Visible to the public Biblio

Found 252 results

Filters: First Letter Of Last Name is U  [Clear All Filters]
2021-08-02
Billah, Mohammad Masum, Khan, Niaz Ahmed, Ullah, Mohammad Woli, Shahriar, Faisal, Rashid, Syed Zahidur, Ahmed, Md Razu.  2020.  Developing a Secured and Reliable Vehicular Communication System and Its Performance Evaluation. 2020 IEEE Region 10 Symposium (TENSYMP). :60–65.
The Ad-hoc Vehicular networks (VANET) was developed through the implementation of the concepts of ad-hoc mobile networks(MANET), which is swiftly maturing, promising, emerging wireless communication technology nowadays. Vehicular communication enables us to communicate with other vehicles and Roadside Infrastructure Units (RSU) to share information pertaining to the safety system, traffic analysis, Authentication, privacy, etc. As VANETs operate in an open wireless connectivity system, it increases permeable of variant type's security issues. Security concerns, however, which are either generally seen in ad-hoc networks or utterly unique to VANET, present significant challenges. Access Control List (ACL) can be an efficient feature to solve such security issues by permitting statements to access registered specific IP addresses in the network and deny statement unregistered IP addresses in the system. To establish such secured VANETs, the License number of the vehicle will be the Identity Number, which will be assigned via a DNS server by the Traffic Certification Authority (TCA). TCA allows registered vehicles to access the nearest two or more regions. For special vehicles, public access should be restricted by configuring ACL on a specific IP. Smart-card given by TCA can be used to authenticate a subscriber by checking previous records during entry to a new network area. After in-depth analysis of Packet Delivery Ratio (PDR), Packet Loss Ratio (PLR), Average Delay, and Handover Delay, this research offers more secure and reliable communication in VANETs.
2021-06-30
ur Rahman, Hafiz, Duan, Guihua, Wang, Guojun, Bhuiyan, Md Zakirul Alam, Chen, Jianer.  2020.  Trustworthy Data Acquisition and Faulty Sensor Detection using Gray Code in Cyber-Physical System. 2020 IEEE 23rd International Conference on Computational Science and Engineering (CSE). :58—65.
Due to environmental influence and technology limitation, a wireless sensor/sensors module can neither store or process all raw data locally nor reliably forward it to a destination in heterogeneous IoT environment. As a result, the data collected by the IoT's sensors are inherently noisy, unreliable, and may trigger many false alarms. These false or misleading data can lead to wrong decisions once the data reaches end entities. Therefore, it is highly recommended and desirable to acquire trustworthy data before data transmission, aggregation, and data storing at the end entities/cloud. In this paper, we propose an In-network Generalized Trustworthy Data Collection (IGTDC) framework for trustworthy data acquisition and faulty sensor detection in the IoT environment. The key idea of IGTDC is to allow a sensor's module to examine locally whether the raw data is trustworthy before transmitting towards upstream nodes. It further distinguishes whether the acquired data can be trusted or not before data aggregation at the sink/edge node. Besides, IGTDC helps to recognize a faulty or compromised sensor. For a reliable data collection, we use collaborative IoT technique, gate-level modeling, and programmable logic device (PLD) to ensure that the acquired data is reliable before transmitting towards upstream nodes/cloud. We use a hardware-based technique called “Gray Code” to detect a faulty sensor. Through simulations we reveal that the acquired data in IGTDC framework is reliable that can make a trustworthy data collection for event detection, and assist to distinguish a faulty sensor.
2021-06-24
Ulrich, Jacob, Rieger, Craig, Grandio, Javier, Manic, Milos.  2020.  Cyber-Physical Architecture for Automated Responses (CyPhAAR) Using SDN in Adversarial OT Environments. 2020 Resilience Week (RWS). :55–63.
The ability to react to a malicious attack starts with high fidelity recognition, and with that, an agile response to the attack. The current Operational Technology (OT) systems for a critical infrastructure include an intrusion detection system (IDS), but the ability to adapt to an intrusion is a human initiated response. Orchestrators, which are coming of age in the financial sector and allow for levels of automated response, are not prevalent in the OT space. To evolve to such responses in the OT space, a tradeoff analysis is first needed. This tradeoff analysis should evaluate the mitigation benefits of responses versus the physical affects that result. Providing an informed and automated response decision. This paper presents a formulation of a novel tradeoff analysis and its use in advancing a cyber-physical architecture for automated responses (CyPhAAR).
2021-06-01
Maswood, Mirza Mohd Shahriar, Uddin, Md Ashif, Dey, Uzzwal Kumar, Islam Mamun, Md Mainul, Akter, Moriom, Sonia, Shamima Sultana, Alharbi, Abdullah G..  2020.  A Novel Sensor Design to Sense Liquid Chemical Mixtures using Photonic Crystal Fiber to Achieve High Sensitivity and Low Confinement Losses. 2020 11th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON). :0686—0691.
Chemical sensing is an important issue in food, water, environment, biomedical, and pharmaceutical field. Conventional methods used in laboratory for sensing the chemical are costly, time consuming, and sometimes wastes significant amount of sample. Photonic Crystal Fiber (PCF) offers high compactness and design flexibility and it can be used as biosensor, chemical sensor, liquid sensor, temperature sensor, mechanical sensor, gas sensor, and so on. In this work, we designed PCF to sense different concentrations of different liquids by one PCF structure. We designed different structure for silica cladding hexagonal PCF to sense different concentrations of benzene-toluene and ethanol-water mixer. Core diameter, air hole diameter, and air hole diameter to lattice pitch ratio are varied to get the optimal result as well to explore the effect of core size, air hole size and the pitch on liquid chemical sensing. Performance of the chemical sensors was examined based on confinement loss and sensitivity. The performance of the sensor varied a lot and basically it depends not only on refractive index of the liquid but also on sensing wavelengths. Our designed sensor can provide comparatively high sensitivity and low confinement loss.
2021-05-25
AKCENGİZ, Ziya, Aslan, Melis, Karabayır, Özgür, Doğanaksoy, Ali, Uğuz, Muhiddin, Sulak, Fatih.  2020.  Statistical Randomness Tests of Long Sequences by Dynamic Partitioning. 2020 International Conference on Information Security and Cryptology (ISCTURKEY). :68—74.
Random numbers have a wide usage in the area of cryptography. In practice, pseudo random number generators are used in place of true random number generators, as regeneration of them may be required. Therefore because of generation methods of pseudo random number sequences, statistical randomness tests have a vital importance. In this paper, a randomness test suite is specified for long binary sequences. In literature, there are many randomness tests and test suites. However, in most of them, to apply randomness test, long sequences are partitioned into a certain fixed length and the collection of short sequences obtained is evaluated instead. In this paper, instead of partitioning a long sequence into fixed length subsequences, a concept of dynamic partitioning is introduced in accordance with the random variable in consideration. Then statistical methods are applied. The suggested suite, containing four statistical tests: Collision Tests, Weight Test, Linear Complexity Test and Index Coincidence Test, all of them work with the idea of dynamic partitioning. Besides the adaptation of this approach to randomness tests, the index coincidence test is another contribution of this work. The distribution function and the application of all tests are given in the paper.
2021-05-20
Usher, Will, Pascucci, Valerio.  2020.  Interactive Visualization of Terascale Data in the Browser: Fact or Fiction? 2020 IEEE 10th Symposium on Large Data Analysis and Visualization (LDAV). :27—36.

Information visualization applications have become ubiquitous, in no small part thanks to the ease of wide distribution and deployment to users enabled by the web browser. Scientific visualization applications, relying on native code libraries and parallel processing, have been less suited to such widespread distribution, as browsers do not provide the required libraries or compute capabilities. In this paper, we revisit this gap in visualization technologies and explore how new web technologies, WebAssembly and WebGPU, can be used to deploy powerful visualization solutions for large-scale scientific data in the browser. In particular, we evaluate the programming effort required to bring scientific visualization applications to the browser through these technologies and assess their competitiveness against classic native solutions. As a main example, we present a new GPU-driven isosurface extraction method for block-compressed data sets, that is suitable for interactive isosurface computation on large volumes in resource-constrained environments, such as the browser. We conclude that web browsers are on the verge of becoming a competitive platform for even the most demanding scientific visualization tasks, such as interactive visualization of isosurfaces from a 1TB DNS simulation. We call on researchers and developers to consider investing in a community software stack to ease use of these upcoming browser features to bring accessible scientific visualization to the browser.

Kim, Brian, Sagduyu, Yalin E., Davaslioglu, Kemal, Erpek, Tugba, Ulukus, Sennur.  2020.  Over-the-Air Adversarial Attacks on Deep Learning Based Modulation Classifier over Wireless Channels. 2020 54th Annual Conference on Information Sciences and Systems (CISS). :1—6.
We consider a wireless communication system that consists of a transmitter, a receiver, and an adversary. The transmitter transmits signals with different modulation types, while the receiver classifies its received signals to modulation types using a deep learning-based classifier. In the meantime, the adversary makes over-the-air transmissions that are received as superimposed with the transmitter's signals to fool the classifier at the receiver into making errors. While this evasion attack has received growing interest recently, the channel effects from the adversary to the receiver have been ignored so far such that the previous attack mechanisms cannot be applied under realistic channel effects. In this paper, we present how to launch a realistic evasion attack by considering channels from the adversary to the receiver. Our results show that modulation classification is vulnerable to an adversarial attack over a wireless channel that is modeled as Rayleigh fading with path loss and shadowing. We present various adversarial attacks with respect to availability of information about channel, transmitter input, and classifier architecture. First, we present two types of adversarial attacks, namely a targeted attack (with minimum power) and non-targeted attack that aims to change the classification to a target label or to any other label other than the true label, respectively. Both are white-box attacks that are transmitter input-specific and use channel information. Then we introduce an algorithm to generate adversarial attacks using limited channel information where the adversary only knows the channel distribution. Finally, we present a black-box universal adversarial perturbation (UAP) attack where the adversary has limited knowledge about both channel and transmitter input. By accounting for different levels of information availability, we show the vulnerability of modulation classifier to over-the-air adversarial attacks.
2021-05-05
Ulrich, Jacob, McJunkin, Timothy, Rieger, Craig, Runyon, Michael.  2020.  Scalable, Physical Effects Measurable Microgrid for Cyber Resilience Analysis (SPEMMCRA). 2020 Resilience Week (RWS). :194—201.

The ability to advance the state of the art in automated cybersecurity protections for industrial control systems (ICS) has as a prerequisite of understanding the trade-off space. That is, to enable a cyber feedback loop in a control system environment you must first consider both the security mitigation available, the benefits and the impacts to the control system functionality when the mitigation is used. More damaging impacts could be precipitated that the mitigation was intended to rectify. This paper details networked ICS that controls a simulation of the frequency response represented with the swing equation. The microgrid loads and base generation can be balanced through the control of an emulated battery and power inverter. The simulated plant, which is implemented in Raspberry Pi computers, provides an inexpensive platform to realize the physical effects of cyber attacks to show the trade-offs of available mitigating actions. This network design can include a commercial ICS controller and simple plant or emulated plant to introduce real world implementation of feedback controls, and provides a scalable, physical effects measurable microgrid for cyber resilience analysis (SPEMMCRA).

2021-05-03
Sohail, Muhammad, Zheng, Quan, Rezaiefar, Zeinab, Khan, Muhammad Alamgeer, Ullah, Rizwan, Tan, Xiaobin, Yang, Jian, Yuan, Liu.  2020.  Triangle Area Based Multivariate Correlation Analysis for Detecting and Mitigating Cache Pollution Attacks in Named Data Networking. 2020 3rd International Conference on Hot Information-Centric Networking (HotICN). :114–121.
The key feature of NDN is in-network caching that every router has its cache to store data for future use, thus improve the usage of the network bandwidth and reduce the network latency. However, in-network caching increases the security risks - cache pollution attacks (CPA), which includes locality disruption (ruining the cache locality by sending random requests for unpopular contents to make them popular) and False Locality (introducing unpopular contents in the router's cache by sending requests for a set of unpopular contents). In this paper, we propose a machine learning method, named Triangle Area Based Multivariate Correlation Analysis (TAB-MCA) that detects the cache pollution attacks in NDN. This detection system has two parts, the triangle-area-based MCA technique, and the threshold-based anomaly detection technique. The TAB-MCA technique is used to extract hidden geometrical correlations between two distinct features for all possible permutations and the threshold-based anomaly detection technique. This technique helps our model to be able to distinguish attacks from legitimate traffic records without requiring prior knowledge. Our technique detects locality disruption, false locality, and combination of the two with high accuracy. Implementation of XC-topology, the proposed method shows high efficiency in mitigating these attacks. In comparison to other ML-methods, our proposed method has a low overhead cost in mitigating CPA as it doesn't require attackers' prior knowledge. Additionally, our method can also detect non-uniform attack distributions.
2021-04-27
Syafalni, I., Fadhli, H., Utami, W., Dharma, G. S. A., Mulyawan, R., Sutisna, N., Adiono, T..  2020.  Cloud Security Implementation using Homomorphic Encryption. 2020 IEEE International Conference on Communication, Networks and Satellite (Comnetsat). :341—345.

With the advancement of computing and communication technologies, data transmission in the internet are getting bigger and faster. However, it is necessary to secure the data to prevent fraud and criminal over the internet. Furthermore, most of the data related to statistics requires to be analyzed securely such as weather data, health data, financial and other services. This paper presents an implementation of cloud security using homomorphic encryption for data analytic in the cloud. We apply the homomorphic encryption that allows the data to be processed without being decrypted. Experimental results show that, for the polynomial degree 26, 28, and 210, the total executions are 2.2 ms, 4.4 ms, 25 ms per data, respectively. The implementation is useful for big data security such as for environment, financial and hospital data analytics.

Banakar, V., Upadhya, P., Keshavan, M..  2020.  CIED - rapid composability of rack scale resources using Capability Inference Engine across Datacenters. 2020 IEEE Infrastructure Conference. :1–4.
There are multiple steps involved in transitioning a server from the factory to being fully provisioned for an intended workload. These steps include finding the optimal slot for the hardware and to compose the required resources on the hardware for the intended workload. There are many different factors that influence the placement of server hardware in the datacenter, such as physical limitations to connect to a network be it Ethernet or storage networks, power requirements, temperature/cooling considerations, and physical space, etc. In addition to this, there may be custom requirements driven by workload policies (such as security, data privacy, power redundancy, etc.). Once the server has been placed in the right slot it needs to be configured with the appropriate resources for the intended workload. CIED will provide a ranked list of locations for server placement based on the intended workload, connectivity and physical requirements of the server. Once the server is placed in the suggested slot, the solution automatically discovers the server and composes the required resources (compute, storage and networks) for running the appropriate workload. CIED reduces the overall time taken to move hardware from factory to production and also maximizes the server hardware utilization while minimizing downtime by physically placing the resources optimally. From the case study that was undertaken, the time taken to transition a server from factory to being fully provisioned was proportional to the number of devices in the datacenter. With CIED this time is constant irrespective of the complexity or the number of devices in a datacenter.
Uthayashangar, S., Abinaya, J., Harshini, V., Jayavardhani, R..  2020.  Image And Text Encrypted Data With Authorized Deduplication In Cloud. 2020 International Conference on System, Computation, Automation and Networking (ICSCAN). :1—5.
In this paper, the role re-encryption is used to avoid the privacy data lekage and also to avoid the deduplication in a secure role re-encryption system(SRRS). And also it checks for the proof of ownership for to identify whether the user is authorized user or not. This is for the efficiency. Role re-encrytion method is to share the access key for the corresponding authorized user for accessing the particular file without the leakage of privacy data. In our project we are using both the avoidance of text and digital images. For example we have the personal images in our mobile, handheld devices, and in the desktop etc., So, as these images have to keep secure and so we are using the encryption for to increase the high security. The text file also important for the users now-a-days. It has to keep secure in a cloud server. Digital images have to be protected over the communication, however generally personal identification details like copies of pan card, Passport, ATM, etc., to store on one's own pc. So, we are protecting the text file and image data for avoiding the duplication in our proposed system.
2021-04-09
Usman, S., Winarno, I., Sudarsono, A..  2020.  Implementation of SDN-based IDS to protect Virtualization Server against HTTP DoS attacks. 2020 International Electronics Symposium (IES). :195—198.
Virtualization and Software-defined Networking (SDN) are emerging technologies that play a major role in cloud computing. Cloud computing provides efficient utilization, high performance, and resource availability on demand. However, virtualization environments are vulnerable to various types of intrusion attacks that involve installing malicious software and denial of services (DoS) attacks. Utilizing SDN technology, makes the idea of SDN-based security applications attractive in the fight against DoS attacks. Network intrusion detection system (IDS) which is used to perform network traffic analysis as a detection system implemented on SDN networks to protect virtualization servers from HTTP DoS attacks. The experimental results show that SDN-based IDS is able to detect and mitigate HTTP DoS attacks effectively.
2021-04-08
Sarma, M. S., Srinivas, Y., Abhiram, M., Ullala, L., Prasanthi, M. S., Rao, J. R..  2017.  Insider Threat Detection with Face Recognition and KNN User Classification. 2017 IEEE International Conference on Cloud Computing in Emerging Markets (CCEM). :39—44.
Information Security in cloud storage is a key trepidation with regards to Degree of Trust and Cloud Penetration. Cloud user community needs to ascertain performance and security via QoS. Numerous models have been proposed [2] [3] [6][7] to deal with security concerns. Detection and prevention of insider threats are concerns that also need to be tackled. Since the attacker is aware of sensitive information, threats due to cloud insider is a grave concern. In this paper, we have proposed an authentication mechanism, which performs authentication based on verifying facial features of the cloud user, in addition to username and password, thereby acting as two factor authentication. New QoS has been proposed which is capable of monitoring and detection of insider threats using Machine Learning Techniques. KNN Classification Algorithm has been used to classify users into legitimate, possibly legitimate, possibly not legitimate and not legitimate groups to verify image authenticity to conclude, whether there is any possible insider threat. A threat detection model has also been proposed for insider threats, which utilizes Facial recognition and Monitoring models. Security Method put forth in [6] [7] is honed to include threat detection QoS to earn higher degree of trust from cloud user community. As a recommendation, Threat detection module should be harnessed in private cloud deployments like Defense and Pharma applications. Experimentation has been conducted using open source Machine Learning libraries and results have been attached in this paper.
2021-03-16
Ullah, A., Chen, X., Yang, J..  2020.  Design and Implementation of MobilityFirst Future Internet Testbed. 2020 3rd International Conference on Hot Information-Centric Networking (HotICN). :170—174.

Recently, Future Internet research has attracted enormous attentions towards the design of clean slate Future Internet Architecture. A large number of research projects has been established by National Science Foundation's (NSF), Future Internet Architecture (FIA) program in this area. One of these projects is MobilityFirst, which recognizes the predominance of mobile networking and aims to address the challenges of this paradigm shift. Future Internet Architecture Projects, are usually deploying on large scale experimental networks for testing and evaluating the properties of new architecture and protocols. Currently only some specific experiments, like routing and name resolution scalability in MobilityFirst architecture has been performed over the ORBIT and GENI platforms. However, to move from this experimental networking to technology trials with real-world users and applications deployment of alternative testbeds are necessary. In this paper, MobilityFirst Future Internet testbed is designed and deployed on Future Networks Laboratory, University of Science and Technology of China, China. Which provides a realistic environment for MobilityFirst experiments. Next, in this paper, for MF traffic transmission between MobilityFirst networks through current networking protocols (TCP), MobilityFirst Proxies are designed and implemented. Furthermore, the results and experience obtained from experiments over proposed testbed are presented.

2021-02-22
Koda, S., Kambara, Y., Oikawa, T., Furukawa, K., Unno, Y., Murakami, M..  2020.  Anomalous IP Address Detection on Traffic Logs Using Novel Word Embedding. 2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC). :1504–1509.
This paper presents an anomalous IP address detection algorithm for network traffic logs. It is based on word embedding techniques derived from natural language processing to extract the representative features of IP addresses. However, the features extracted from vanilla word embeddings are not always compatible with machine learning-based anomaly detection algorithms. Therefore, we developed an algorithm that enables the extraction of more compatible features of IP addresses for anomaly detection than conventional methods. The proposed algorithm optimizes the objective functions of word embedding-based feature extraction and anomaly detection, simultaneously. According to the experimental results, the proposed algorithm outperformed conventional approaches; it improved the detection performance from 0.876 to 0.990 in the area under the curve criterion in a task of detecting the IP addresses of attackers from network traffic logs.
2021-02-16
Shukla, M. K., Dubey, A. K., Upadhyay, D., Novikov, B..  2020.  Group Key Management in Cloud for Shared Media Sanitization. 2020 Sixth International Conference on Parallel, Distributed and Grid Computing (PDGC). :117—120.
Cloud provides a low maintenance and affordable storage to various applications and users. The data owner allows the cloud users to access the documents placed in the cloud service provider based on the user's access control vector provided to the cloud users by the data owners. In such type of scenarios, the confidentiality of the documents exchanged between the cloud service provider and the users should be maintained. The existing approaches used to provide this facility are not computation and communication efficient for performing key updating in the data owner side and the key recovery in the user side. This paper discusses the key management services provided to the cloud users. Remote key management and client-side key management are two approaches used by cloud servers. This paper also aims to discuss the method for destroying the encryption/decryption group keys for shared data to securing the data after deletion. Crypto Shredding or Crypto Throw technique is deployed for the same.
2021-02-15
Uzhga-Rebrov, O., Kuleshova, G..  2020.  Using Singular Value Decomposition to Reduce Dimensionality of Initial Data Set. 2020 61st International Scientific Conference on Information Technology and Management Science of Riga Technical University (ITMS). :1–4.
The purpose of any data analysis is to extract essential information implicitly present in the data. To do this, it often seems necessary to transform the initial data into a form that allows one to identify and interpret the essential features of their structure. One of the most important tasks of data analysis is to reduce the dimension of the original data. The paper considers an approach to solving this problem based on singular value decomposition (SVD).
2021-01-11
Cheng, Z., Beshley, M., Beshley, H., Kochan, O., Urikova, O..  2020.  Development of Deep Packet Inspection System for Network Traffic Analysis and Intrusion Detection. 2020 IEEE 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET). :877–881.
One of the most important issues in the development of the Internet of Things (IoT) is network security. The deep packet inspection (DPI) is a promising technology that helps to detection and protection against network attacks. The DPI software system for IoT is developed in this paper. The system for monitoring and analyzing IoT traffic to detect anomalies and identify attacks based on Hurst parameter is proposed. This system makes it possible to determine the Hurst flow parameter at different intervals of observation. This system can be installed on a network provider to use more effectively the bandwidth.
2020-12-28
Zondo, S., Ogudo, K., Umenne, P..  2020.  Design of a Smart Home System Using Bluetooth Protocol. 2020 International Conference on Artificial Intelligence, Big Data, Computing and Data Communication Systems (icABCD). :1—5.
Home automation is an intelligent, functional as a unit system that facilitates home processes without unnecessarily complicating the user's life. Devices can be connected, which in turn connect and talk through a centralized control unit, which are accessible via mobile phones. These devices include lights, appliances, security systems, alarms and many other sensors and devices. This paper presents the design and implementation of a Bluetooth based smart home automation system which uses a Peripheral interface controller (PIC) microcontroller (16F1937) as the main processer and the appliances are connected to the peripheral ports of the microcontroller via relays. The circuit in the project was designed in Diptrace software. The PCB layout design was completed. The fully functional smart home prototype was built and demonstrated to functional.
2020-12-21
Raza, A., Ulanskyi, V..  2020.  A General Approach to Assessing the Trustworthiness of System Condition Prognostication. 2020 IEEE Aerospace Conference. :1–8.
This paper proposes a mathematical model for assessing the trustworthiness of the system condition prognosis. The set of mutually exclusive events at the time of predictive checking are analyzed. Correct and incorrect decisions correspond to events such as true-positive, false-positive, true-negative, and false-negative. General expressions for computing the probabilities of possible decisions when predicting the system condition at discrete times are proposed. The paper introduces the effectiveness indicators of predictive maintenance in the form of average operating costs, total error probability, and a posteriori probability of failure-free operation in the upcoming interval. We illustrate the developed approach by calculating the probabilities of correct and incorrect decisions for a specific stochastic deterioration process.
2020-12-01
Usama, M., Asim, M., Latif, S., Qadir, J., Ala-Al-Fuqaha.  2019.  Generative Adversarial Networks For Launching and Thwarting Adversarial Attacks on Network Intrusion Detection Systems. 2019 15th International Wireless Communications Mobile Computing Conference (IWCMC). :78—83.

Intrusion detection systems (IDSs) are an essential cog of the network security suite that can defend the network from malicious intrusions and anomalous traffic. Many machine learning (ML)-based IDSs have been proposed in the literature for the detection of malicious network traffic. However, recent works have shown that ML models are vulnerable to adversarial perturbations through which an adversary can cause IDSs to malfunction by introducing a small impracticable perturbation in the network traffic. In this paper, we propose an adversarial ML attack using generative adversarial networks (GANs) that can successfully evade an ML-based IDS. We also show that GANs can be used to inoculate the IDS and make it more robust to adversarial perturbations.

Ullman, D., Malle, B. F..  2019.  Measuring Gains and Losses in Human-Robot Trust: Evidence for Differentiable Components of Trust. 2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI). :618—619.

Human-robot trust is crucial to successful human-robot interaction. We conducted a study with 798 participants distributed across 32 conditions using four dimensions of human-robot trust (reliable, capable, ethical, sincere) identified by the Multi-Dimensional-Measure of Trust (MDMT). We tested whether these dimensions can differentially capture gains and losses in human-robot trust across robot roles and contexts. Using a 4 scenario × 4 trust dimension × 2 change direction between-subjects design, we found the behavior change manipulation effective for each of the four subscales. However, the pattern of results best supported a two-dimensional conception of trust, with reliable-capable and ethical-sincere as the major constituents.

Ogawa, R., Park, S., Umemuro, H..  2019.  How Humans Develop Trust in Communication Robots: A Phased Model Based on Interpersonal Trust. 2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI). :606—607.

The purpose of this study was to propose a model of development of trust in social robots. Insights in interpersonal trust were adopted from social psychology and a novel model was proposed. In addition, this study aimed to investigate the relationship among trust development and self-esteem. To validate the proposed model, an experiment using a communication robot NAO was conducted and changes in categories of trust as well as self-esteem were measured. Results showed that general and category trust have been developed in the early phase. Self-esteem is also increased along the interactions with the robot.

2020-11-16
Ullah, S., Shetty, S., Hassanzadeh, A..  2018.  Towards Modeling Attacker’s Opportunity for Improving Cyber Resilience in Energy Delivery Systems. 2018 Resilience Week (RWS). :100–107.
Cyber resiliency of Energy Delivery Systems (EDS) is critical for secure and resilient cyber infrastructure. Defense-in-depth architecture forces attackers to conduct lateral propagation until the target is compromised. Researchers developed techniques based on graph spectral matrices to model lateral propagation. However, these techniques ignore host criticality which is critical in EDS. In this paper, we model attacker's opportunity by developing three criticality metrics for each host along the path to the target. The first metric refers the opportunity of attackers before they penetrate the infrastructure. The second metric measure the opportunity a host provides by allowing attackers to propagate through the network. Along with vulnerability we also take into account the attributes of hosts and links within each path. Then, we derive third criticality metric to reflect the information flow dependency from each host to target. Finally, we provide system design for instantiating the proposed metrics for real network scenarios in EDS. We present simulation results which illustrates the effectiveness of the metrics for efficient defense deployment in EDS cyber infrastructure.