Biblio
Filters: First Letter Of Last Name is Q [Clear All Filters]
An Efficient Ciphertext Policy Attribute-Based Encryption Scheme from Lattices and Its Implementation. 2021 IEEE 6th International Conference on Computer and Communication Systems (ICCCS). :732–742.
.
2021. Lattice-based Attribute-based encryption is a well-known cryptographic mechanism that can resist quantum attacks and has the ability of fine-grained access control, and it has a wide range of application scenarios in current Internet of Thing (IoT) era. However, lack of efficiency and existing the problem of large ciphertext expansion rate are the main disadvantages impede the applications of this mechanism. Thus, we propose an efficient and practical ciphertext policy attribute-based encryption (CP-ABE) scheme from lattices in the paper. In this scheme, to make the secret key reusable, we adjust access tree and propose a basic access tree structure, which can be converted from disjunctive normal form, and combine it with a light post-quantum scheme of Kyber. In addition, the compression method and plaintext expansion method are introduced to optimize the scheme. Our CP-ABE scheme is secure against chosen plaintext attack under the hardness of module learning with errors problem. We implement our scheme and compare it with three recent related schemes in terms of security, function and communication cost. Experiments and comparisons show that our CP-ABE scheme has advantages in high encryption efficiency, small matrix dimension, small key sizes, and low ciphertext expansion rate, which has some merit in practice.
Security Enhancements to Subscriber Privacy Protection Scheme in 5G Systems. 2021 International Wireless Communications and Mobile Computing (IWCMC). :451–456.
.
2021. Subscription permanent identifier has been concealed in the 5G systems by using the asymmetric encryption scheme as specified in standard 3GPP TS 33.501 to protect the subscriber privacy. The standardized scheme is however subject to the SUPI guess attack as the public key of the home network is publicly available. Moreover, it lacks the inherent mechanism to prevent SUCI replay attacks. In this paper, we propose three methods to enhance the security of the 3GPP scheme to thwart the SUPI guess attack and replay attack. One of these methods is suggested to be used to strengthen the security of the current subscriber protection scheme.
Power IoT Security Protection Architecture Based on Zero Trust Framework. 2021 IEEE 5th International Conference on Cryptography, Security and Privacy (CSP). :166–170.
.
2021. The construction of the power Internet of Things has led various terminals to access the corporate network on a large scale. The internal and external business interaction and data exchange are more extensive. The current security protection system is based on border isolation protection. This is difficult to meet the needs of the power Internet of Things connection and open shared services. This paper studies the application scheme of the ``zero trust'' typical business scenario of the power Internet of Things with ``Continuous Identity Authentication and Dynamic Access Control'' as the core, and designs the power internet security protection architecture based on zero trust.
Design of a New Micro Linear Actuator Owning Two-phase No-cross Planar Coils. 2021 IEEE 4th International Electrical and Energy Conference (CIEEC). :1–11.
.
2021. This paper presents a new micro linear actuator design. The North-South (NS) permanent magnet array configuration is assembled as the mobile part. The fixed part is designed to two-phase planar coils with no crossings avoiding interferences between overlapped conductors. The analytical calculation of the permanent magnet array verifies the feasibility of the finite element simulation. And then electromagnetic optimizations based on simulation to maximize the average thrust and minimize thrust ripple. In order to deal with millimeter level structure design, a microfabrication approach is adopted to process the new micro linear actuator in silicon material. The new micro linear actuator is able to perform millimeter level displacement strokes along a single axis in the horizontal plane. The experimental results demonstrate that the new micro linear actuator is capable of delivering variable strokes up to 5 mm with a precision error of 30 μm in position closed loop control and realizes the maximum velocity of 26.62mm/s with maximum error of 4.92%.
Artificial Noise Projection Matrix Optimization Method for Secure Multi-Cast Wireless Communication. 2020 IEEE 8th International Conference on Information, Communication and Networks (ICICN). :33–37.
.
2020. Transmit beamforming and artificial noise (AN) methods have been widely employed to achieve wireless physical layer (PHY) secure transmissions. While most works focus on transmit beamforming optimization, little attention is paid to the design of artificial noise projection matrix (ANPM). In this paper, compared with traditional ANPM obtained by zero-forcing method, which only makes AN power uniform distribution in free space outside legitimate users (LU) locations, we design ANPM to maximize the interference on eavesdroppers without interference on LUs for multicast directional modulation (MCDM) scenario based on frequency diverse array (FDA). Furthermore, we extend our approach to the case of with imperfect locations of Eves. Finally, simulation results show that Eves can be seriously affected by the AN with perfect/imperfect locations, respectively.
Analyzing Cryptographic API Usages for Android Applications Using HMM and N-Gram. 2020 International Symposium on Theoretical Aspects of Software Engineering (TASE). :153–160.
.
2020. A recent research shows that 88 % of Android applications that use cryptographic APIs make at least one mistake. For this reason, several tools have been proposed to detect crypto API misuses, such as CryptoLint, CMA, and CogniCryptSAsT. However, these tools depend heavily on manually designed rules, which require much cryptographic knowledge and could be error-prone. In this paper, we propose an approach based on probabilistic models, namely, hidden Markov model and n-gram model, to analyzing crypto API usages in Android applications. The difficulty lies in that crypto APIs are sensitive to not only API orders, but also their arguments. To address this, we have created a dataset consisting of crypto API sequences with arguments, wherein symbolic execution is performed. Finally, we have also conducted some experiments on our models, which shows that ( i) our models are effective in capturing the usages, detecting and locating the misuses; (ii) our models perform better than the ones without symbolic execution, especially in misuse detection; and (iii) compared with CogniCryptSAsT, our models can detect several new misuses.
Cyber-Resilience Enhancement of PMU Networks Using Software-Defined Networking. 2020 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm). :1–7.
.
2020. Phasor measurement unit (PMU) networks are increasingly deployed to offer timely and high-precision measurement of today's highly interconnected electric power systems. To enhance the cyber-resilience of PMU networks against malicious attacks and system errors, we develop an optimization-based network management scheme based on the software-defined networking (SDN) communication infrastructure to recovery PMU network connectivity and restore power system observability. The scheme enables fast network recovery by optimizing the path generation and installation process, and moreover, compressing the SDN rules to be installed on the switches. We develop a prototype system and perform system evaluation in terms of power system observability, recovery speed, and rule compression using the IEEE 30-bus system and IEEE 118-bus system.
Theorectical Optimazation of Surface Acoustic Waves Resonator Based on 30° Y-Cut Linbo3/SIO2/SI Multilayered Structure. 2020 15th Symposium on Piezoelectrcity, Acoustic Waves and Device Applications (SPAWDA). :555–559.
.
2021. Surface acoustic wave devices based on LiNbO3/interlayer/substrate layered structure have attracted great attention due to the high electromechanical coupling coefficient (K2) of LiNbO3 and the energy confinement effect of the layered structure. In this study, 30° YX-LiNbO3 (LN)/SiO2/Si multilayered structure, which can excited shear-horizontal surface acoustic wave (SH-SAW) with high K2, was proposed. The optimized orientation of LiNbO3 was verified by the effective permittivity method based on the stiffness matrix. The phase velocity, K2 value, and temperature coefficient of frequency (TCF) of the SH-SAW were calculated as a function of the LiNbO3 thickness at different thicknesses of the SiO2 in 30° YX-LiNbO3/SiO2/Si multilayer structure by finite element method (FEM). The results show that the optimized LiNbO3 thickness is 0.1 and the optimized SiO2 thickness is 0.2λ. The optimized Al electrode thickness and metallization ratio are 0.07 and 0.4, respectively. The K2 of the SH-SAW is 29.89%, the corresponding phase velocity is 3624.00 m/s and TCF is about 10 ppm/°C with the optimized IDT/30° YX-LiNbO3/SiO2/Si layered structure.
Optimal Planning of Distribution Network Based on K-Means Clustering. 2020 IEEE 4th Conference on Energy Internet and Energy System Integration (EI2). :2135–2139.
.
2020. The reform of electricity marketization has bred multiple market agents. In order to maximize the total social benefits on the premise of ensuring the security of the system and taking into account the interests of multiple market agents, a bi-level optimal allocation model of distribution network with multiple agents participating is proposed. The upper level model considers the economic benefits of energy and service providers, which are mainly distributed power investors, energy storage operators and distribution companies. The lower level model considers end-user side economy and actively responds to demand management to ensure the highest user satisfaction. The K-means multi scenario analysis method is used to describe the time series characteristics of wind power, photovoltaic power and load. The particle swarm optimization (PSO) algorithm is used to solve the bi-level model, and IEEE33 node system is used to verify that the model can effectively consider the interests of multiple agents while ensuring the security of the system.
TORP: Load Balanced Reliable Opportunistic Routing for Asynchronous Wireless Sensor Networks. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1384–1389.
.
2020. Opportunistic routing (OR) is gaining popularity in low-duty wireless sensor network (WSN), so the need for efficient and reliable data transmission is becoming more essential. Reliable transmission is only feasible if the routing protocols are secure and efficient. Due to high energy consumption, current cryptographic schemes for WSN are not suitable. Trust-based OR will ensure security and reliability with fewer resources and minimum energy consumption. OR selects the set of potential candidates for each sensor node using a prioritized metric by load balancing among the nodes. This paper introduces a trust-based load-balanced OR for duty-cycled wireless sensor networks. The candidates are prioritized on the basis of a trusted OR metric that is divided into two parts. First, the OR metric is based on the average of four probability distributions: the distance from node to sink distribution, the expected number of hops distribution, the node degree distribution, and the residual energy distribution. Second, the trust metric is based on the average of two probability distributions: the direct trust distribution and the recommended trust distribution. Finally, the trusted OR metric is calculated by multiplying the average of two metrics distributions in order to direct more traffic through the higher priority nodes. The simulation results show that our proposed protocol provides a significant improvement in the performance of the network compared to the benchmarks in terms of energy consumption, end to end delay, throughput, and packet delivery ratio.
Trusted Virtual Network Function Based on vTPM. 2020 7th International Conference on Information Science and Control Engineering (ICISCE). :1484–1488.
.
2020. Mobile communication technology is developing rapidly, and this is integrated with technologies such as Software Defined Network (SDN), cloud computing, and Network Function Virtualization (NFV). Network Functions (NFs) are no longer deployed on dedicated hardware devices, while deployed in Virtual Machines (VMs) or containers as Virtual Network Functions (VNFs). If VNFs are tampered with or replaced, the communication system will not function properly. Our research is to enhance the security of VNFs using trusted computing technology. By adding Virtual Trusted Platform Module (vTPM) to the virtualization platform, the chain of trust extends from the VM operating system to VNFs within the VM. Experimental results prove that the solution can effectively protect the integrity of VNFs from being attacked.
Age-Based Scheduling Policy for Federated Learning in Mobile Edge Networks. ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :8743–8747.
.
2020. Federated learning (FL) is a machine learning model that preserves data privacy in the training process. Specifically, FL brings the model directly to the user equipments (UEs) for local training, where an edge server periodically collects the trained parameters to produce an improved model and sends it back to the UEs. However, since communication usually occurs through a limited spectrum, only a portion of the UEs can update their parameters upon each global aggregation. As such, new scheduling algorithms have to be engineered to facilitate the full implementation of FL. In this paper, based on a metric termed the age of update (AoU), we propose a scheduling policy by jointly accounting for the staleness of the received parameters and the instantaneous channel qualities to improve the running efficiency of FL. The proposed algorithm has low complexity and its effectiveness is demonstrated by Monte Carlo simulations.
A Trust Routing Scheme Based on Identification of Non-complete Cooperative Nodes in Mobile Peer-to-Peer Networks. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :22–29.
.
2020. Mobile peer-to-peer network (MP2P) attracts increasing attentions due to the ubiquitous use of mobile communication and huge success of peer-to-peer (P2P) mode. However, open p2p mode makes nodes tend to be selfish, and the scarcity of resources in mobile nodes aggravates this problem, thus the nodes easily express a non-complete cooperative (NCC) attitude. Therefore, an identification of non-complete cooperative nodes and a corresponding trust routing scheme are proposed for MP2P in this paper. The concept of octant is firstly introduced to build a trust model which analyzes nodes from three dimensions, namely direct trust, internal state and recommendation reliability, and then the individual non-complete cooperative (INCC) nodes can be identified by the division of different octants. The direct trust monitors nodes' external behaviors, and the consideration of internal state and recommendation reliability contributes to differentiate the subjective and objective non-cooperation, and mitigate the attacks about direct trust values respectively. Thus, the trust model can identify various INCC nodes accurately. On the basis of identification of INCC nodes, cosine similarity method is applied to identify collusive non-complete cooperate (CNCC) nodes. Moreover, a trust routing scheme based on the identification of NCC nodes is presented to reasonably deal with different kinds of NCC nodes. Results from extensive simulation experiments demonstrate that this proposed identification and routing scheme have better performances, in terms of identification precision and packet delivery fraction than current schemes respectively.
Cyber Security Situational Awareness Jointly Utilizing Ball K-Means and RBF Neural Networks. 2020 17th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP). :261–265.
.
2020. Low accuracy and slow speed of predictions for cyber security situational awareness. This paper proposes a network security situational awareness model based on accelerated accurate k-means radial basis function (RBF) neural network, the model uses the ball k-means clustering algorithm to cluster the input samples, to get the nodes of the hidden layer of the RBF neural network, speeding up the selection of the initial center point of the RBF neural network, and optimize the parameters of the RBF neural network structure. Finally, use the training data set to train the neural network, using the test data set to test the accuracy of this neural network structure, the results show that this method has a greater improvement in training speed and accuracy than other neural networks.
LGMal: A Joint Framework Based on Local and Global Features for Malware Detection. 2020 International Wireless Communications and Mobile Computing (IWCMC). :463–468.
.
2020. With the gradual advancement of smart city construction, various information systems have been widely used in smart cities. In order to obtain huge economic benefits, criminals frequently invade the information system, which leads to the increase of malware. Malware attacks not only seriously infringe on the legitimate rights and interests of users, but also cause huge economic losses. Signature-based malware detection algorithms can only detect known malware, and are susceptible to evasion techniques such as binary obfuscation. Behavior-based malware detection methods can solve this problem well. Although there are some malware behavior analysis works, they may ignore semantic information in the malware API call sequence. In this paper, we design a joint framework based on local and global features for malware detection to solve the problem of network security of smart cities, called LGMal, which combines the stacked convolutional neural network and graph convolutional networks. Specially, the stacked convolutional neural network is used to learn API call sequence information to capture local semantic features and the graph convolutional networks is used to learn API call semantic graph structure information to capture global semantic features. Experiments on Alibaba Cloud Security Malware Detection datasets show that the joint framework gets better results. The experimental results show that the precision is 87.76%, the recall is 88.08%, and the F1-measure is 87.79%. We hope this paper can provide a useful way for malware detection and protect the network security of smart city.
An Architecture for Resilient Intrusion Detection in IoT Networks. ICC 2020 - 2020 IEEE International Conference on Communications (ICC). :1–7.
.
2020. We introduce a lightweight architecture of Intrusion Detection Systems (IDS) for ad-hoc IoT networks. Current state-of-the-art IDS have been designed based on assumptions holding from conventional computer networks, and therefore, do not properly address the nature of IoT networks. In this work, we first identify the correlation between the communication overheads and the placement of an IDS (as captured by proper placement of active IDS agents in the network). We model such networks as Random Geometric Graphs. We then introduce a novel IDS architectural approach by having only a minimum subset of the nodes acting as IDS agents. These nodes are able to monitor the network and detect attacks at the networking layer in a collaborative manner by monitoring 1-hop network information provided by routing protocols such as RPL. Conducted experiments show that our proposed IDS architecture is resilient and robust against frequent topology changes due to node failures. Our detailed experimental evaluation demonstrates significant performance gains in terms of communication overhead and energy dissipation while maintaining high detection rates.
Quantum-Secure Networked Microgrids. 2020 IEEE Power Energy Society General Meeting (PESGM). :1—5.
.
2020. The classical key distribution systems used for data transmission in networked microgrids (NMGs) rely on mathematical assumptions, which however can be broken by attacks from quantum computers. This paper addresses this quantum-era challenge by using quantum key distribution (QKD). Specifically, the novelty of this paper includes 1) a QKD-enabled communication architecture it devises for NMGs, 2) a real-time QKD- enabled NMGs testbed it builds in an RTDS environment, and 3) a novel two-level key pool sharing (TLKPS) strategy it designs to improve the system resilience against cyberattacks. Test results validate the effectiveness of the presented strategy, and provide insightful resources for building quantum-secure NMGs.
Evaluation of the Detectability of Damper Cage Damages in Synchronous Motors through the Advanced Analysis of the Stray Flux. 2020 IEEE Energy Conversion Congress and Exposition (ECCE). :2058–2063.
.
2020. The determination of the damper cage health is a matter of great importance in those industries that use large synchronous motors in their processes. In the past, unexpected damages of that element implied economic losses amounting up to several million \$. The problem is that, in the technical literature, there is a lack of non-invasive techniques enabling the reliable condition monitoring of this element. This explains the fact that, in industry, rudimentary methods are still employed to determine its condition. This paper proposes the analysis of the stray flux as a way to determine the condition of the damper cage. The paper shows that the analysis of the stray flux under starting yields characteristic time-frequency signatures of the fault components that can be used to reliably determine the condition of the damper. Moreover, the analysis of the stray flux at steady-state operation under asynchronous mode could give useful information to this end. The paper also analyses the influence of the remanent magnetism in the rotor of some synchronous motors, which can make the damper cage diagnosis more difficult; some solutions to this problem are also suggested in the paper.
MSCLP: Multi-Sinks Cluster-Based Location Privacy Protection scheme in WSNs for IoT. 2020 32nd International Conference on Microelectronics (ICM). :1—4.
.
2020. One of the most important information in Wireless Sensor Networks (WSNs) is the location of each sensor node. This kind of information is very attractive to attackers for real position exposure of nodes making the whole network vulnerable to different kinds of attacks. According to WSNs privacy, there are two types of threats affect the network: Contextual and Content privacy. In this work, we study contextual privacy, where an eavesdropper tries to find the location of the source or sink node. We propose a Multi-Sinks Cluster-Based Location Privacy Protection (MSCLP) scheme in WSNs that divides the WSN into clusters, each cluster managed by one cluster head (CH). Each CH sends random fake packets in a loop then sends the real packet to the neighbor's CHs using a dynamic routing method to confuse the attacker from tracing back the real packet to reveal the actual location of the source node, we are taking in our consideration two important metrics: the energy consumption, and the delay.
GPS-based Mobile Cross-platform Cargo Tracking System with Web-based Application. 2020 8th International Symposium on Digital Forensics and Security (ISDFS). :1—7.
.
2020. Cross-platform development is becoming widely used by developers, and writing for separate platforms is being replaced by developing a single code base that will work across multiple platforms simultaneously, while reducing cost and time. The purpose of this paper is to demonstrate cross-platform development by creating a cargo tracking system that will work on multiple platforms with web application by tracking cargo using Global Positioning System (GPS), since the transport business has played a vital role in the evolution of human civilization. In this system, Google Flutter technology is used to create a mobile application that works on both Android and iOS platforms at the same time, by providing maps to clients showing their cargo location using Google Map API, as well as providing a web-based application.
A hybrid optical frequency-hopping scheme based on OAM multiplexing for secure optical communications. 2020 Asia Communications and Photonics Conference (ACP) and International Conference on Information Photonics and Optical Communications (IPOC). :1—3.
.
2020. In this paper, a hybrid optical frequency hopping system based on OAM multiplexing is proposed, which is mainly applied to the security of free space optical communication. In the proposed scheme, the segmented users' data goes through two stages of hopping successively to realize data hiding. And the security performance is also analyzed in this paper. © 2020 The Author(s).
A Moving Target Defense Technology Based on SCIT. 2020 International Conference on Computer Engineering and Application (ICCEA). :454—457.
.
2020. Moving target defense technology is one of the revolutionary techniques that is “changing the rules of the game” in the field of network technology, according to recent propositions from the US Science and Technology Commission. Building upon a recently-developed approach called Self Cleansing Intrusion Tolerance (SCIT), this paper proposes a moving target defense system that is based on server switching and cleaning. A protected object is maneuvered to improve its safety by exploiting software diversity and thereby introducing randomness and unpredictability into the system. Experimental results show that the improved system increases the difficulty of attack and significantly reduces the likelihood of a system being invaded, thus serving to enhance system security.
A Perceptual Quality-driven Video Surveillance System. 2020 IEEE 23rd International Multitopic Conference (INMIC). :1–6.
.
2020. Video-based surveillance systems often suffer from poor-quality video in an uncontrolled environment. This may strongly affect the performance of high-level tasks such as visual tracking, abnormal event detection or more generally scene understanding and interpretation. This work aims to demonstrate the impact and the importance of video quality in video surveillance systems. Here, we focus on the most important challenges and difficulties related to the perceptual quality of the acquired or transmitted images/videos in uncontrolled environments. In this paper, we propose an architecture of a smart surveillance system that incorporates the perceptual quality of acquired scenes. We study the behaviour of some state-of-the-art video quality metrics on some original and distorted sequences from a dedicated surveillance dataset. Through this study, it has been shown that some of the state-of-the-art image/video quality metrics do not work in the context of video-surveillance. This study opens a new research direction to develop the video quality metrics in the context of video surveillance and also to propose a new quality-driven framework of video surveillance system.
Chain-of-Evidence in Secured Surveillance Videos using Steganography and Hashing. 2020 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). :257–264.
.
2020. Video sharing from closed-circuit television video recording or in social media interaction requires self-authentication for responsible and reliable data sharing. Similarly, surveillance video recording is a powerful method of deterring unlawful activities. A Solution-by-Design can be helpful in terms of making a captured video immutable, as such recordings cannot become a piece of evidence until proven to be unaltered. This paper presents a computationally inexpensive method of preserving a chain-of-evidence in surveillance videos using steganography and hashing. The method conforms to the data protection regulations which are increasingly adopted by governments, and is applicable to network edge storage. Security credentials are stored in a hardware wallet independently of the video capture device itself, while evidential information is stored within video frames themselves, independently of the content. The proposed method has turned out to not only preserve the integrity of the stored video data but also results in very limited degradation of the video data due to steganography. Despite the presence of steganographic information, video frames are still available for common image processing tasks such as tracking and classification.
Research on Cyber Security Test Method for GNSS of Intelligent Connected Vehicle. 2020 International Conference on Computer Information and Big Data Applications (CIBDA). :200—203.
.
2020. Intelligent connected vehicle cyber security has attracted widespread attention this year. The safety of GNSS information is related to the safety of cars and has become a key technology. This paper researches the cyber security characteristics of intelligent connected vehicle navigation and positioning by analyzing the signal receiving mode of navigation and positioning on the vehicle terminal. The article expounds the principles of deceiving and interfering cyber security that lead to the safety of GNSS information. This paper studies the key causes of cyber security. Based on key causes, the article constructs a GNSS cyber security test method by combining a navigation signal simulator and an interference signal generator. The results shows that the method can realize the security test of the GNSS information of the vehicle terminal. This method provides a test method for the navigation terminal defense cyber security capability for a vehicle terminal, and fills a gap in the industry for the vehicle terminal information security test.