Visible to the public Biblio

Found 1918 results

Filters: First Letter Of Last Name is T  [Clear All Filters]
2021-05-20
Dua, Amit, Barpanda, Siddharth Sekhar, Kumar, Neeraj, Tanwar, Sudeep.  2020.  Trustful: A Decentralized Public Key Infrastructure and Identity Management System. 2020 IEEE Globecom Workshops GC Wkshps. :1—6.

Modern Internet TCP uses Secure Sockets Layers (SSL)/Transport Layer Security (TLS) for secure communication, which relies on Public Key Infrastructure (PKIs) to authenticate public keys. Conventional PKI is done by Certification Authorities (CAs), issuing and storing Digital Certificates, which are public keys of users with the users identity. This leads to centralization of authority with the CAs and the storage of CAs being vulnerable and imposes a security concern. There have been instances in the past where CAs have issued rogue certificates or the CAs have been hacked to issue malicious certificates. Motivated from these facts, in this paper, we propose a method (named as Trustful), which aims to build a decentralized PKI using blockchain. Blockchains provide immutable storage in a decentralized manner and allows us to write smart contracts. Ethereum blockchain can be used to build a web of trust model where users can publish attributes, validate attributes about other users by signing them and creating a trust store of users that they trust. Trustful works on the Web-of-Trust (WoT) model and allows for any entity on the network to verify attributes about any other entity through a trusted network. This provides an alternative to the conventional CA-based identity verification model. The proposed model has been implemented and tested for efficacy and known major security attacks.

2021-05-18
Tai, Zeming, Washizaki, Hironori, Fukazawa, Yoshiaki, Fujimatsu, Yurie, Kanai, Jun.  2020.  Binary Similarity Analysis for Vulnerability Detection. 2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC). :1121–1122.
Binary similarity has been widely used in function recognition and vulnerability detection. How to define a proper similarity is the key element in implementing a fast detection method. We proposed a scalable method to detect binary vulnerabilities based on similarity. Procedures lifted from binaries are divided into several comparable strands by data dependency, and those strands are transformed into a normalized form by our tool named VulneraBin, so that similarity can be determined between two procedures through a hash value comparison. The low computational complexity allows semantically equivalent code to be identified in binaries compiled from million lines of source code in a fast and accurate way.
2021-05-13
Ammar, Mahmoud, Crispo, Bruno, Tsudik, Gene.  2020.  SIMPLE: A Remote Attestation Approach for Resource-constrained IoT devices. 2020 ACM/IEEE 11th International Conference on Cyber-Physical Systems (ICCPS). :247—258.

Remote Attestation (RA) is a security service that detects malware presence on remote IoT devices by verifying their software integrity by a trusted party (verifier). There are three main types of RA: software (SW)-, hardware (HW)-, and hybrid (SW/HW)-based. Hybrid techniques obtain secure RA with minimal hardware requirements imposed on the architectures of existing microcontrollers units (MCUs). In recent years, considerable attention has been devoted to hybrid techniques since prior software-based ones lack concrete security guarantees in a remote setting, while hardware-based approaches are too costly for low-end MCUs. However, one key problem is that many already deployed IoT devices neither satisfy minimal hardware requirements nor support hardware modifications, needed for hybrid RA. This paper bridges the gap between software-based and hybrid RA by proposing a novel RA scheme based on software virtualization. In particular, it proposes a new scheme, called SIMPLE, which meets the minimal hardware requirements needed for secure RA via reliable software. SIMPLE depends on a formally-verified software-based memory isolation technique, called Security MicroVisor (Sμ V). Its reliability is achieved by extending the formally-verified safety and correctness properties to cover the entire software architecture of SIMPLE. Furthermore, SIMPLE is used to construct SIMPLE+, an efficient swarm attestation scheme for static and dynamic heterogeneous IoT networks. We implement and evaluate SIMPLE and SIMPLE+ on Atmel AVR architecture, a common MCU platform.

Tong, Zhongkai, Zhu, Ziyuan, Wang, Zhanpeng, Wang, Limin, Zhang, Yusha, Liu, Yuxin.  2020.  Cache side-channel attacks detection based on machine learning. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :919—926.
Security has always been one of the main concerns in the field of computer architecture and cloud computing. Cache-based side-channel attacks pose a threat to almost all existing architectures and cloud computing. Especially in the public cloud, the cache is shared among multiple tenants, and cache attacks can make good use of this to extract information. Cache side-channel attacks are a problem to be solved for security, in which how to accurately detect cache side-channel attacks has been a research hotspot. Because the cache side-channel attack does not require the attacker to physically contact the target device and does not need additional devices to obtain the side channel information, the cache-side channel attack is efficient and hidden, which poses a great threat to the security of cryptographic algorithms. Based on the AES algorithm, this paper uses hardware performance counters to obtain the features of different cache events under Flush + Reload, Prime + Probe, and Flush + Flush attacks. Firstly, the random forest algorithm is used to filter the cache features, and then the support vector machine algorithm is used to model the system. Finally, high detection accuracy is achieved under different system loads. The detection accuracy of the system is 99.92% when there is no load, the detection accuracy is 99.85% under the average load, and the detection accuracy under full load is 96.57%.
Guan, Bo, Takbiri, Nazanin, Goeckel, Dennis L., Houmansadr, Amir, Pishro-Nik, Hossein.  2020.  Sequence Obfuscation to Thwart Pattern Matching Attacks. 2020 IEEE International Symposium on Information Theory (ISIT). :884—889.

Suppose we are given a large number of sequences on a given alphabet, and an adversary is interested in identifying (de-anonymizing) a specific target sequence based on its patterns. Our goal is to thwart such an adversary by obfuscating the target sequences by applying artificial (but small) distortions to its values. A key point here is that we would like to make no assumptions about the statistical model of such sequences. This is in contrast to existing literature where assumptions (e.g., Markov chains) are made regarding such sequences to obtain privacy guarantees. We relate this problem to a set of combinatorial questions on sequence construction based on which we are able to obtain provable guarantees. This problem is relevant to important privacy applications: from fingerprinting webpages visited by users through anonymous communication systems to linking communicating parties on messaging applications to inferring activities of users of IoT devices.

Camenisch, Jan, Drijvers, Manu, Lehmann, Anja, Neven, Gregory, Towa, Patrick.  2020.  Zone Encryption with Anonymous Authentication for V2V Communication. 2020 IEEE European Symposium on Security and Privacy (EuroS P). :405—424.

Vehicle-to-vehicle (V2V) communication systems are currently being prepared for real-world deployment, but they face strong opposition over privacy concerns. Position beacon messages are the main culprit, being broadcast in cleartext and pseudonymously signed up to 10 times per second. So far, no practical solutions have been proposed to encrypt or anonymously authenticate V2V messages. We propose two cryptographic innovations that enhance the privacy of V2V communication. As a core contribution, we introduce zone-encryption schemes, where vehicles generate and authentically distribute encryption keys associated to static geographic zones close to their location. Zone encryption provides security against eavesdropping, and, combined with a suitable anonymous authentication scheme, ensures that messages can only be sent by genuine vehicles, while adding only 224 Bytes of cryptographic overhead to each message. Our second contribution is an authentication mechanism fine-tuned to the needs of V2V which allows vehicles to authentically distribute keys, and is called dynamic group signatures with attributes. Our instantiation features unlimited locally generated pseudonyms, negligible credential download-and-storage costs, identity recovery by a trusted authority, and compact signatures of 216 Bytes at a 128-bit security level.

Li, Mingxuan, Yang, Zhushi, Zhong, Jinsong, He, Ling, Teng, Yangxin.  2020.  Research on Network Attack and Defense Based on Artificial Intelligence Technology. 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). 1:2532—2534.
This paper combines the common ideas and methods in offensive and defensive confrontation in recent years, and uses artificial intelligence technology-based network asset automatic mining technology and artificial intelligence technology-based vulnerability automatic exploitation technology, carries out research and specific practices in discovering and using system vulnerability based on artificial intelligence technology, designs and implemented automatic binary vulnerability discovering and exploitation system, which improves improves the efficiency and success rate of vulnerability discovering and exploitation.
Monakhov, Yuri, Monakhov, Mikhail, Telny, Andrey, Mazurok, Dmitry, Kuznetsova, Anna.  2020.  Improving Security of Neural Networks in the Identification Module of Decision Support Systems. 2020 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT). :571–574.
In recent years, neural networks have been implemented while solving various tasks. Deep learning algorithms provide state of the art performance in computer vision, NLP, speech recognition, speaker recognition and many other fields. In spite of the good performance, neural networks have significant drawback- they have been found to be vulnerable to adversarial examples resulting from adding small-magnitude perturbations to inputs. While being imperceptible to a human eye, such perturbations lead to significant drop in classification accuracy. It is demonstrated by many studies related to neural network security. Considering the pros and cons of neural networks, as well as a variety of their applications, developing of the methods to improve the robustness of neural networks against adversarial attacks becomes an urgent task. In the article authors propose the “minimalistic” attacker model of the decision support system identification unit, adaptive recommendations on security enhancing, and a set of protective methods. Suggested methods allow for significant increase in classification accuracy under adversarial attacks, as it is demonstrated by an experiment outlined in this article.
2021-05-05
Konwar, Kishori M., Kumar, Saptaparni, Tseng, Lewis.  2020.  Semi-Fast Byzantine-tolerant Shared Register without Reliable Broadcast. 2020 IEEE 40th International Conference on Distributed Computing Systems (ICDCS). :743—753.
Shared register emulations on top of message-passing systems provide an illusion of a simpler shared memory system which can make the task of a system designer easier. Numerous shared register applications have a considerably high read-to-write ratio. Thus, having algorithms that make reads more efficient than writes is a fair trade-off.Typically, such algorithms for reads and writes are asymmetric and sacrifice the stringent consistency condition atomicity, as it is impossible to have fast reads for multi-writer atomicity. Safety is a consistency condition that has has gathered interest from both the systems and theory community as it is weaker than atomicity yet provides strong enough guarantees like "strong consistency" or read-my-write consistency. One requirement that is assumed by many researchers is that of the reliable broadcast (RB) primitive, which ensures the "all or none" property during a broadcast. One drawback is that such a primitive takes 1.5 rounds to complete and requires server-to-server communication.This paper implements an efficient multi-writer multi-reader safe register without using a reliable broadcast primitive. Moreover, we provide fast reads or one-shot reads – our read operations can be completed in one round of client-to-server communication. Of course, this comes with the price of requiring more servers when compared to prior solutions assuming reliable broadcast. However, we show that this increased number of servers is indeed necessary as we prove a tight bound on the number of servers required to implement Byzantine-fault tolerant safe registers in a system without reliable broadcast.We extend our results to data stored using erasure coding as well. We present an emulation of single-writer multi-reader safe register based on MDS codes. The usage of MDS codes reduces storage and communication costs. On the negative side, we also show that to use MDS codes and at the same time achieve one-shot reads, we need even more servers.
Rana, Krishan, Dasagi, Vibhavari, Talbot, Ben, Milford, Michael, Sünderhauf, Niko.  2020.  Multiplicative Controller Fusion: Leveraging Algorithmic Priors for Sample-efficient Reinforcement Learning and Safe Sim-To-Real Transfer. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). :6069—6076.
Learning-based approaches often outperform hand-coded algorithmic solutions for many problems in robotics. However, learning long-horizon tasks on real robot hardware can be intractable, and transferring a learned policy from simulation to reality is still extremely challenging. We present a novel approach to model-free reinforcement learning that can leverage existing sub-optimal solutions as an algorithmic prior during training and deployment. During training, our gated fusion approach enables the prior to guide the initial stages of exploration, increasing sample-efficiency and enabling learning from sparse long-horizon reward signals. Importantly, the policy can learn to improve beyond the performance of the sub-optimal prior since the prior's influence is annealed gradually. During deployment, the policy's uncertainty provides a reliable strategy for transferring a simulation-trained policy to the real world by falling back to the prior controller in uncertain states. We show the efficacy of our Multiplicative Controller Fusion approach on the task of robot navigation and demonstrate safe transfer from simulation to the real world without any fine-tuning. The code for this project is made publicly available at https://sites.google.com/view/mcf-nav/home.
Tang, Sirui, Liu, Zhaoxi, Wang, Lingfeng.  2020.  Power System Reliability Analysis Considering External and Insider Attacks on the SCADA System. 2020 IEEE/PES Transmission and Distribution Conference and Exposition (T D). :1—5.

Cybersecurity of the supervisory control and data acquisition (SCADA) system, which is the key component of the cyber-physical systems (CPS), is facing big challenges and will affect the reliability of the smart grid. System reliability can be influenced by various cyber threats. In this paper, the reliability of the electric power system considering different cybersecurity issues in the SCADA system is analyzed by using Semi-Markov Process (SMP) and mean time-to-compromise (MTTC). External and insider attacks against the SCADA system are investigated with the SMP models and the results are compared. The system reliability is evaluated by reliability indexes including loss of load probability (LOLP) and expected energy not supplied (EENS) through Monte Carlo Simulations (MCS). The lurking threats of the cyberattacks are also analyzed in the study. Case studies were conducted on the IEEE Reliability Test System (RTS-96). The results show that with the increase of the MTTCs of the cyberattacks, the LOLP values decrease. When insider attacks are considered, both the LOLP and EENS values dramatically increase owing to the decreased MTTCs. The results provide insights into the establishment of the electric power system reliability enhancement strategies.

Tabiban, Azadeh, Jarraya, Yosr, Zhang, Mengyuan, Pourzandi, Makan, Wang, Lingyu, Debbabi, Mourad.  2020.  Catching Falling Dominoes: Cloud Management-Level Provenance Analysis with Application to OpenStack. 2020 IEEE Conference on Communications and Network Security (CNS). :1—9.

The dynamicity and complexity of clouds highlight the importance of automated root cause analysis solutions for explaining what might have caused a security incident. Most existing works focus on either locating malfunctioning clouds components, e.g., switches, or tracing changes at lower abstraction levels, e.g., system calls. On the other hand, a management-level solution can provide a big picture about the root cause in a more scalable manner. In this paper, we propose DOMINOCATCHER, a novel provenance-based solution for explaining the root cause of security incidents in terms of management operations in clouds. Specifically, we first define our provenance model to capture the interdependencies between cloud management operations, virtual resources and inputs. Based on this model, we design a framework to intercept cloud management operations and to extract and prune provenance metadata. We implement DOMINOCATCHER on OpenStack platform as an attached middleware and validate its effectiveness using security incidents based on real-world attacks. We also evaluate the performance through experiments on our testbed, and the results demonstrate that DOMINOCATCHER incurs insignificant overhead and is scalable for clouds.

Zhu, Zheng, Tian, Yingjie, Li, Fan, Yang, Hongshan, Ma, Zheng, Rong, Guoping.  2020.  Research on Edge Intelligence-based Security Analysis Method for Power Operation System. 2020 7th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/2020 6th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom). :258—263.

At present, the on-site safety problems of substations and critical power equipment are mainly through inspection methods. Still, manual inspection is difficult, time-consuming, and uninterrupted inspection is not possible. The current safety management is mainly guaranteed by rules and regulations and standardized operating procedures. In the on-site environment, it is very dependent on manual execution and confirmation, and the requirements for safety supervision and operating personnel are relatively high. However, the reliability, the continuity of control and patrol cannot be fully guaranteed, and it is easy to cause security vulnerabilities and cause security accidents due to personnel slackness. In response to this shortcoming, this paper uses edge computing and image processing techniques to discover security risks in time and designs a deep convolution attention mechanism network to perform image processing. Then the network is cropped and compressed so that it can be processed at the edge, and the results are aggregated to the cloud for unified management. A comprehensive security assessment module is designed in the cloud to conduct an overall risk assessment of the results reported by all edges, and give an alarm prompt. The experimental results in the real environment show the effectiveness of this method.

2021-05-03
Shen, Shen, Tedrake, Russ.  2020.  Sampling Quotient-Ring Sum-of-Squares Programs for Scalable Verification of Nonlinear Systems. 2020 59th IEEE Conference on Decision and Control (CDC). :2535–2542.
This paper presents a novel method, combining new formulations and sampling, to improve the scalability of sum-of-squares (SOS) programming-based system verification. Region-of-attraction approximation problems are considered for polynomial, polynomial with generalized Lur'e uncertainty, and rational trigonometric multi-rigid-body systems. Our method starts by identifying that Lagrange multipliers, traditionally heavily used for S-procedures, are a major culprit of creating bloated SOS programs. In light of this, we exploit inherent system properties-continuity, convexity, and implicit algebraic structure-and reformulate the problems as quotient-ring SOS programs, thereby eliminating all the multipliers. These new programs are smaller, sparser, less constrained, yet less conservative. Their computation is further improved by leveraging a recent result on sampling algebraic varieties. Remarkably, solution correctness is guaranteed with just a finite (in practice, very small) number of samples. Altogether, the proposed method can verify systems well beyond the reach of existing SOS-based approaches (32 states); on smaller problems where a baseline is available, it computes tighter solution 2-3 orders of magnitude faster.
Takita, Yutaka, Miyabe, Masatake, Tomonaga, Hiroshi, Oguchi, Naoki.  2020.  Scalable Impact Range Detection against Newly Added Rules for Smart Network Verification. 2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC). :1471–1476.
Technological progress in cloud networking, 5G networks, and the IoT (Internet of Things) are remarkable. In addition, demands for flexible construction of SoEs (Systems on Engagement) for various type of businesses are increasing. In such environments, dynamic changes of network rules, such as access control (AC) or packet forwarding, are required to ensure function and security in networks. On the other hand, it is becoming increasingly difficult to grasp the exact situation in such networks by utilizing current well-known network verification technologies since a huge number of network rules are complexly intertwined. To mitigate these issues, we have proposed a scalable network verification approach utilizing the concept of "Packet Equivalence Class (PEC)," which enable precise network function verification by strictly recognizing the impact range of each network rule. However, this approach is still not scalable for very large-scale networks which consist of tens of thousands of routers. In this paper, we enhanced our impact range detection algorithm for practical large-scale networks. Through evaluation in the network with more than 80,000 AC rules, we confirmed that our enhanced algorithm can achieve precise impact range detection in under 600 seconds.
Sohail, Muhammad, Zheng, Quan, Rezaiefar, Zeinab, Khan, Muhammad Alamgeer, Ullah, Rizwan, Tan, Xiaobin, Yang, Jian, Yuan, Liu.  2020.  Triangle Area Based Multivariate Correlation Analysis for Detecting and Mitigating Cache Pollution Attacks in Named Data Networking. 2020 3rd International Conference on Hot Information-Centric Networking (HotICN). :114–121.
The key feature of NDN is in-network caching that every router has its cache to store data for future use, thus improve the usage of the network bandwidth and reduce the network latency. However, in-network caching increases the security risks - cache pollution attacks (CPA), which includes locality disruption (ruining the cache locality by sending random requests for unpopular contents to make them popular) and False Locality (introducing unpopular contents in the router's cache by sending requests for a set of unpopular contents). In this paper, we propose a machine learning method, named Triangle Area Based Multivariate Correlation Analysis (TAB-MCA) that detects the cache pollution attacks in NDN. This detection system has two parts, the triangle-area-based MCA technique, and the threshold-based anomaly detection technique. The TAB-MCA technique is used to extract hidden geometrical correlations between two distinct features for all possible permutations and the threshold-based anomaly detection technique. This technique helps our model to be able to distinguish attacks from legitimate traffic records without requiring prior knowledge. Our technique detects locality disruption, false locality, and combination of the two with high accuracy. Implementation of XC-topology, the proposed method shows high efficiency in mitigating these attacks. In comparison to other ML-methods, our proposed method has a low overhead cost in mitigating CPA as it doesn't require attackers' prior knowledge. Additionally, our method can also detect non-uniform attack distributions.
2021-04-27
Himthani, P., Dubey, G. P., Sharma, B. M., Taneja, A..  2020.  Big Data Privacy and Challenges for Machine Learning. 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC). :707—713.

The field of Big Data is expanding at an alarming rate since its inception in 2012. The excessive use of Social Networking Sites, collection of Data from Sensors for analysis and prediction of future events, improvement in Customer Satisfaction on Online S hopping portals by monitoring their past behavior and providing them information, items and offers of their interest instantaneously, etc had led to this rise in the field of Big Data. This huge amount of data, if analyzed and processed properly, can lead to decisions and outcomes that would be of great values and benefits to organizations and individuals. Security of Data and Privacy of User is of keen interest and high importance for individuals, industry and academia. Everyone ensure that their Sensitive information must be kept away from unauthorized access and their assets must be kept safe from security breaches. Privacy and Security are also equally important for Big Data and here, it is typical and complex to ensure the Privacy and Security, as the amount of data is enormous. One possible option to effectively and efficiently handle, process and analyze the Big Data is to make use of Machine Learning techniques. Machine Learning techniques are straightforward; applying them on Big Data requires resolution of various issues and is a challenging task, as the size of Data is too big. This paper provides a brief introduction to Big Data, the importance of Security and Privacy in Big Data and the various challenges that are required to overcome for applying the Machine Learning techniques on Big Data.

Beckwith, E., Thamilarasu, G..  2020.  BA-TLS: Blockchain Authentication for Transport Layer Security in Internet of Things. 2020 7th International Conference on Internet of Things: Systems, Management and Security (IOTSMS). :1—8.

Traditional security solutions that rely on public key infrastructure present scalability and transparency challenges when deployed in Internet of Things (IoT). In this paper, we develop a blockchain based authentication mechanism for IoT that can be integrated into the traditional transport layer security protocols such as Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS). Our proposed mechanism is an alternative to the traditional Certificate Authority (CA)-based Public Key Infrastructure (PKI) that relies on x.509 certificates. Specifically, the proposed solution enables the modified TLS/DTLS a viable option for resource constrained IoT devices where minimizing memory utilization is critical. Experiments show that blockchain based authentication can reduce dynamic memory usage by up to 20%, while only minimally increasing application image size and time of execution of the TLS/DTLS handshake.

Calzavara, S., Focardi, R., Grimm, N., Maffei, M., Tempesta, M..  2020.  Language-Based Web Session Integrity. 2020 IEEE 33rd Computer Security Foundations Symposium (CSF). :107—122.
Session management is a fundamental component of web applications: despite the apparent simplicity, correctly implementing web sessions is extremely tricky, as witnessed by the large number of existing attacks. This motivated the design of formal methods to rigorously reason about web session security which, however, are not supported at present by suitable automated verification techniques. In this paper we introduce the first security type system that enforces session security on a core model of web applications, focusing in particular on server-side code. We showcase the expressiveness of our type system by analyzing the session management logic of HotCRP, Moodle, and phpMyAdmin, unveiling novel security flaws that have been acknowledged by software developers.
Hammoud, O. R., Tarkhanov, I. A..  2020.  Blockchain-based open infrastructure for URL filtering in an Internet browser. 2020 IEEE 14th International Conference on Application of Information and Communication Technologies (AICT). :1—4.
This research is dedicated to the development of a prototype of open infrastructure for users’ internet traffic filtering on a browser level. We described the advantages of a distributed approach in comparison with current centralized solutions. Besides, we suggested a solution to define the optimum size for a URL storage block in Ethereum network. This solution may be used for the development of infrastructure of DApps applications on Ethereum network in future. The efficiency of the suggested approach is supported by several experiments.
Fu, Y., Tong, S., Guo, X., Cheng, L., Zhang, Y., Feng, D..  2020.  Improving the Effectiveness of Grey-box Fuzzing By Extracting Program Information. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :434–441.
Fuzzing has been widely adopted as an effective techniques to detect vulnerabilities in softwares. However, existing fuzzers suffer from the problems of generating excessive test inputs that either cannot pass input validation or are ineffective in exploring unvisited regions in the program under test (PUT). To tackle these problems, we propose a greybox fuzzer called MuFuzzer based on AFL, which incorporates two heuristics that optimize seed selection and automatically extract input formatting information from the PUT to increase the chance of generating valid test inputs, respectively. In particular, the first heuristic collects the branch coverage and execution information during a fuzz session, and utilizes such information to guide fuzzing tools in selecting seeds that are fast to execute, small in size, and more importantly, more likely to explore new behaviors of the PUT for subsequent fuzzing activities. The second heuristic automatically identifies string comparison operations that the PUT uses for input validation, and establishes a dictionary with string constants from these operations to help fuzzers generate test inputs that have higher chances to pass input validation. We have evaluated the performance of MuFuzzer, in terms of code coverage and bug detection, using a set of realistic programs and the LAVA-M test bench. Experiment results demonstrate that MuFuzzer is able to achieve higher code coverage and better or comparative bug detection performance than state-of-the-art fuzzers.
Harada, T., Tanaka, K., Ogasawara, R., Mikawa, K..  2020.  A Rule Reordering Method via Pairing Dependent Rules. 2020 IEEE Conference on Communications and Network Security (CNS). :1–9.
Packet classification is used to determine the behavior of incoming packets to network devices. Because it is achieved using a linear search on a classification rule list, a larger number of rules leads to a longer communication latency. To decrease this latency, the problem is generalized as Optimal Rule Ordering (ORO), which aims to identify the order of rules that minimizes the classification latency caused by packet classification while preserving the classification policy. Because ORO is known to be NP-complete by Hamed and Al-Shaer [Dynamic rule-ordering optimization for high-speed firewall filtering, ASIACCS (2006) 332-342], various heuristics for ORO have been proposed. Sub-graph merging (SGM) by Tapdiya and Fulp [Towards optimal firewall rule ordering utilizing directed acyclical graphs, ICCCN (2009) 1-6] is the state of the art heuristic algorithm for ORO. In this paper, we propose a novel heuristic method for ORO. Although most heuristics try to recursively determine the maximum-weight rule and move it as far as possible to an upper position, our algorithm pairs rules that cause policy violations until there are no such rules to simply sort the rules by these weights. Our algorithm markedly decreases the classification latency and reordering time compared with SGM in experiments. The sets consisting of thousands of rules that require one or more hours for reordering by SGM can be reordered by the proposed method within one minute.
Tahsini, A., Dunstatter, N., Guirguis, M., Ahmed, C. M..  2020.  DeepBLOC: A Framework for Securing CPS through Deep Reinforcement Learning on Stochastic Games. 2020 IEEE Conference on Communications and Network Security (CNS). :1–9.

One important aspect in protecting Cyber Physical System (CPS) is ensuring that the proper control and measurement signals are propagated within the control loop. The CPS research community has been developing a large set of check blocks that can be integrated within the control loop to check signals against various types of attacks (e.g., false data injection attacks). Unfortunately, it is not possible to integrate all these “checks” within the control loop as the overhead introduced when checking signals may violate the delay constraints of the control loop. Moreover, these blocks do not completely operate in isolation of each other as dependencies exist among them in terms of their effectiveness against detecting a subset of attacks. Thus, it becomes a challenging and complex problem to assign the proper checks, especially with the presence of a rational adversary who can observe the check blocks assigned and optimizes her own attack strategies accordingly. This paper tackles the inherent state-action space explosion that arises in securing CPS through developing DeepBLOC (DB)-a framework in which Deep Reinforcement Learning algorithms are utilized to provide optimal/sub-optimal assignments of check blocks to signals. The framework models stochastic games between the adversary and the CPS defender and derives mixed strategies for assigning check blocks to ensure the integrity of the propagated signals while abiding to the real-time constraints dictated by the control loop. Through extensive simulation experiments and a real implementation on a water purification system, we show that DB achieves assignment strategies that outperform other strategies and heuristics.

Tolsdorf, J., Iacono, L. Lo.  2020.  Vision: Shred If Insecure – Persuasive Message Design as a Lesson and Alternative to Previous Approaches to Usable Secure Email Interfaces. 2020 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :172–177.
Despite the advances in research on usable secure email, the majority of mail user agents found in practice still violates best practices in UI design and uses ineffective and inhomogeneous design strategies to communicate and let users control the security status of an email message.We propose a novel interaction and design concept that we refer to as persuasive message design. Our approach is derived from heuristics and a systematic meta-study of existing HCI literature on email management, usable secure email and phishing research. Concluding on this body of knowledge we propose the design of interfaces that suppress weak cues and instead manipulate the display of emails according to their technical security level. Persuasive message design addresses several shortcomings of current secure email user interfaces and provides a consistent user experience that can be deployed even by email providers.
Pozdniakov, K., Alonso, E., Stankovic, V., Tam, K., Jones, K..  2020.  Smart Security Audit: Reinforcement Learning with a Deep Neural Network Approximator. 2020 International Conference on Cyber Situational Awareness, Data Analytics and Assessment (CyberSA). :1–8.
A significant challenge in modern computer security is the growing skill gap as intruder capabilities increase, making it necessary to begin automating elements of penetration testing so analysts can contend with the growing number of cyber threats. In this paper, we attempt to assist human analysts by automating a single host penetration attack. To do so, a smart agent performs different attack sequences to find vulnerabilities in a target system. As it does so, it accumulates knowledge, learns new attack sequences and improves its own internal penetration testing logic. As a result, this agent (AgentPen for simplicity) is able to successfully penetrate hosts it has never interacted with before. A computer security administrator using this tool would receive a comprehensive, automated sequence of actions leading to a security breach, highlighting potential vulnerabilities, and reducing the amount of menial tasks a typical penetration tester would need to execute. To achieve autonomy, we apply an unsupervised machine learning algorithm, Q-learning, with an approximator that incorporates a deep neural network architecture. The security audit itself is modelled as a Markov Decision Process in order to test a number of decision-making strategies and compare their convergence to optimality. A series of experimental results is presented to show how this approach can be effectively used to automate penetration testing using a scalable, i.e. not exhaustive, and adaptive approach.