Visible to the public Biblio

Found 1918 results

Filters: First Letter Of Last Name is T  [Clear All Filters]
2021-02-16
Jin, Y., Tian, Z., Zhou, M., Wang, H..  2020.  MuTrack: Multiparameter Based Indoor Passive Tracking System Using Commodity WiFi. ICC 2020 - 2020 IEEE International Conference on Communications (ICC). :1—6.
Device-Free Localization and Tracking (DFLT) acts as a key component for the contactless awareness applications such as elderly care and home security. However, the random phase errors in WiFi signal and weak target echoes submerged in background clutter signals are mainly obstacles for current DFLT systems. In this paper, we propose the design and implementation of MuTrack, a multiparameter based DFLT system using commodity WiFi devices with a single link. Firstly, we select an antenna with maximum reliability index as the reference antenna for signal sanitization in which the conjugate operation removes the random phase errors. Secondly, we design a multi-dimensional parameters estimator and then refine path parameters by optimizing the complete data of path components. Finally, the Hungarian Kalman Filter based tracking method is proposed to derive accurate locations from low-resolution parameter estimates. We extensively validate the proposed system in typical indoor environment and these experimental results show that MuTrack can achieve high tracking accuracy with the mean error of 0.82 m using only a single link.
Lau, T. S., Tay, W. Peng.  2020.  Privacy-Aware Quickest Change Detection. ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :5999—6003.
This paper considers the problem of the quickest detection of a change in distribution while taking privacy considerations into account. Our goal is to sanitize the signal to satisfy information privacy requirements while being able to detect a change quickly. We formulate the privacy-aware quickest change detection (QCD) problem by including a privacy constraint to Lorden's minimax formulation. We show that the Generalized Likelihood Ratio (GLR) CuSum achieves asymptotic optimality with a properly designed sanitization channel and formulate the design of this sanitization channel as an optimization problem. For computational tractability, a continuous relaxation for the discrete counting constraint is proposed and the augmented Lagrangian method is applied to obtain locally optimal solutions.
He, J., Tan, Y., Guo, W., Xian, M..  2020.  A Small Sample DDoS Attack Detection Method Based on Deep Transfer Learning. 2020 International Conference on Computer Communication and Network Security (CCNS). :47—50.
When using deep learning for DDoS attack detection, there is a general degradation in detection performance due to small sample size. This paper proposes a small-sample DDoS attack detection method based on deep transfer learning. First, deep learning techniques are used to train several neural networks that can be used for transfer in DDoS attacks with sufficient samples. Then we design a transferability metric to compare the transfer performance of different networks. With this metric, the network with the best transfer performance can be selected among the four networks. Then for a small sample of DDoS attacks, this paper demonstrates that the deep learning detection technique brings deterioration in performance, with the detection performance dropping from 99.28% to 67%. Finally, we end up with a 20.8% improvement in detection performance by deep transfer of the 8LANN network in the target domain. The experiment shows that the detection method based on deep transfer learning proposed in this paper can well improve the performance deterioration of deep learning techniques for small sample DDoS attack detection.
Zhang, Z., Li, N., Xia, S., Tao, X..  2020.  Fast Cross Layer Authentication Scheme for Dynamic Wireless Network. 2020 IEEE Wireless Communications and Networking Conference (WCNC). :1—6.
Current physical layer authentication (PLA) mechanisms are mostly designed for static communications, and the accuracy degrades significantly when used in dynamic scenarios, where the network environments and wireless channels change frequently. To improve the authentication performance, it is necessary to update the hypothesis test models and parameters in time, which however brings high computational complexity and authentication delay. In this paper, we propose a lightweight cross-layer authentication scheme for dynamic communication scenarios. We use multiple characteristics based PLA to guarantee the reliability and accuracy of authentication, and propose an upper layer assisted method to ensure the performance stability. Specifically, upper layer authentication (ULA) helps to update the PLA models and parameters. By properly choosing the period of triggering ULA, a balance between complexity and performance can be easily obtained. Simulation results show that our scheme can achieve pretty good authentication performance with reduced complexity.
Grashöfer, J., Titze, C., Hartenstein, H..  2020.  Attacks on Dynamic Protocol Detection of Open Source Network Security Monitoring Tools. 2020 IEEE Conference on Communications and Network Security (CNS). :1—9.
Protocol detection is the process of determining the application layer protocol in the context of network security monitoring, which requires a timely and precise decision to enable protocol-specific deep packet inspection. This task has proven to be complex, as isolated characteristics, like port numbers, are not sufficient to reliably determine the application layer protocol. In this paper, we analyze the Dynamic Protocol Detection mechanisms employed by popular and widespread open-source network monitoring tools. On the example of HTTP, we show that all analyzed detection mechanisms are vulnerable to evasion attacks. This poses a serious threat to real-world monitoring operations. We find that the underlying fundamental problem of protocol disambiguation is not adequately addressed in two of three monitoring systems that we analyzed. To enable adequate operational decisions, this paper highlights the inherent trade-offs within Dynamic Protocol Detection.
Monakhov, Y. M., Monakhov, M. Y., Telny, A. V., Kuznetsova, A. P..  2020.  Prediction of the Information Security State of the Protected Object Using Recurrent Correction. 2020 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT). :602—605.

This article presents the modeling results of the ability to improve the accuracy of predicting the state of information security in the space of parameters of its threats. Information security of the protected object is considered as a dynamic system. Security threats to the protected object are used as the security system parameters most qualitatively and fully describing its behavior. The number of threats considered determines the dimension of the security state space. Based on the dynamic properties of changes in information security threats, the space region of the security system possible position at the moments of subsequent measurements of its state (a comprehensive security audit) is predicted. The corrected state of the information security system is considered to be the intersection of the area of subsequent measurement of the state of the system (integrated security audit) with the previously predicted area of the parameter space. Such a way to increase the accuracy of determining the state of a dynamic system in the space of its parameters can be called dynamic recurrent correction method. It is possible to use this method if the comprehensive security audit frequency is significantly higher than the frequency of monitoring changes in the dynamics of specific threats to information security. In addition, the data of the audit results and the errors of their receipt must be statistically independent with the results of monitoring changes in the dynamics of specific threats to information security. Improving the accuracy of the state of information security assessment in the space of the parameters of its threats can be used for various applications, including clarification of the communication channels characteristics, increasing the availability and efficiency of the telecommunications network, if it is an object of protection.

Karmakar, K. K., Varadharajan, V., Tupakula, U., Hitchens, M..  2020.  Towards a Dynamic Policy Enhanced Integrated Security Architecture for SDN Infrastructure. NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management Symposium. :1—9.

Enterprise networks are increasingly moving towards Software Defined Networking, which is becoming a major trend in the networking arena. With the increased popularity of SDN, there is a greater need for security measures for protecting the enterprise networks. This paper focuses on the design and implementation of an integrated security architecture for SDN based enterprise networks. The integrated security architecture uses a policy-based approach to coordinate different security mechanisms to detect and counteract a range of security attacks in the SDN. A distinguishing characteristic of the proposed architecture is its ability to deal with dynamic changes in the security attacks as well as changes in trust associated with the network devices in the infrastructure. The adaptability of the proposed architecture to dynamic changes is achieved by having feedback between the various security components/mechanisms in the architecture and managing them using a dynamic policy framework. The paper describes the prototype implementation of the proposed architecture and presents security and performance analysis for different attack scenarios. We believe that the proposed integrated security architecture provides a significant step towards achieving a secure SDN for enterprises.

2021-02-15
Maldonado-Ruiz, D., Torres, J., Madhoun, N. El.  2020.  3BI-ECC: a Decentralized Identity Framework Based on Blockchain Technology and Elliptic Curve Cryptography. 2020 2nd Conference on Blockchain Research Applications for Innovative Networks and Services (BRAINS). :45–46.

Most of the authentication protocols assume the existence of a Trusted Third Party (TTP) in the form of a Certificate Authority or as an authentication server. The main objective of this research is to present an autonomous solution where users could store their credentials, without depending on TTPs. For this, the use of an autonomous network is imperative, where users could use their uniqueness in order to identify themselves. We propose the framework “Three Blockchains Identity Management with Elliptic Curve Cryptography (3BI-ECC)”. Our proposed framework is a decentralize identity management system where users' identities are self-generated.

Taşkın, H. K., Cenk, M..  2020.  TMVP-Friendly Primes for Efficient Elliptic Curve Cryptography. 2020 International Conference on Information Security and Cryptology (ISCTURKEY). :80–87.
The need for faster and practical cryptography is a research topic for decades. In case of elliptic curve cryptography, which was proposed by Koblitz and Miller in 1985 as a more efficient alternative to RSA, the applications in real life started after 2000s. Today, most of the popular applications and protocols like Whatsapp, Signal, iOS, Android, TLS, SSH, Bitcoin etc. make use of Elliptic curve cryptography. One of the important factor for high performance elliptic curve cryptography is the finite field multiplication. In this paper, we first describe how to choose proper prime fields that makes use of Topelitz-matrices to get faster field multiplication, then we give parameter choice details to select prime fields that supports Toeplitz-matrix vector product operations. Then, we introduce the safe curve selection rationale and discuss about security. We propose new curves, discuss implementation and benchmark results and conclude our work.
2021-02-10
Kishimoto, K., Taniguchi, Y., Iguchi, N..  2020.  A Practical Exercise System Using Virtual Machines for Learning Cross-Site Scripting Countermeasures. 2020 IEEE International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan). :1—2.

Cross-site scripting (XSS) is an often-occurring major attack that developers should consider when developing web applications. We develop a system that can provide practical exercises for learning how to create web applications that are secure against XSS. Our system utilizes free software and virtual machines, allowing low-cost, safe, and practical exercises. By using two virtual machines as the web server and the attacker host, the learner can conduct exercises demonstrating both XSS countermeasures and XSS attacks. In our system, learners use a web browser to learn and perform exercises related to XSS. Experimental evaluations confirm that the proposed system can support learning of XSS countermeasures.

Tanana, D., Tanana, G..  2020.  Advanced Behavior-Based Technique for Cryptojacking Malware Detection. 2020 14th International Conference on Signal Processing and Communication Systems (ICSPCS). :1—4.
With rising value and popularity of cryptocurrencies, they inevitably attract cybercriminals seeking illicit profits within blockchain ecosystem. Two of the most popular methods are ransomware and cryptojacking. Ransomware, being the first and more obvious threat has been extensively studied in the past. Unlike that, scientists have often neglected cryptojacking, because it’s less obvious and less harmful than ransomware. In this paper, we’d like to propose enhanced detection program to combat cryptojacking, additionally briefly touching history of cryptojacking, also known as malicious mining and reviewing most notable previous attempts to detect and combat cryptojacking. The review would include out previous work on malicious mining detection and our current detection program is based on its previous iteration, which mostly used CPU usage heuristics to detect cryptojacking. However, we will include additional metrics for malicious mining detection, such as network usage and calls to cryptographic libraries, which result in a 93% detection rate against the selected number of cryptojacking samples, compared to 81% rate achieved in previous work. Finally, we’ll discuss generalization of proposed detection technique to include GPU cryptojackers.
Tizio, G. Di, Ngo, C. Nam.  2020.  Are You a Favorite Target For Cryptojacking? A Case-Control Study On The Cryptojacking Ecosystem 2020 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :515—520.
Illicitly hijacking visitors' computational resources for mining cryptocurrency via compromised websites is a consolidated activity.Previous works mainly focused on large-scale analysis of the cryptojacking ecosystem, technical means to detect browser-based mining as well as economic incentives of cryptojacking. So far, no one has studied if certain technical characteristics of a website can increase (decrease) the likelihood of being compromised for cryptojacking campaigns.In this paper, we propose to address this unanswered question by conducting a case-control study with cryptojacking websites obtained crawling the web using Minesweeper. Our preliminary analysis shows some association for certain website characteristics, however, the results obtained are not statistically significant. Thus, more data must be collected and further analysis must be conducted to obtain a better insight into the impact of these relations.
Tanana, D..  2020.  Behavior-Based Detection of Cryptojacking Malware. 2020 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT). :0543—0545.
With rise of cryptocurrency popularity and value, more and more cybercriminals seek to profit using that new technology. Most common ways to obtain illegitimate profit using cryptocurrencies are ransomware and cryptojacking also known as malicious mining. And while ransomware is well-known and well-studied threat which is obvious by design, cryptojacking is often neglected because it's less harmful and much harder to detect. This article considers question of cryptojacking detection. Brief history and definition of cryptojacking are described as well as reasons for designing custom detection technique. We also propose complex detection technique based on CPU load by an application, which can be applied to both browser-based and executable-type cryptojacking samples. Prototype detection program based on our technique was designed using decision tree algorithm. The program was tested in a controlled virtual machine environment and achieved 82% success rate against selected number of cryptojacking samples. Finally, we'll discuss generalization of proposed technique for future work.
Kim, S. W., Ta, H. Q..  2020.  Covert Communication by Exploiting Node Multiplicity and Channel Variations. ICC 2020 - 2020 IEEE International Conference on Communications (ICC). :1—6.
We present a covert (low probability of detection) communication scheme that exploits the node multiplicity and channel variations in wireless broadcast networks. The transmitter hides the covert (private) message by superimposing it onto a non-covert (public) message such that the total transmission power remains the same whether or not the covert message is transmitted. It makes the detection of the covert message impossible unless the non-covert message is decoded. We exploit the multiplicity of non-covert messages (users) to provide a degree of freedom in choosing the non-covert message such that the total detection error probability (sum of the probability of false alarm and missed detection) is maximized. We also exploit the channel variation to minimize the throughput loss on the non-covert message by sending the covert message only when the transmission rate of the non-covert message is low. We show that the total detection error probability converges fast to 1 as the number of non-covert users increases and that the total detection error probability increases as the transmit power increases, without requiring a pre-shared secret among the nodes.
2021-02-03
Bellas, A., Perrin, S., Malone, B., Rogers, K., Lucas, G., Phillips, E., Tossell, C., Visser, E. d.  2020.  Rapport Building with Social Robots as a Method for Improving Mission Debriefing in Human-Robot Teams. 2020 Systems and Information Engineering Design Symposium (SIEDS). :160—163.

Conflicts may arise at any time during military debriefing meetings, especially in high intensity deployed settings. When such conflicts arise, it takes time to get everyone back into a receptive state of mind so that they engage in reflective discussion rather than unproductive arguing. It has been proposed by some that the use of social robots equipped with social abilities such as emotion regulation through rapport building may help to deescalate these situations to facilitate critical operational decisions. However, in military settings, the same AI agent used in the pre-brief of a mission may not be the same one used in the debrief. The purpose of this study was to determine whether a brief rapport-building session with a social robot could create a connection between a human and a robot agent, and whether consistency in the embodiment of the robot agent was necessary for maintaining this connection once formed. We report the results of a pilot study conducted at the United States Air Force Academy which simulated a military mission (i.e., Gravity and Strike). Participants' connection with the agent, sense of trust, and overall likeability revealed that early rapport building can be beneficial for military missions.

Clark, D. J., Turnbull, B..  2020.  Experiment Design for Complex Immersive Visualisation. 2020 Military Communications and Information Systems Conference (MilCIS). :1—5.

Experimentation focused on assessing the value of complex visualisation approaches when compared with alternative methods for data analysis is challenging. The interaction between participant prior knowledge and experience, a diverse range of experimental or real-world data sets and a dynamic interaction with the display system presents challenges when seeking timely, affordable and statistically relevant experimentation results. This paper outlines a hybrid approach proposed for experimentation with complex interactive data analysis tools, specifically for computer network traffic analysis. The approach involves a structured survey completed after free engagement with the software platform by expert participants. The survey captures objective and subjective data points relating to the experience with the goal of making an assessment of software performance which is supported by statistically significant experimental results. This work is particularly applicable to field of network analysis for cyber security and also military cyber operations and intelligence data analysis.

Pashaei, A., Akbari, M. E., Lighvan, M. Z., Teymorzade, H. Ali.  2020.  Improving the IDS Performance through Early Detection Approach in Local Area Networks Using Industrial Control Systems of Honeypot. 2020 IEEE International Conference on Environment and Electrical Engineering and 2020 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I CPS Europe). :1—5.

The security of Industrial Control system (ICS) of cybersecurity networks ensures that control equipment fails and that regular procedures are available at its control facilities and internal industrial network. For this reason, it is essential to improve the security of industrial control facility networks continuously. Since network security is threatening, industrial installations are irreparable and perhaps environmentally hazardous. In this study, the industrialized Early Intrusion Detection System (EIDS) was used to modify the Intrusion Detection System (IDS) method. The industrial EIDS was implemented using routers, IDS Snort, Industrial honeypot, and Iptables MikroTik. EIDS successfully simulated and implemented instructions written in IDS, Iptables router, and Honeypots. Accordingly, the attacker's information was displayed on the monitoring page, which had been designed for the ICS. The EIDS provides cybersecurity and industrial network systems against vulnerabilities and alerts industrial network security heads in the shortest possible time.

Ani, U. D., He, H., Tiwari, A..  2020.  Vulnerability-Based Impact Criticality Estimation for Industrial Control Systems. 2020 International Conference on Cyber Security and Protection of Digital Services (Cyber Security). :1—8.

Cyber threats directly affect the critical reliability and availability of modern Industry Control Systems (ICS) in respects of operations and processes. Where there are a variety of vulnerabilities and cyber threats, it is necessary to effectively evaluate cyber security risks, and control uncertainties of cyber environments, and quantitative evaluation can be helpful. To effectively and timely control the spread and impact produced by attacks on ICS networks, a probabilistic Multi-Attribute Vulnerability Criticality Analysis (MAVCA) model for impact estimation and prioritised remediation is presented. This offer a new approach for combining three major attributes: vulnerability severities influenced by environmental factors, the attack probabilities relative to the vulnerabilities, and functional dependencies attributed to vulnerability host components. A miniature ICS testbed evaluation illustrates the usability of the model for determining the weakest link and setting security priority in the ICS. This work can help create speedy and proactive security response. The metrics derived in this work can serve as sub-metrics inputs to a larger quantitative security metrics taxonomy; and can be integrated into the security risk assessment scheme of a larger distributed system.

2021-02-01
Yeh, M., Tang, S., Bhattad, A., Zou, C., Forsyth, D..  2020.  Improving Style Transfer with Calibrated Metrics. 2020 IEEE Winter Conference on Applications of Computer Vision (WACV). :3149–3157.
Style transfer produces a transferred image which is a rendering of a content image in the manner of a style image. We seek to understand how to improve style transfer.To do so requires quantitative evaluation procedures, but current evaluation is qualitative, mostly involving user studies. We describe a novel quantitative evaluation procedure. Our procedure relies on two statistics: the Effectiveness (E) statistic measures the extent that a given style has been transferred to the target, and the Coherence (C) statistic measures the extent to which the original image's content is preserved. Our statistics are calibrated to human preference: targets with larger values of E and C will reliably be preferred by human subjects in comparisons of style and content, respectively.We use these statistics to investigate relative performance of a number of Neural Style Transfer (NST) methods, revealing a number of intriguing properties. Admissible methods lie on a Pareto frontier (i.e. improving E reduces C, or vice versa). Three methods are admissible: Universal style transfer produces very good C but weak E; modifying the optimization used for Gatys' loss produces a method with strong E and strong C; and a modified cross-layer method has slightly better E at strong cost in C. While the histogram loss improves the E statistics of Gatys' method, it does not make the method admissible. Surprisingly, style weights have relatively little effect in improving EC scores, and most variability in transfer is explained by the style itself (meaning experimenters can be misguided by selecting styles). Our GitHub Link is available1.
Ng, M., Coopamootoo, K. P. L., Toreini, E., Aitken, M., Elliot, K., Moorsel, A. van.  2020.  Simulating the Effects of Social Presence on Trust, Privacy Concerns Usage Intentions in Automated Bots for Finance. 2020 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :190–199.
FinBots are chatbots built on automated decision technology, aimed to facilitate accessible banking and to support customers in making financial decisions. Chatbots are increasing in prevalence, sometimes even equipped to mimic human social rules, expectations and norms, decreasing the necessity for human-to-human interaction. As banks and financial advisory platforms move towards creating bots that enhance the current state of consumer trust and adoption rates, we investigated the effects of chatbot vignettes with and without socio-emotional features on intention to use the chatbot for financial support purposes. We conducted a between-subject online experiment with N = 410 participants. Participants in the control group were provided with a vignette describing a secure and reliable chatbot called XRO23, whereas participants in the experimental group were presented with a vignette describing a secure and reliable chatbot that is more human-like and named Emma. We found that Vignette Emma did not increase participants' trust levels nor lowered their privacy concerns even though it increased perception of social presence. However, we found that intention to use the presented chatbot for financial support was positively influenced by perceived humanness and trust in the bot. Participants were also more willing to share financially-sensitive information such as account number, sort code and payments information to XRO23 compared to Emma - revealing a preference for a technical and mechanical FinBot in information sharing. Overall, this research contributes to our understanding of the intention to use chatbots with different features as financial technology, in particular that socio-emotional support may not be favoured when designed independently of financial function.
Chong, K. S., Yap, C. N., Tew, Z. H..  2020.  Multi-Key Homomorphic Encryption Create new Multiple Logic Gates and Arithmetic Circuit. 2020 8th International Symposium on Digital Forensics and Security (ISDFS). :1–4.
This is a feasibility study on homomorphic encryption using the MK-TFHE library in daily computing using cloud services. Logic gates OR, AND, XOR, XNOR, NOR were created. A basic set of arithmetic operations namely - addition, subtraction, multiplication and division were also created. This research is a continuation of a previous work and this peeks into the newly created logic gates on these arithmetic operations.
2021-01-28
Inshi, S., Chowdhury, R., Elarbi, M., Ould-Slimane, H., Talhi, C..  2020.  LCA-ABE: Lightweight Context-Aware Encryption for Android Applications. 2020 International Symposium on Networks, Computers and Communications (ISNCC). :1—6.

The evolving of context-aware applications are becoming more readily available as a major driver of the growth of future connected smart, autonomous environments. However, with the increasing of security risks in critical shared massive data capabilities and the increasing regulation requirements on privacy, there is a significant need for new paradigms to manage security and privacy compliances. These challenges call for context-aware and fine-grained security policies to be enforced in such dynamic environments in order to achieve efficient real-time authorization between applications and connected devices. We propose in this work a novel solution that aims to provide context-aware security model for Android applications. Specifically, our proposition provides automated context-aware access control model and leverages Attribute-Based Encryption (ABE) to secure data communications. Thorough experiments have been performed and the evaluation results demonstrate that the proposed solution provides an effective lightweight adaptable context-aware encryption model.

Ganji, F., Amir, S., Tajik, S., Forte, D., Seifert, J.-P..  2020.  Pitfalls in Machine Learning-based Adversary Modeling for Hardware Systems. 2020 Design, Automation Test in Europe Conference Exhibition (DATE). :514—519.

The concept of the adversary model has been widely applied in the context of cryptography. When designing a cryptographic scheme or protocol, the adversary model plays a crucial role in the formalization of the capabilities and limitations of potential attackers. These models further enable the designer to verify the security of the scheme or protocol under investigation. Although being well established for conventional cryptanalysis attacks, adversary models associated with attackers enjoying the advantages of machine learning techniques have not yet been developed thoroughly. In particular, when it comes to composed hardware, often being security-critical, the lack of such models has become increasingly noticeable in the face of advanced, machine learning-enabled attacks. This paper aims at exploring the adversary models from the machine learning perspective. In this regard, we provide examples of machine learning-based attacks against hardware primitives, e.g., obfuscation schemes and hardware root-of-trust, claimed to be infeasible. We demonstrate that this assumption becomes however invalid as inaccurate adversary models have been considered in the literature.

Seiler, M., Trautmann, H., Kerschke, P..  2020.  Enhancing Resilience of Deep Learning Networks By Means of Transferable Adversaries. 2020 International Joint Conference on Neural Networks (IJCNN). :1—8.

Artificial neural networks in general and deep learning networks in particular established themselves as popular and powerful machine learning algorithms. While the often tremendous sizes of these networks are beneficial when solving complex tasks, the tremendous number of parameters also causes such networks to be vulnerable to malicious behavior such as adversarial perturbations. These perturbations can change a model's classification decision. Moreover, while single-step adversaries can easily be transferred from network to network, the transfer of more powerful multi-step adversaries has - usually - been rather difficult.In this work, we introduce a method for generating strong adversaries that can easily (and frequently) be transferred between different models. This method is then used to generate a large set of adversaries, based on which the effects of selected defense methods are experimentally assessed. At last, we introduce a novel, simple, yet effective approach to enhance the resilience of neural networks against adversaries and benchmark it against established defense methods. In contrast to the already existing methods, our proposed defense approach is much more efficient as it only requires a single additional forward-pass to achieve comparable performance results.

Wang, W., Tang, B., Zhu, C., Liu, B., Li, A., Ding, Z..  2020.  Clustering Using a Similarity Measure Approach Based on Semantic Analysis of Adversary Behaviors. 2020 IEEE Fifth International Conference on Data Science in Cyberspace (DSC). :1—7.

Rapidly growing shared information for threat intelligence not only helps security analysts reduce time on tracking attacks, but also bring possibilities to research on adversaries' thinking and decisions, which is important for the further analysis of attackers' habits and preferences. In this paper, we analyze current models and frameworks used in threat intelligence that suited to different modeling goals, and propose a three-layer model (Goal, Behavior, Capability) to study the statistical characteristics of APT groups. Based on the proposed model, we construct a knowledge network composed of adversary behaviors, and introduce a similarity measure approach to capture similarity degree by considering different semantic links between groups. After calculating similarity degrees, we take advantage of Girvan-Newman algorithm to discover community groups, clustering result shows that community structures and boundaries do exist by analyzing the behavior of APT groups.