Visible to the public Biblio

Found 5182 results

Filters: First Letter Of Last Name is S  [Clear All Filters]
2020-06-08
Sahabandu, Dinuka, Moothedath, Shana, Bushnell, Linda, Poovendran, Radha, Aller, Joey, Lee, Wenke, Clark, Andrew.  2019.  A Game Theoretic Approach for Dynamic Information Flow Tracking with Conditional Branching. 2019 American Control Conference (ACC). :2289–2296.
In this paper, we study system security against Advanced Persistent Threats (APTs). APTs are stealthy and persistent but APTs interact with system and introduce information flows in the system as data-flow and control-flow commands. Dynamic Information Flow Tracking (DIFT) is a promising detection mechanism against APTs which taints suspicious input sources in the system and performs online security analysis when a tainted information is used in unauthorized manner. Our objective in this paper is to model DIFT that handle data-flow and conditional branches in the program that arise from control-flow commands. We use game theoretic framework and provide the first analytical model of DIFT with data-flow and conditional-branch tracking. Our game model which is an undiscounted infinite-horizon stochastic game captures the interaction between APTs and DIFT and the notion of conditional branching. We prove that the best response of the APT is a maximal reachability probability problem and provide a polynomial-time algorithm to find the best response by solving a linear optimization problem. We formulate the best response of the defense as a linear optimization problem and show that an optimal solution to the linear program returns a deterministic optimal policy for the defense. Since finding Nash equilibrium for infinite-horizon undiscounted stochastic games is computationally difficult, we present a nonlinear programming based polynomial-time algorithm to find an E-Nash equilibrium. Finally, we perform experimental analysis of our algorithm on real-world data for NetRecon attack augmented with conditional branching.
Tan, Li Xin, Wee, Jing Wei Shannen, Chan, Jun Rong, Soh, Wei Jie, Yap, Chern Nam.  2019.  Integrate Dragonfly Key Exchange (IETF - RFC 7664) into Arithmetic Circuit Homomorphic Encryption. 2019 IEEE 24th Pacific Rim International Symposium on Dependable Computing (PRDC). :85–851.
This is an extension of an ongoing research project on Fully Homomorphic Encryption. Arithmetic Circuit Homomorphic Encryption (ACHE) [1] was implemented based on (TFHE) Fast Fully Homomorphic Encryption over the Torus. Just like many Homomorphic Encryption methods, ACHE does not integrate with any authentication method. Thus, this was an issue that this paper attempts to resolve. This paper will focus on the implementation method of integrating RFC7664 [2] into ACHE. Next, the paper will further discuss latency incurred due to key generation, the latency of transmission of public and private keys. Last but not least, the paper will also discuss the key size generated and its significance.
Sun, Wenhua, Wang, Xiaojuan, Jin, Lei.  2019.  An Efficient Hash-Tree-Based Algorithm in Mining Sequential Patterns with Topology Constraint. 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). :2782–2789.
Warnings happen a lot in real transmission networks. These warnings can affect people's lives. It is significant to analyze the alarm association rules in the network. Many algorithms can help solve this problem but not considering the actual physical significance. Therefore, in this study, we mine the association rules in warning weblogs based on a sequential mining algorithm (GSP) with topology structure. We define a topology constraint from network physical connection data. Under the topology constraint, network nodes have topology relation if they are directly connected or have a common adjacency node. In addition, due to the large amount of data, we implement the hash-tree search method to improve the mining efficiency. The theoretical solution is feasible and the simulation results verify our method. In simulation, the topology constraint improves the accuracy for 86%-96% and decreases the run time greatly at the same time. The hash-tree based mining results show that hash tree efficiency improvements are in 3-30% while the number of patterns remains unchanged. In conclusion, using our method can mine association rules efficiently and accurately in warning weblogs.
Seta, Henki, Wati, Theresia, Kusuma, Ilham Cahya.  2019.  Implement Time Based One Time Password and Secure Hash Algorithm 1 for Security of Website Login Authentication. 2019 International Conference on Informatics, Multimedia, Cyber and Information System (ICIMCIS). :115–120.
The use of information systems is a solutions to support the operations of the institution. In order to access information systems in accordance with their access rights, usually the user will enter a username and password as the authentication process. However, this has a weakness if the other side is cheating by sniffing or tapping user passwords. This makes the password unsafe to use for access information systems. If the username and password if it is stolen, abuse will occur for the crime or theft of the owner's identity accounts like name, email, telephone number, biological mother's name, account number and others. One solution is to apply two factor authentication method which is Time-Based One Time Password (TOTP) and Secure Algorithm Hash Algorithm 1 (SHA1). With this method, the system Authentication of a website or site does not only depend on the username and password to enter the account user but the user will get a token or code which is used to log in to the user's account. After testing hundred times, the authentication process who use Two Factor Authentication can tackle possible attacks on abuse o user access rights. Time Based Application One Time Password and Secure Hash Algorithm 1 Generate code that can't be the same because of the code it can only be used once with a time limit certain so it is difficult to guess. SHA1 with long input different strings will produce output with a fixed length string of 160 bits. Test results are obtained the results that 30 seconds is enough to prevent hackers log in and take over the account without permission and also prove that two-factor authentication can increase the security of the authentication process well. The time above is the result of testing the process user authentication until the hacker sniffing against tokens to try to take over the account.
Pirani, Mohammad, Nekouei, Ehsan, Sandberg, Henrik, Johansson, Karl Henrik.  2019.  A Game-theoretic Framework for Security-aware Sensor Placement Problem in Networked Control Systems. 2019 American Control Conference (ACC). :114–119.
This paper studies the sensor placement problem in a networked control system for improving its security against cyber-physical attacks. The problem is formulated as a zero-sum game between an attacker and a detector. The attacker's decision is to select f nodes of the network to attack whereas the detector's decision is to place f sensors to detect the presence of the attack signals. In our formulation, the attacker minimizes its visibility, defined as the system L2 gain from the attack signals to the deployed sensors' outputs, and the detector maximizes the visibility of the attack signals. The equilibrium strategy of the game determines the optimal locations of the sensors. The existence of Nash equilibrium for the attacker-detector game is studied when the underlying connectivity graph is a directed or an undirected tree. When the game does not admit a Nash equilibrium, it is shown that the Stackelberg equilibrium of the game, with the detector as the game leader, can be computed efficiently. Our results show that, under the optimal sensor placement strategy, an undirected topology provides a higher security level for a networked control system compared with its corresponding directed topology.
2020-06-04
Gupta, Avinash, Cecil, J., Tapia, Oscar, Sweet-Darter, Mary.  2019.  Design of Cyber-Human Frameworks for Immersive Learning. 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC). :1563—1568.

This paper focuses on the creation of information centric Cyber-Human Learning Frameworks involving Virtual Reality based mediums. A generalized framework is proposed, which is adapted for two educational domains: one to support education and training of residents in orthopedic surgery and the other focusing on science learning for children with autism. Users, experts and technology based mediums play a key role in the design of such a Cyber-Human framework. Virtual Reality based immersive and haptic mediums were two of the technologies explored in the implementation of the framework for these learning domains. The proposed framework emphasizes the importance of Information-Centric Systems Engineering (ICSE) principles which emphasizes a user centric approach along with formalizing understanding of target subjects or processes for which the learning environments are being created.

Shang, Jiacheng, Wu, Jie.  2019.  Enabling Secure Voice Input on Augmented Reality Headsets using Internal Body Voice. 2019 16th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON). :1—9.

Voice-based input is usually used as the primary input method for augmented reality (AR) headsets due to immersive AR experience and good recognition performance. However, recent researches have shown that an attacker can inject inaudible voice commands to the devices that lack voice verification. Even if we secure voice input with voice verification techniques, an attacker can easily steal the victim's voice using low-cast handy recorders and replay it to voice-based applications. To defend against voice-spoofing attacks, AR headsets should be able to determine whether the voice is from the person who is using the AR headsets. Existing voice-spoofing defense systems are designed for smartphone platforms. Due to the special locations of microphones and loudspeakers on AR headsets, existing solutions are hard to be implemented on AR headsets. To address this challenge, in this paper, we propose a voice-spoofing defense system for AR headsets by leveraging both the internal body propagation and the air propagation of human voices. Experimental results show that our system can successfully accept normal users with average accuracy of 97% and defend against two types of attacks with average accuracy of at least 98%.

Briggs, Shannon, Perrone, Michael, Peveler, Matthew, Drozdal, Jaimie, Balagyozyan, Lilit, Su, Hui.  2019.  Multimodal, Multiuser Immersive Brainstorming and Scenario Planning for Intelligence Analysis. 2019 IEEE International Symposium on Technologies for Homeland Security (HST). :1—4.

This paper discusses two pieces of software designed for intelligence analysis, the brainstorming tool and the Scenario Planning Advisor. These tools were developed in the Cognitive Immersive Systems Lab (CISL) in conjunction with IBM. We discuss the immersive environment the tools are situated in, and the proposed benefit for intelligence analysis.

2020-06-03
Reeva, Patel, Siddhesh, Dhuri, Preet, Gada, Pratik, Shah, Jain, Nilakshi.  2019.  Digital Forensics Capability Analyzer: A tool to check forensic capability. 2019 International Conference on Nascent Technologies in Engineering (ICNTE). :1—7.

Digital forensics is process of identifying, preserving, analyzing and preserving digital evidence. Due to increasing cybercrimes now a days, it is important for all organizations to have a well-managed digital forensics cell. So to overcome this, we propose a framework called digital forensics capability analyser. [1]The main advantage of developing digital analyzer is cost minimization. This tool will provide fundamental information for setting up a digital forensic cell and will also offer services like online sessions. [2] [3]It will help organizations by providing them with a perfect solution according to their requirements to start a digital forensic cell in their respective lnstitution.[4] [5].

Chopade, Mrunali, Khan, Sana, Shaikh, Uzma, Pawar, Renuka.  2019.  Digital Forensics: Maintaining Chain of Custody Using Blockchain. 2019 Third International conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC). :744—747.

The fundamental aim of digital forensics is to discover, investigate and protect an evidence, increasing cybercrime enforces digital forensics team to have more accurate evidence handling. This makes digital evidence as an important factor to link individual with criminal activity. In this procedure of forensics investigation, maintaining integrity of the evidence plays an important role. A chain of custody refers to a process of recording and preserving details of digital evidence from collection to presenting in court of law. It becomes a necessary objective to ensure that the evidence provided to the court remains original and authentic without tampering. Aim is to transfer these digital evidences securely using encryption techniques.

2020-06-02
Aliasgari, Malihe, Simeone, Osvaldo, Kliewer, Jörg.  2019.  Distributed and Private Coded Matrix Computation with Flexible Communication Load. 2019 IEEE International Symposium on Information Theory (ISIT). :1092—1096.

Tensor operations, such as matrix multiplication, are central to large-scale machine learning applications. These operations can be carried out on a distributed computing platform with a master server at the user side and multiple workers in the cloud operating in parallel. For distributed platforms, it has been recently shown that coding over the input data matrices can reduce the computational delay, yielding a tradeoff between recovery threshold and communication load. In this work, we impose an additional security constraint on the data matrices and assume that workers can collude to eavesdrop on the content of these data matrices. Specifically, we introduce a novel class of secure codes, referred to as secure generalized PolyDot codes, that generalizes previously published non-secure versions of these codes for matrix multiplication. These codes extend the state-of-the-art by allowing a flexible trade-off between recovery threshold and communication load for a fixed maximum number of colluding workers.

Kundu, M. K., Shabab, S., Badrudduza, A. S. M..  2019.  Information Theoretic Security over α-µ/α-µ Composite Multipath Fading Channel. 2019 IEEE International Conference on Telecommunications and Photonics (ICTP). :1—4.

Multipath fading as well as shadowing is liable for the leakage of confidential information from the wireless channels. In this paper a solution to this information leakage is proposed, where a source transmits signal through a α-μ/α-μ composite fading channel considering an eavesdropper is present in the system. Secrecy enhancement is investigated with the help of two fading parameters α and μ. To mitigate the impacts of shadowing a α-μ distribution is considered whose mean is another α-μ distribution which helps to moderate the effects multipath fading. The mathematical expressions of some secrecy matrices such as the probability of non-zero secrecy capacity and the secure outage probability are obtained in closed-form to analyze security of the wireless channel in light of the channel parameters. Finally, Monte-Carlo simulations are provided to justify the correctness of the derived expressions.

2020-06-01
Sivanesh, S., Sarma Dhulipala, V.R..  2019.  Comparitive Analysis of Blackhole and Rushing Attack in MANET. 2019 TEQIP III Sponsored International Conference on Microwave Integrated Circuits, Photonics and Wireless Networks (IMICPW). :495—499.

For the past few decades, mobile ad hoc networks (MANETs) have been a global trend in wireless networking technology. These kind of ad-hoc networks are infrastructure less, dynamic in topology and further doesn't have a centralized network administration which makes it easier for the intruders to launch several attacks on MANETs. In this paper, we have made a comparative analysis of the network layer attack by simulating rushing and black hole attack using NS-2 network simulator. For determining the most vulnerable attack we have considered packet delivery ratio, end to end delay and throughput as a evaluation metrices. Here, AODV routing protocol has been configured for data forwarding operations. From our Simulation result, it is evident that the black hole attack is more vulnerable when compared to the rushing attack.

Pruthi, Vardaan, Mittal, Kanika, Sharma, Nikhil, Kaushik, Ila.  2019.  Network Layers Threats its Countermeasures in WSNs. 2019 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS). :156—163.

WSN can be termed as a collection of dimensionally diffused nodes which are capable of surveilling and analyzing their surroundings. The sensors are delicate, transportable and small in size while being economical at the same time. However, the diffused nature of these networks also exposes them to a variety of security hazards. Hence, ensuring a reliable file exchange in these networks is not an easy job due to various security requirements that must be fulfilled. In this paper we concentrate mainly on network layer threats and their security countermeasures to overcome the scope of intruders to access the information without having any authentication on the network layer. Various network layer intrusions that are discussed here include Sinkhole Attack, Sybil Attack, Wormhole Attack, Selective Forwarding Attack, Blackhole Attack And Hello Flood Attack.

Kaushik, Ila, Sharma, Nikhil, Singh, Nanhay.  2019.  Intrusion Detection and Security System for Blackhole Attack. 2019 2nd International Conference on Signal Processing and Communication (ICSPC). :320—324.

Communication is considered as an essential part of our lives. Different medium was used for exchange of information, but due to advancement in field of technology, different network setup came into existence. One of the most suited in wireless field is Wireless Sensor Network (WSN). These networks are set up by self-organizing nodes which operate over radio environment. Since communication is done more rapidly, they are confined to many attacks which operate at different layers. In order to have efficient communication, some security measure must be introduced in the network ho have secure communication. In this paper, we describe various attacks functioning at different layers also one of the common network layer attack called Blackhole Attack with its mitigation technique using Intrusion Detection System (IDS) over network simulator ns2 has been discussed.

da Silva Andrade, Richardson B., Souto Rosa, Nelson.  2019.  MidSecThings: Assurance Solution for Security Smart Homes in IoT. 2019 IEEE 19th International Symposium on High Assurance Systems Engineering (HASE). :171–178.
The interest over building security-based solutions to reduce the vulnerability exploits and mitigate the risks associated with smart homes in IoT is growing. However, our investigation identified to architect and implement distributed security mechanisms is still a challenge because is necessary to handle security and privacy in IoT middleware with a strong focus. Our investigation, it was identified the significant proportion of the systems that did not address security and did not describe the security approach in any meaningful detail. The idea proposed in this work is to provide middleware aim to implement security mechanisms in smart home and contribute as how guide to beginner developers' IoT middleware. The advantages of using MidSecThings are to avoid leakage data, unavailable service, unidentification action and not authorized access over IoT devices in smart home.
Laranjeiro, Nuno, Gomez, Camilo, Schiavone, Enrico, Montecchi, Leonardo, Carvalho, Manoel J. M., Lollini, Paolo, Micskei, Zoltán.  2019.  Addressing Verification and Validation Challenges in Future Cyber-Physical Systems. 2019 9th Latin-American Symposium on Dependable Computing (LADC). :1–2.
Cyber-physical systems are characterized by strong interactions between their physical and computation parts. The increasing complexity of such systems, now used in numerous application domains (e.g., aeronautics, healthcare), in conjunction with hard to predict surrounding environments or the use of non-traditional middleware and with the presence of non-deterministic or non-explainable software outputs, tend to make traditional Verification and Validation (V&V) techniques ineffective. This paper presents the H2020 ADVANCE project, which aims precisely at addressing the Verification and Validation challenges that the next-generation of cyber-physical systems bring, by exploring techniques, methods and tools for achieving the technical objective of improving the overall efficiency and effectiveness of the V&V process. From a strategic perspective, the goal of the project is to create an international network of expertise on the topic of V&V of cyber-physical systems.
Vural, Serdar, Minerva, Roberto, Carella, Giuseppe A., Medhat, Ahmed M., Tomasini, Lorenzo, Pizzimenti, Simone, Riemer, Bjoern, Stravato, Umberto.  2018.  Performance Measurements of Network Service Deployment on a Federated and Orchestrated Virtualisation Platform for 5G Experimentation. 2018 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN). :1–6.
The EU SoftFIRE project has built an experimentation platform for NFV and SDN experiments, tailored for testing and evaluating 5G network applications and solutions. The platform is a fully orchestrated virtualisation testbed consisting of multiple component testbeds across Europe. Users of the platform can deploy their virtualisation experiments via the platform's Middleware. This paper introduces the SoftFIRE testbed and its Middleware, and presents a set of KPI results for evaluation of experiment deployment performance.
Sarrab, Mohamed, Alnaeli, Saleh M..  2018.  Critical Aspects Pertaining Security of IoT Application Level Software Systems. 2018 IEEE 9th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON). :960–964.
With the prevalence of Internet of Things (IoT) devices and systems, touching almost every single aspect of our modern life, one core factor that will determine whether this technology will succeed, and gain people trust, or fail is security. This technology aimed to facilitate and improve the quality of our life; however, it is hysterical and fast growth makes it an attractive and prime target for a whole variety of hackers posing a significant risk to our technology and IT infrastructures at both enterprise and individual levels. This paper discusses and identifies some critical aspects from software security perspective that need to be addressed and considered when designing IoT applications. This paper mainly concerned with potential security issues of the applications running on IoT devices including insecure interfaces, insecure software, constrained application protocol and middleware security. This effort is part of a funded research project that investigates internet of things (IoT) security and privacy issues related to architecture, connectivity and data collection.
Surnin, Oleg, Hussain, Fatima, Hussain, Rasheed, Ostrovskaya, Svetlana, Polovinkin, Andrey, Lee, JooYoung, Fernando, Xavier.  2019.  Probabilistic Estimation of Honeypot Detection in Internet of Things Environment. 2019 International Conference on Computing, Networking and Communications (ICNC). :191–196.
With the emergence of the Internet of Things (IoT) and the increasing number of resource-constrained interconnected smart devices, there is a noticeable increase in the number of cyber security crimes. In the face of the possible attacks on IoT networks such as network intrusion, denial of service, spoofing and so on, there is a need to develop efficient methods to locate vulnerabilities and mitigate attacks in IoT networks. Without loss of generality, we consider only intrusion-related threats to IoT. A honeypot is a system used to understand the potential dynamic threats and act as a proactive measure to detect any intrusion into the network. It is used as a trap for intruders to control unauthorized access to the network by analyzing malicious traffic. However, a sophisticated attacker can detect the presence of a honeypot and abort the intrusion mission. Therefore it is essential for honeypots to be undetectable. In this paper, we study and analyze possible techniques for SSH and telnet honeypot detection. Moreover, we propose a new methodology for probabilistic estimation of honeypot detection and an automated software implemented this methodology.
Parikh, Sarang, Sanjay, H A, Shastry, K. Aditya, Amith, K K.  2019.  Multimodal Data Security Framework Using Steganography Approaches. 2019 International Conference on Communication and Electronics Systems (ICCES). :1997–2002.
Information or data is a very crucial resource. Hence securing the information becomes a critical task. Transfer and Communication mediums via which we send this information do not provide data security natively. Therefore, methods for data security have to be devised to protect the information from third party and unauthorized users. Information hiding strategies like steganography provide techniques for data encryption so that the unauthorized users cannot read it. This work is aimed at creating a novel method of Augmented Reality Steganography (ARSteg). ARSteg uses cloud for image and key storage that does not alter any attributes of an image such as size and colour scheme. Unlike, traditional algorithms such as Least Significant Bit (LSB) which changes the attributes of images, our approach uses well established encryption algorithm such as Advanced Encryption Standard (AES) for encryption and decryption. This system is further secured by many alternative means such as honey potting, tracking and heuristic intrusion detection that ensure that the transmitted messages are completely secure and no intrusions are allowed. The intrusions are prevented by detecting them immediately and neutralizing them.
2020-05-29
Sattar, Muhammad Umar, Rehman, Rana Asif.  2019.  Interest Flooding Attack Mitigation in Named Data Networking Based VANETs. 2019 International Conference on Frontiers of Information Technology (FIT). :245—2454.

Nowadays network applications have more focus on content distribution which is hard to tackle in IP based Internet. Information Centric Network (ICN) have the ability to overcome this problem for various scenarios, specifically for Vehicular Ad Hoc Networks (VANETs). Conventional IP based system have issues like mobility management hence ICN solve this issue because data fetching is not dependent on a particular node or physical location. Many initial investigations have performed on an instance of ICN commonly known as Named Data Networking (NDN). However, NDN exposes the new type of security susceptibilities, poisoning cache attack, flooding Interest attack, and violation of privacy because the content in the network is called by the name. This paper focused on mitigation of Interest flooding attack by proposing new scheme, named Interest Flooding Attack Mitigation Scheme (IFAMS) in Vehicular Named Data Network (VNDN). Simulation results depict that proposed IFAMS scheme mitigates the Interest flooding attack in the network.

2020-05-26
Tiennoy, Sasirom, Saivichit, Chaiyachet.  2018.  Using a Distributed Roadside Unit for the Data Dissemination Protocol in VANET With the Named Data Architecture. IEEE Access. 6:32612–32623.
Vehicular ad hoc network (VANET) has recently become one of the highly active research areas for wireless networking. Since VANET is a multi-hop wireless network with very high mobility and intermittent connection lifetime, it is important to effectively handle the data dissemination issue in this rapidly changing environment. However, the existing TCP/IP implementation may not fit into such a highly dynamic environment because the nodes in the network must often perform rerouting due to their inconsistency of connectivity. In addition, the drivers in the vehicles may want to acquire some data, but they do not know the address/location of such data storage. Hence, the named data networking (NDN) approach may be more desirable here. The NDN architecture is proposed for the future Internet, which focuses on the delivering mechanism based on the message contents instead of relying on the host addresses of the data. In this paper, a new protocol named roadside unit (RSU) assisted of named data network (RA-NDN) is presented. The RSU can operate as a standalone node [standalone RSU (SA-RSU)]. One benefit of deploying SA-RSUs is the improved network connectivity. This study uses the NS3 and SUMO software packages for the network simulator and traffic simulator software, respectively, to verify the performance of the RA-NDN protocol. To reduce the latency under various vehicular densities, vehicular transmission ranges, and number of requesters, the proposed approach is compared with vehicular NDN via a real-world data set in the urban area of Sathorn road in Bangkok, Thailand. The simulation results show that the RA-NDN protocol improves the performance of ad hoc communications with the increase in data received ratio and throughput and the decrease in total dissemination time and traffic load.
Ostrovskaya, Svetlana, Surnin, Oleg, Hussain, Rasheed, Bouk, Safdar Hussain, Lee, JooYoung, Mehran, Narges, Ahmed, Syed Hassan, Benslimane, Abderrahim.  2018.  Towards Multi-metric Cache Replacement Policies in Vehicular Named Data Networks. 2018 IEEE 29th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC). :1–7.
Vehicular Named Data Network (VNDN) uses NDN as an underlying communication paradigm to realize intelligent transportation system applications. Content communication is the essence of NDN, which is primarily carried out through content naming, forwarding, intrinsic content security, and most importantly the in-network caching. In vehicular networks, vehicles on the road communicate with other vehicles and/or infrastructure network elements to provide passengers a reliable, efficient, and infotainment-rich commute experience. Recently, different aspects of NDN have been investigated in vehicular networks and in vehicular social networks (VSN); however, in this paper, we investigate the in-network caching, realized in NDN through the content store (CS) data structure. As the stale contents in CS do not just occupy cache space, but also decrease the overall performance of NDN-driven VANET and VSN applications, therefore the size of CS and the content lifetime in CS are primary issues in VNDN communications. To solve these issues, we propose a simple yet efficient multi-metric CS management mechanism through cache replacement (M2CRP). We consider the content popularity, relevance, freshness, and distance of a node to devise a set of algorithms for selection of the content to be replaced in CS in the case of replacement requirement. Simulation results show that our multi-metric strategy outperforms the existing cache replacement mechanisms in terms of Hit Ratio.
Soualfi, Abderrahim Hajji, Agoujil, Said, Qaraai, Youssef.  2019.  Performance Analysis of OLSR Protocol under MPR Attack in Progressive Size Grid MANET. 2019 International Conference on Wireless Networks and Mobile Communications (WINCOM). :1–5.
Mobile Ad-hoc NETwork (MANET) is a collection of mobile devices which interchange information without the use of predefined infrastructures or central administration. It is employed in many domains such as military and commercial sectors, data and sensors networks, low level applications, etc. The important constraints in this network are the limitation of bandwidth, processing capabilities and battery life. The choice of an effective routing protocol is primordial. From many routing protocols developed for MANET, OLSR protocol is a widely-used proactive routing protocol which diffuses topological information periodically. Thus, every node has a global vision of the entire network. The protocol assumes, like the other protocols, that the nodes cooperate in a trusted environment. So, all control messages are transmitted (HELLO messages) to all 1-hop neighbor nodes or broadcasted (TC and MID messages) to the entire network in clear. However, a node, which listens to OLSR control messages, can exploit this property to lead an attack. In this paper, we investigate on MultiPoint Relay (MPR) attack considered like one of the efficient OLSR attacks by using a simulation in progressive size gridMANET.