Visible to the public Biblio

Found 413 results

Filters: First Letter Of Last Name is Q  [Clear All Filters]
2023-08-17
Hariharasudan, V, Quraishi, Suhail Javed.  2022.  A Review on Blockchain Based Identity Management System. 2022 3rd International Conference on Intelligent Engineering and Management (ICIEM). :735—740.
The expansion of the internet has resulted in huge growth in every industry. It does, however, have a substantial impact on the downsides. Because of the internet's rapid growth, personally identifiable information (PII) should be kept secure in the coming years. Obtaining someone's personal information is rather simple nowadays. There are some established methods for keeping our personal information private. Further, it is essential because we must provide our identity cards to someone for every verification step. In this paper, we will look at some of the attempted methods for protecting our identities. We will highlight the research gaps and potential future enhancements in the research for more enhanced security based on our literature review.
2023-08-11
Kosieradzki, Shane, Qiu, Yingxin, Kogiso, Kiminao, Ueda, Jun.  2022.  Rewrite Rules for Automated Depth Reduction of Encrypted Control Expressions with Somewhat Homomorphic Encryption. 2022 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM). :804—809.
This paper presents topological sorting methods to minimize the multiplicative depth of encrypted arithmetic expressions. The research aims to increase compatibility between nonlinear dynamic control schemes and homomorphic encryption methods, which are known to be limited by the quantity of multiplicative operations. The proposed method adapts rewrite rules originally developed for encrypted binary circuits to depth manipulation of arithmetic circuits. The paper further introduces methods to normalize circuit paths that have incompatible depth. Finally, the paper provides benchmarks demonstrating the improved depth in encrypted computed torque control of a dynamic manipulator and discusses how achieved improvements translate to increased cybersecurity.
2023-07-31
Zhang, Liangjun, Tao, Kai, Qian, Weifeng, Wang, Weiming, Liang, Junpeng, Cai, Yi, Feng, Zhenhua.  2022.  Real-Time FPGA Investigation of Interplay Between Probabilistic Shaping and Forward Error Correction. Journal of Lightwave Technology. 40:1339—1345.
In this work, we implement a complete probabilistic amplitude shaping (PAS) architecture on a field-programmable gate array (FPGA) platform to study the interplay between probabilistic shaping (PS) and forward error correction (FEC). Due to the fully parallelized input–output interfaces based on look up table (LUT) and low computational complexity without high-precision multiplication, hierarchical distribution matching (HiDM) is chosen as the solution for real time probabilistic shaping. In terms of FEC, we select two kinds of the mainstream soft decision-forward error correction (SD-FEC) algorithms currently used in optical communication system, namely Open FEC (OFEC) and soft-decision quasi-cyclic low-density parity-check (SD-QC-LDPC) codes. Through FPGA experimental investigation, we studied the impact of probabilistic shaping on OFEC and LDPC, respectively, based on PS-16QAM under moderate shaping, and also the impact of probabilistic shaping on LDPC code based on PS-64QAM under weak/strong shaping. The FPGA experimental results show that if pre-FEC bit error rate (BER) is used as the predictor, moderate shaping induces no degradation on the OFEC performance, while strong shaping slightly degrades the error correction performance of LDPC. Nevertheless, there is no error floor when the output BER is around 10-15. However, if normalized generalized mutual information (NGMI) is selected as the predictor, the performance degradation of LDPC will become insignificant, which means pre-FEC BER may not a good predictor for LDPC in probabilistic shaping scenario. We also studied the impact of residual errors after FEC decoding on HiDM. The FPGA experimental results show that the increased BER after HiDM decoding is within 10 times compared to post-FEC BER.
Conference Name: Journal of Lightwave Technology
Wang, Weiming, Qian, Weifeng, Tao, Kai, Wei, Zitao, Zhang, Shihua, Xia, Yan, Chen, Yong.  2022.  Investigation of Potential FEC Schemes for 800G-ZR Forward Error Correction. 2022 Optical Fiber Communications Conference and Exhibition (OFC). :1—3.

With a record 400Gbps 100-piece-FPGA implementation, we investigate performance of the potential FEC schemes for OIF-800GZR. By comparing the power dissipation and correction threshold at 10−15 BER, we proposed the simplified OFEC for the 800G-ZR FEC.

Tao, Kai, Long, Zhijun, Qian, Weifeng, Wei, Zitao, Chen, Xinda, Wang, Weiming, Xia, Yan.  2022.  Low-complexity Forward Error Correction For 800G Unamplified Campus Link. 2022 20th International Conference on Optical Communications and Networks (ICOCN). :1—3.
The discussion about forward error correction (FEC) used for 800G unamplified link (800LR) is ongoing. Aiming at two potential options for FEC bit error ratio (BER) threshold, we propose two FEC schemes, respectively based on channel-polarized (CP) multilevel coding (MLC) and bit interleaved coded modulation (BICM), with the same inner FEC code. The field-programmable gate array (FPGA) verification results indicate that with the same FEC overhead (OH), proposed CP-MLC outperforms BICM scheme with less resource and power consumption.
Qi, Jiaqi, Meng, Hao, Ye, Jun.  2022.  A Research on the Selection of Cooperative Enterprises in School-Enterprise Joint Cryptography Laboratory. 2022 International Conference on Artificial Intelligence in Everything (AIE). :659—663.
In order to better cultivate engineering and application-oriented cryptographic talents, it is urgent to establish a joint school enterprise cryptographic laboratory. However, there is a core problem in the existing school enterprise joint laboratory construction scheme: the enterprise is not specialized and has insufficient cooperation ability, which can not effectively realize the effective integration of resources and mutual benefit and win-win results. To solve this problem, we propose a comprehensive evaluation model of cooperative enterprises based on entropy weight method and grey correlation analysis. Firstly, the multi-level evaluation index system of the enterprise is established, and the entropy weight method is used to objectively weight the index. After that, the grey weighted correlation degree between each enterprise and the virtual optimal enterprise is calculated by grey correlation analysis to compare the advantages and disadvantages of enterprises. Through the example analysis, it is proved that our method is effective and reliable, eliminating subjective factors, and providing a certain reference value for the construction of school enterprise joint cryptographic laboratory.
2023-07-21
Mai, Juanyun, Wang, Minghao, Zheng, Jiayin, Shao, Yanbo, Diao, Zhaoqi, Fu, Xinliang, Chen, Yulong, Xiao, Jianyu, You, Jian, Yin, Airu et al..  2022.  MHSnet: Multi-head and Spatial Attention Network with False-Positive Reduction for Lung Nodule Detection. 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). :1108—1114.
Mortality from lung cancer has ranked high among cancers for many years. Early detection of lung cancer is critical for disease prevention, cure, and mortality rate reduction. Many existing detection methods on lung nodules can achieve high sensitivity but meanwhile introduce an excessive number of false-positive proposals, which is clinically unpractical. In this paper, we propose the multi-head detection and spatial attention network, shortly MHSnet, to address this crucial false-positive issue. Specifically, we first introduce multi-head detectors and skip connections to capture multi-scale features so as to customize for the variety of nodules in sizes, shapes, and types. Then, inspired by how experienced clinicians screen CT images, we implemented a spatial attention module to enable the network to focus on different regions, which can successfully distinguish nodules from noisy tissues. Finally, we designed a lightweight but effective false-positive reduction module to cut down the number of false-positive proposals, without any constraints on the front network. Compared with the state-of-the-art models, our extensive experimental results show the superiority of this MHSnet not only in the average FROC but also in the false discovery rate (2.64% improvement for the average FROC, 6.39% decrease for the false discovery rate). The false-positive reduction module takes a further step to decrease the false discovery rate by 14.29%, indicating its very promising utility of reducing distracted proposals for the downstream tasks relied on detection results.
Qasaimeh, Ghazi, Al-Gasaymeh, Anwar, Kaddumi, Thair, Kilani, Qais.  2022.  Expert Systems and Neural Networks and their Impact on the Relevance of Financial Information in the Jordanian Commercial Banks. 2022 International Conference on Business Analytics for Technology and Security (ICBATS). :1—7.
The current study aims to discern the impact of expert systems and neural network on the Jordanian commercial banks. In achieving the objective, the study employed descriptive analytical approach and the population consisted of the 13 Jordanian commercial banks listed at Amman Stock Exchange-ASE. The primary data were obtained by using a questionnaire with 188 samples distributed to a group of accountants, internal auditors, and programmers, who constitute the study sample. The results unveiled that there is an impact of the application of expert systems and neural networks on the relevance of financial information in Jordanian commercial banks. It also revealed that there is a high level of relevance of financial information in Jordanian commercial banks. Accordingly, the study recommended the need for banks to keep pace with the progress and development taking place in connection to the process and environment of expertise systems by providing modern and developed devices to run various programs and expert systems. It also recommended that, Jordanian commercial banks need to rely more on advanced systems to operate neural network technology more efficiently.
2023-07-19
Zhao, Hongwei, Qi, Yang, Li, Weilin.  2022.  Decentralized Power Management for Multi-active Bridge Converter. IECON 2022 – 48th Annual Conference of the IEEE Industrial Electronics Society. :1—6.
Multi-active bridge (MAB) converter has played an important role in the power conversion of renewable-based smart grids, electrical vehicles, and more/all electrical aircraft. However, the increase of MAB submodules greatly complicates the control architecture. In this regard, the conventional centralized control strategies, which rely on a single controller to process all the information, will be limited by the computation burden. To overcome this issue, this paper proposes a decentralized power management strategy for MAB converter. The switching frequencies of MAB submodules are adaptively regulated based on the submodule local information. Through this effort, flexible electrical power routing can be realized without communications among submodules. The proposed methodology not only relieves the computation burden of MAB control system, but also improves its modularity, flexibility, and expandability. Finally, the experiment results of a three-module MAB converter are presented for verification.
2023-07-11
Qin, Xuhao, Ni, Ming, Yu, Xinsheng, Zhu, Danjiang.  2022.  Survey on Defense Technology of Web Application Based on Interpretive Dynamic Programming Languages. 2022 7th International Conference on Computer and Communication Systems (ICCCS). :795—801.

With the development of the information age, the process of global networking continues to deepen, and the cyberspace security has become an important support for today’s social functions and social activities. Web applications which have many security risks are the most direct interactive way in the process of the Internet activities. That is why the web applications face a large number of network attacks. Interpretive dynamic programming languages are easy to lean and convenient to use, they are widely used in the development of cross-platform web systems. As well as benefit from these advantages, the web system based on those languages is hard to detect errors and maintain the complex system logic, increasing the risk of system vulnerability and cyber threats. The attack defense of systems based on interpretive dynamic programming languages is widely concerned by researchers. Since the advance of endogenous security technologies, there are breakthroughs on the research of web system security. Compared with traditional security defense technologies, these technologies protect the system with their uncertainty, randomness and dynamism. Based on several common network attacks, the traditional system security defense technology and endogenous security technology of web application based on interpretive dynamic languages are surveyed and compared in this paper. Furthermore, the possible research directions of those technologies are discussed.

2023-06-30
Yao, Zhiyuan, Shi, Tianyu, Li, Site, Xie, Yiting, Qin, Yuanyuan, Xie, Xiongjie, Lu, Huan, Zhang, Yan.  2022.  Towards Modern Card Games with Large-Scale Action Spaces Through Action Representation. 2022 IEEE Conference on Games (CoG). :576–579.
Axie infinity is a complicated card game with a huge-scale action space. This makes it difficult to solve this challenge using generic Reinforcement Learning (RL) algorithms. We propose a hybrid RL framework to learn action representations and game strategies. To avoid evaluating every action in the large feasible action set, our method evaluates actions in a fixed-size set which is determined using action representations. We compare the performance of our method with two baseline methods in terms of their sample efficiency and the winning rates of the trained models. We empirically show that our method achieves an overall best winning rate and the best sample efficiency among the three methods.
ISSN: 2325-4289
2023-06-23
Xie, Guorui, Li, Qing, Cui, Chupeng, Zhu, Peican, Zhao, Dan, Shi, Wanxin, Qi, Zhuyun, Jiang, Yong, Xiao, Xi.  2022.  Soter: Deep Learning Enhanced In-Network Attack Detection Based on Programmable Switches. 2022 41st International Symposium on Reliable Distributed Systems (SRDS). :225–236.
Though several deep learning (DL) detectors have been proposed for the network attack detection and achieved high accuracy, they are computationally expensive and struggle to satisfy the real-time detection for high-speed networks. Recently, programmable switches exhibit a remarkable throughput efficiency on production networks, indicating a possible deployment of the timely detector. Therefore, we present Soter, a DL enhanced in-network framework for the accurate real-time detection. Soter consists of two phases. One is filtering packets by a rule-based decision tree running on the Tofino ASIC. The other is executing a well-designed lightweight neural network for the thorough inspection of the suspicious packets on the CPU. Experiments on the commodity switch demonstrate that Soter behaves stably in ten network scenarios of different traffic rates and fulfills per-flow detection in 0.03s. Moreover, Soter naturally adapts to the distributed deployment among multiple switches, guaranteeing a higher total throughput for large data centers and cloud networks.
ISSN: 2575-8462
2023-06-22
Chen, Jing, Yang, Lei, Qiu, Ziqiao.  2022.  Survey of DDoS Attack Detection Technology for Traceability. 2022 IEEE 4th Eurasia Conference on IOT, Communication and Engineering (ECICE). :112–115.
Target attack identification and detection has always been a concern of network security in the current environment. However, the economic losses caused by DDoS attacks are also enormous. In recent years, DDoS attack detection has made great progress mainly in the user application layer of the network layer. In this paper, a review and discussion are carried out according to the different detection methods and platforms. This paper mainly includes three parts, which respectively review statistics-based machine learning detection, target attack detection on SDN platform and attack detection on cloud service platform. Finally, the research suggestions for DDoS attack detection are given.
2023-06-09
Qiang, Weizhong, Luo, Hao.  2022.  AutoSlicer: Automatic Program Partitioning for Securing Sensitive Data Based-on Data Dependency Analysis and Code Refactoring. 2022 IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :239—247.
Legacy programs are normally monolithic (that is, all code runs in a single process and is not partitioned), and a bug in a program may result in the entire program being vulnerable and therefore untrusted. Program partitioning can be used to separate a program into multiple partitions, so as to isolate sensitive data or privileged operations. Manual program partitioning requires programmers to rewrite the entire source code, which is cumbersome, error-prone, and not generic. Automatic program partitioning tools can separate programs according to the dependency graph constructed based on data or programs. However, programmers still need to manually implement remote service interfaces for inter-partition communication. Therefore, in this paper, we propose AutoSlicer, whose purpose is to partition a program more automatically, so that the programmer is only required to annotate sensitive data. AutoSlicer constructs accurate data dependency graphs (DDGs) by enabling execution flow graphs, and the DDG-based partitioning algorithm can compute partition information based on sensitive annotations. In addition, the code refactoring toolchain can automatically transform the source code into sensitive and insensitive partitions that can be deployed on the remote procedure call framework. The experimental evaluation shows that AutoSlicer can effectively improve the accuracy (13%-27%) of program partitioning by enabling EFG, and separate real-world programs with a relatively smaller performance overhead (0.26%-9.42%).
2023-05-30
Xixuan, Ren, Lirui, Zhao, Kai, Wang, Zhixing, Xue, Anran, Hou, Qiao, Shao.  2022.  Android Malware Detection Based on Heterogeneous Information Network with Cross-Layer Features. 2022 19th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP). :1—4.
As a mature and open mobile operating system, Android runs on many IoT devices, which has led to Android-based IoT devices have become a hotbed of malware. Existing static detection methods for malware using artificial intelligence algorithms focus only on the java code layer when extracting API features, however there is a lot of malicious behavior involving native layer code. Thus, to make up for the neglect of the native code layer, we propose a heterogeneous information network-based Android malware detection method with cross-layer features. We first translate the semantic information of apps and API calls into the form of meta-paths, and construct the adjacency of apps based on API calls, then combine information from different meta-paths using multi-core learning. We implemented our method on the dataset from VirusShare and AndroZoo, and the experimental results show that the accuracy of our method is 93.4%, which is at least 2% higher than other related methods using heterogeneous information networks for malware detection.
2023-05-19
Li, Wei, Liao, Jie, Qian, Yuwen, Zhou, Xiangwei, Lin, Yan.  2022.  A Wireless Covert Communication System: Antenna Coding and Achievable Rate Analysis. ICC 2022 - IEEE International Conference on Communications. :438—443.
In covert communication systems, covert messages can be transmitted without being noticed by the monitors or adversaries. Therefore, the covert communication technology has emerged as a novel method for network authentication, copyright protection, and the evidence of cybercrimes. However, how to design the covert communication in the physical layer of wireless networks and how to improve the channel capacity for the covert communication systems are very challenging. In this paper, we propose a wireless covert communication system, where data streams from the antennas of the transmitter are coded according to a code book to transmit covert and public messages. We adopt a modulation scheme, named covert quadrature amplitude modulation (QAM), to modulate the messages, where the constellation of covert information bits deviates from its normal coordinates. Moreover, the covert receiver can detect the covert information bits according to the constellation departure. Simulation results show that proposed covert communication system can significantly improve the covert data rate and reduce the covert bit error rate, in comparison with the traditional covert communication systems.
Hussaini, Adamu, Qian, Cheng, Liao, Weixian, Yu, Wei.  2022.  A Taxonomy of Security and Defense Mechanisms in Digital Twins-based Cyber-Physical Systems. 2022 IEEE International Conferences on Internet of Things (iThings) and IEEE Green Computing & Communications (GreenCom) and IEEE Cyber, Physical & Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics). :597—604.
The (IoT) paradigm’s fundamental goal is to massively connect the “smart things” through standardized interfaces, providing a variety of smart services. Cyber-Physical Systems (CPS) include both physical and cyber components and can apply to various application domains (smart grid, smart transportation, smart manufacturing, etc.). The Digital Twin (DT) is a cyber clone of physical objects (things), which will be an essential component in CPS. This paper designs a systematic taxonomy to explore different attacks on DT-based CPS and how they affect the system from a four-layer architecture perspective. We present an attack space for DT-based CPS on four layers (i.e., object layer, communication layer, DT layer, and application layer), three attack objects (i.e., confidentiality, integrity, and availability), and attack types combined with strength and knowledge. Furthermore, some selected case studies are conducted to examine attacks on representative DT-based CPS (smart grid, smart transportation, and smart manufacturing). Finally, we propose a defense mechanism called Secured DT Development Life Cycle (SDTDLC) and point out the importance of leveraging other enabling techniques (intrusion detection, blockchain, modeling, simulation, and emulation) to secure DT-based CPS.
Zhang, Lingyun, Chen, Yuling, Qian, Xiaobin.  2022.  Data Confirmation Scheme based on Auditable CP-ABE. 2022 IEEE International Conferences on Internet of Things (iThings) and IEEE Green Computing & Communications (GreenCom) and IEEE Cyber, Physical & Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics). :439—443.
Ensuring data rights, openness and transaction flow is important in today’s digital economy. Few scholars have studied in the area of data confirmation, it is only with the development of blockchain that it has started to be taken seriously. However, blockchain has open and transparent natures, so there exists a certain probability of exposing the privacy of data owners. Therefore, in this paper we propose a new measure of data confirmation based on Ciphertext-Policy Attribute-Base Encryption(CP-ABE). The information with unique identification of the data owner is embedded in the ciphertext of CP-ABE by paillier homomorphic encryption, and the data can have multiple sharers. No one has access to the plaintext during the whole confirmation process, which reduces the risk of source data leakage.
2023-05-12
Qiu, Zhengyi, Shao, Shudi, Zhao, Qi, Khan, Hassan Ali, Hui, Xinning, Jin, Guoliang.  2022.  A Deep Study of the Effects and Fixes of Server-Side Request Races in Web Applications. 2022 IEEE/ACM 19th International Conference on Mining Software Repositories (MSR). :744–756.

Server-side web applications are vulnerable to request races. While some previous studies of real-world request races exist, they primarily focus on the root cause of these bugs. To better combat request races in server-side web applications, we need a deep understanding of their characteristics. In this paper, we provide a complementary focus on race effects and fixes with an enlarged set of request races from web applications developed with Object-Relational Mapping (ORM) frameworks. We revisit characterization questions used in previous studies on newly included request races, distinguish the external and internal effects of request races, and relate requestrace fixes with concurrency control mechanisms in languages and frameworks for developing server-side web applications. Our study reveals that: (1) request races from ORM-based web applications share the same characteristics as those from raw-SQL web applications; (2) request races violating application semantics without explicit crashes and error messages externally are common, and latent request races, which only corrupt some shared resource internally but require extra requests to expose the misbehavior, are also common; and (3) various fix strategies other than using synchronization mechanisms are used to fix request races. We expect that our results can help developers better understand request races and guide the design and development of tools for combating request races.

ISSN: 2574-3864

Qin, Shuying, Fang, Chongrong, He, Jianping.  2022.  Towards Characterization of General Conditions for Correlated Differential Privacy. 2022 IEEE 19th International Conference on Mobile Ad Hoc and Smart Systems (MASS). :364–372.
Differential privacy is a widely-used metric, which provides rigorous privacy definitions and strong privacy guarantees. Much of the existing studies on differential privacy are based on datasets where the tuples are independent, and thus are not suitable for correlated data protection. In this paper, we focus on correlated differential privacy, by taking the data correlations and the prior knowledge of the initial data into account. The data correlations are modeled by Bayesian conditional probabilities, and the prior knowledge refers to the exact values of the data. We propose general correlated differential privacy conditions for the discrete and continuous random noise-adding mechanisms, respectively. In case that the conditions are inaccurate due to the insufficient prior knowledge, we introduce the tuple dependence based on rough set theory to improve the correlated differential privacy conditions. The obtained theoretical results reveal the relationship between the correlations and the privacy parameters. Moreover, the improved privacy condition helps strengthen the mechanism utility. Finally, evaluations are conducted over a micro-grid system to verify the privacy protection levels and utility guaranteed by correlated differential private mechanisms.
ISSN: 2155-6814
2023-05-11
Qbea'h, Mohammad, Alrabaee, Saed, Alshraideh, Mohammad, Sabri, Khair Eddin.  2022.  Diverse Approaches Have Been Presented To Mitigate SQL Injection Attack, But It Is Still Alive: A Review. 2022 International Conference on Computer and Applications (ICCA). :1–5.
A huge amount of stored and transferred data is expanding rapidly. Therefore, managing and securing the big volume of diverse applications should have a high priority. However, Structured Query Language Injection Attack (SQLIA) is one of the most common dangerous threats in the world. Therefore, a large number of approaches and models have been presented to mitigate, detect or prevent SQL injection attack but it is still alive. Most of old and current models are created based on static, dynamic, hybrid or machine learning techniques. However, SQL injection attack still represents the highest risk in the trend of web application security risks based on several recent studies in 2021. In this paper, we present a review of the latest research dealing with SQL injection attack and its types, and demonstrating several types of most recent and current techniques, models and approaches which are used in mitigating, detecting or preventing this type of dangerous attack. Then, we explain the weaknesses and highlight the critical points missing in these techniques. As a result, we still need more efforts to make a real, novel and comprehensive solution to be able to cover all kinds of malicious SQL commands. At the end, we provide significant guidelines to follow in order to mitigate such kind of attack, and we strongly believe that these tips will help developers, decision makers, researchers and even governments to innovate solutions in the future research to stop SQLIA.
2023-04-28
Chen, Ligeng, He, Zhongling, Wu, Hao, Xu, Fengyuan, Qian, Yi, Mao, Bing.  2022.  DIComP: Lightweight Data-Driven Inference of Binary Compiler Provenance with High Accuracy. 2022 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER). :112–122.
Binary analysis is pervasively utilized to assess software security and test vulnerabilities without accessing source codes. The analysis validity is heavily influenced by the inferring ability of information related to the code compilation. Among the compilation information, compiler type and optimization level, as the key factors determining how binaries look like, are still difficult to be inferred efficiently with existing tools. In this paper, we conduct a thorough empirical study on the binary's appearance under various compilation settings and propose a lightweight binary analysis tool based on the simplest machine learning method, called DIComP to infer the compiler and optimization level via most relevant features according to the observation. Our comprehensive evaluations demonstrate that DIComP can fully recognize the compiler provenance, and it is effective in inferring the optimization levels with up to 90% accuracy. Also, it is efficient to infer thousands of binaries at a millisecond level with our lightweight machine learning model (1MB).
2023-04-14
Qian, Jun, Gan, Zijie, Zhang, Jie, Bhunia, Suman.  2022.  Analyzing SocialArks Data Leak - A Brute Force Web Login Attack. 2022 4th International Conference on Computer Communication and the Internet (ICCCI). :21–27.
In this work, we discuss data breaches based on the “2012 SocialArks data breach” case study. Data leakage refers to the security violations of unauthorized individuals copying, transmitting, viewing, stealing, or using sensitive, protected, or confidential data. Data leakage is becoming more and more serious, for those traditional information security protection methods like anti-virus software, intrusion detection, and firewalls have been becoming more and more challenging to deal with independently. Nevertheless, fortunately, new IT technologies are rapidly changing and challenging traditional security laws and provide new opportunities to develop the information security market. The SocialArks data breach was caused by a misconfiguration of ElasticSearch Database owned by SocialArks, owned by “Tencent.” The attack methodology is classic, and five common Elasticsearch mistakes discussed the possibilities of those leakages. The defense solution focuses on how to optimize the Elasticsearch server. Furthermore, the ElasticSearch database’s open-source identity also causes many ethical problems, which means that anyone can download and install it for free, and they can install it almost anywhere. Some companies download it and install it on their internal servers, while others download and install it in the cloud (on any provider they want). There are also cloud service companies that provide hosted versions of Elasticsearch, which means they host and manage Elasticsearch clusters for their customers, such as Company Tencent.
2023-03-17
Qi, Chao, Nagai, Keita, Ji, Ming, Miyahara, Yu, Sugita, Naohiro, Shinshi, Tadahiko, Nakano, Masaki, Sato, Chiaki.  2022.  A Magnetic Actuator Using PLD-made FePt Thick Film as a Permanent Magnet and Membrane Material for Bi-directional Micropumps. 2022 21st International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS). :309–310.
This paper proposes a magnetic actuator using a partially magnetized FePt thick film as a permanent magnet and membrane material for bi-directional micropumps. The magnetized areas act as flux sources, while the magnetized and unmagnetized areas play a role of the membrane part. The mechanical and magnetic characterization results show FePt has a large tensile strength and a lower Young’s modulus than Si crystal, and a comparable remanence to NdFeB. A magnetic pattern transfer technique with a post thermal demagnetization is proposed and experimentally verified to magnetize the FePt partially. Using the proposed magnetic actuator with partially magnetized FePt film is beneficial to simplify the complicated structure and fabrication process of the bi-directional magnetic micropump besides other magnetic MEMS devices.
Gao, Chulan, Shahriar, Hossain, Lo, Dan, Shi, Yong, Qian, Kai.  2022.  Improving the Prediction Accuracy with Feature Selection for Ransomware Detection. 2022 IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC). :424–425.
This paper presents the machine learning algorithm to detect whether an executable binary is benign or ransomware. The ransomware cybercriminals have targeted our infrastructure, businesses, and everywhere which has directly affected our national security and daily life. Tackling the ransomware threats more effectively is a big challenge. We applied a machine-learning model to classify and identify the security level for a given suspected malware for ransomware detection and prevention. We use the feature selection data preprocessing to improve the prediction accuracy of the model.
ISSN: 0730-3157