures and delays to the deployment of the systems. Traditionally, safety and security assessments are handled using different methods and tools, although some concepts are very similar, by specialized experts in different disciplines and are performed at different system design life-cycle phases.The methodology proposed in this paper supports a concurrent safety and security Defense in Depth (DiD) assessment at an early design phase and it is designed to handle safety and security at a high level and not focus on specific practical technologies. It is assumed that regardless of the perceived level of security defenses in place, a determined (motivated, capable and/or well-funded) attacker can find a way to penetrate a layer of defense. While traditional security research focuses on removing vulnerabilities and increasing the difficulty to exploit weaknesses, our higher-level approach focuses on how the attacker's reach can be limited and to increase the system's capability for detection, identification, mitigation and tracking. The proposed method can assess basic safety and security DiD design principles like Redundancy, Physical separation, Functional isolation, Facility functions, Diversity, Defense lines/Facility and Computer Security zones, Safety classes/Security Levels, Safety divisions and physical gates/conduits (as defined by the International Atomic Energy Agency (IAEA) and international standards) concurrently and provide early feedback to the system engineer. A prototype tool is developed that can parse the exported project file of the interdisciplinary model. Based on a set of safety and security attributes, the tool is able to assess aspects of the safety and security DiD capabilities of the design. Its results can be used to identify errors, improve the design and cut costs before a formal human expert inspection. The tool is demonstrated on a case study of an early conceptual design of a complex system of a nuclear power plant.
The rapid growth of artificial intelligence has contributed a lot to the technology world. As the traditional algorithms failed to meet the human needs in real time, Machine learning and deep learning algorithms have gained great success in different applications such as classification systems, recommendation systems, pattern recognition etc. Emotion plays a vital role in determining the thoughts, behaviour and feeling of a human. An emotion recognition system can be built by utilizing the benefits of deep learning and different applications such as feedback analysis, face unlocking etc. can be implemented with good accuracy. The main focus of this work is to create a Deep Convolutional Neural Network (DCNN) model that classifies 5 different human facial emotions. The model is trained, tested and validated using the manually collected image dataset.
Avoiding security vulnerabilities is very important for embedded systems. Dynamic Information Flow Tracking (DIFT) is a powerful technique to analyze SW with respect to security policies in order to protect the system against a broad range of security related exploits. However, existing DIFT approaches either do not exist for Virtual Prototypes (VPs) or fail to model complex hardware/software interactions.In this paper, we present a novel approach that enables early and accurate DIFT of binaries targeting embedded systems with custom peripherals. Leveraging the SystemC framework, our DIFT engine tracks accurate data flow information alongside the program execution to detect violations of security policies at run-time. We demonstrate the effectiveness and applicability of our approach by extensive experiments.
Modern JavaScript applications extensively depend on third-party libraries. Especially for the Node.js platform, vulnerabilities can have severe consequences to the security of applications, resulting in, e.g., cross-site scripting and command injection attacks. Existing static analysis tools that have been developed to automatically detect such issues are either too coarse-grained, looking only at package dependency structure while ignoring dataflow, or rely on manually written taint specifications for the most popular libraries to ensure analysis scalability. In this work, we propose a technique for automatically extracting taint specifications for JavaScript libraries, based on a dynamic analysis that leverages the existing test suites of the libraries and their available clients in the npm repository. Due to the dynamic nature of JavaScript, mapping observations from dynamic analysis to taint specifications that fit into a static analysis is non-trivial. Our main insight is that this challenge can be addressed by a combination of an access path mechanism that identifies entry and exit points, and the use of membranes around the libraries of interest. We show that our approach is effective at inferring useful taint specifications at scale. Our prototype tool automatically extracts 146 additional taint sinks and 7 840 propagation summaries spanning 1 393 npm modules. By integrating the extracted specifications into a commercial, state-of-the-art static analysis, 136 new alerts are produced, many of which correspond to likely security vulnerabilities. Moreover, many important specifications that were originally manually written are among the ones that our tool can now extract automatically.
We present ClearTrack, a system that tracks meta-data for each primitive value in Java programs to detect and nullify a range of vulnerabilities such as integer overflow/underflow and SQL/command injection vulnerabilities. Contributions include new techniques for eliminating false positives associated with benign integer overflows and underflows, new metadata-aware techniques for detecting and nullifying SQL/command command injection attacks, and results from an independent evaluation team. These results show that 1) ClearTrack operates successfully on Java programs comprising hundreds of thousands of lines of code (including instrumented jar files and Java system libraries, the majority of the applications comprise over 3 million lines of code), 2) because of computations such as cryptography and hash table calculations, these applications perform millions of benign integer overflows and underflows, and 3) ClearTrack successfully detects and nullifies all tested integer overflow and underflow and SQL/command injection vulnerabilities in the benchmark applications.
With the rapid development of Internet technology, the era of big data is coming. SQL injection attack is the most common and the most dangerous threat to database. This paper studies the working mode and workflow of the GreenSQL database firewall. Based on the analysis of the characteristics and patterns of SQL injection attack command, the input model of GreenSQL learning is optimized by constructing the patterned input and optimized whitelist. The research method can improve the learning efficiency of GreenSQL and intercept samples in IPS mode, so as to effectively maintain the security of background database.