Visible to the public Biblio

Found 2493 results

Filters: First Letter Of Last Name is W  [Clear All Filters]
2023-03-03
Lin, Zhenpeng, Chen, Yueqi, Wu, Yuhang, Mu, Dongliang, Yu, Chensheng, Xing, Xinyu, Li, Kang.  2022.  GREBE: Unveiling Exploitation Potential for Linux Kernel Bugs. 2022 IEEE Symposium on Security and Privacy (SP). :2078–2095.
Nowadays, dynamic testing tools have significantly expedited the discovery of bugs in the Linux kernel. When unveiling kernel bugs, they automatically generate reports, specifying the errors the Linux encounters. The error in the report implies the possible exploitability of the corresponding kernel bug. As a result, many security analysts use the manifested error to infer a bug’s exploitability and thus prioritize their exploit development effort. However, using the error in the report, security researchers might underestimate a bug’s exploitability. The error exhibited in the report may depend upon how the bug is triggered. Through different paths or under different contexts, a bug may manifest various error behaviors implying very different exploitation potentials. This work proposes a new kernel fuzzing technique to explore all the possible error behaviors that a kernel bug might bring about. Unlike conventional kernel fuzzing techniques concentrating on kernel code coverage, our fuzzing technique is more directed towards the buggy code fragment. It introduces an object-driven kernel fuzzing technique to explore various contexts and paths to trigger the reported bug, making the bug manifest various error behaviors. With the newly demonstrated errors, security researchers could better infer a bug’s possible exploitability. To evaluate our proposed technique’s effectiveness, efficiency, and impact, we implement our fuzzing technique as a tool GREBE and apply it to 60 real-world Linux kernel bugs. On average, GREBE could manifest 2+ additional error behaviors for each of the kernel bugs. For 26 kernel bugs, GREBE discovers higher exploitation potential. We report to kernel vendors some of the bugs – the exploitability of which was wrongly assessed and the corresponding patch has not yet been carefully applied – resulting in their rapid patch adoption.
ISSN: 2375-1207
2023-02-28
Sundaram, B. Barani, Pandey, Amit, Janga, Vijaykumar, Wako, Desalegn Aweke, Genale, Assefa Senbato, Karthika, P..  2022.  IoT Enhancement with Automated Device Identification for Network Security. 2022 6th International Conference on Trends in Electronics and Informatics (ICOEI). :531—535.
Even as Internet of Things (IoT) network security grows, concerns about the security of IoT devices have arisen. Although a few companies produce IP-connected gadgets for such ranging from small office, their security policies and implementations are often weak. They also require firmware updates or revisions to boost security and reduce vulnerabilities in equipment. A brownfield advance is necessary to verify systems where these helpless devices are present: putting in place basic security mechanisms within the system to render the system powerless possibly. Gadgets should cohabit without threatening their security in the same device. IoT network security has evolved into a platform that can segregate a large number of IoT devices, allowing law enforcement to compel the communication of defenseless devices in order to reduce the damage done by its unlawful transaction. IoT network security appears to be doable in well-known gadget types and can be deployed with minimum transparency.
2023-02-24
Nie, Leyao, He, Lin, Song, Guanglei, Gao, Hao, Li, Chenglong, Wang, Zhiliang, Yang, Jiahai.  2022.  Towards a Behavioral and Privacy Analysis of ECS for IPv6 DNS Resolvers. 2022 18th International Conference on Network and Service Management (CNSM). :303—309.
The Domain Name System (DNS) is critical to Internet communications. EDNS Client Subnet (ECS), a DNS extension, allows recursive resolvers to include client subnet information in DNS queries to improve CDN end-user mapping, extending the visibility of client information to a broader range. Major content delivery network (CDN) vendors, content providers (CP), and public DNS service providers (PDNS) are accelerating their IPv6 infrastructure development. With the increasing deployment of IPv6-enabled services and DNS being the most foundational system of the Internet, it becomes important to analyze the behavioral and privacy status of IPv6 resolvers. However, there is a lack of research on ECS for IPv6 DNS resolvers.In this paper, we study the ECS deployment and compliance status of IPv6 resolvers. Our measurement shows that 11.12% IPv6 open resolvers implement ECS. We discuss abnormal noncompliant scenarios that exist in both IPv6 and IPv4 that raise privacy and performance issues. Additionally, we measured if the sacrifice of clients’ privacy can enhance IPv6 CDN performance. We find that in some cases ECS helps end-user mapping but with an unnecessary privacy loss. And even worse, the exposure of client address information can sometimes backfire, which deserves attention from both Internet users and PDNSes.
Sha, Feng, Wei, Ying.  2022.  The Design of Campus Security Early Warning System based on IPv6 Wireless Sensing. 2022 3rd International Conference on Electronic Communication and Artificial Intelligence (IWECAI). :103—106.
Based on the campus wireless IPv6 network system, using WiFi contactless sensing and positioning technology and action recognition technology, this paper designs a new campus security early warning system. The characteristic is that there is no need to add new monitoring equipment. As long as it is the location covered by the wireless IPv6 network, personnel quantity statistics and personnel body action status display can be realized. It plays an effective monitoring supplement to the places that cannot be covered by video surveillance in the past, and can effectively prevent campus violence or other emergencies.
Lu, Ke, Yan, Wenjuan, Wang, Shuyi.  2022.  Testing and Analysis of IPv6-Based Internet of Things Products for Mission-Critical Network Applications. MILCOM 2022 - 2022 IEEE Military Communications Conference (MILCOM). :66—71.
This paper uses the test tool provided by the Internet Protocol Version 6 (IPv6) Forum to test the protocol conformance of IPv6 devices. The installation and testing process of IPv6 Ready Logo protocol conformance test suite developed by TAHI PROJECT team is described in detail. This section describes the test content and evaluation criteria of the suite, analyzes the problems encountered during the installation and use of the suite, describes the method of analyzing the test results of the suite, and describes the test content added to the latest version of the test suite. The test suite can realize automatic testing, the test cases accurately reflect the requirements of the IPv6 protocol specification, can be used to judge whether IPv6-based Internet of Things(IoT) devices meets the relevant protocol standards.
Rivera, Abel O. Gomez, White, Evan M., Acosta, Jaime C., Tosh, Deepak.  2022.  Enabling Device Trustworthiness for SDN-Enabled Internet -of- Battlefield Things. 2022 IEEE Conference on Dependable and Secure Computing (DSC). :1—7.
Military networks consist of heterogeneous devices that provide soldiers with real-time terrain and mission intel-ligence. The development of next-generation Software Defined Networks (SDN)-enabled devices is enabling the modernization of traditional military networks. Commonly, traditional military networks take the trustworthiness of devices for granted. How-ever, the recent modernization of military networks introduces cyber attacks such as data and identity spoofing attacks. Hence, it is crucial to ensure the trustworthiness of network traffic to ensure the mission's outcome. This work proposes a Continuous Behavior-based Authentication (CBA) protocol that integrates network traffic analysis techniques to provide robust and efficient network management flow by separating data and control planes in SDN-enabled military networks. The evaluation of the CBA protocol aimed to measure the efficiency of the proposed protocol in realistic military networks. Furthermore, we analyze the overall network overhead of the CBA protocol and its accuracy to detect rogue network traffic data from field devices.
Liu, Dongxin, Abdelzaher, Tarek, Wang, Tianshi, Hu, Yigong, Li, Jinyang, Liu, Shengzhong, Caesar, Matthew, Kalasapura, Deepti, Bhattacharyya, Joydeep, Srour, Nassy et al..  2022.  IoBT-OS: Optimizing the Sensing-to-Decision Loop for the Internet of Battlefield Things. 2022 International Conference on Computer Communications and Networks (ICCCN). :1—10.
Recent concepts in defense herald an increasing degree of automation of future military systems, with an emphasis on accelerating sensing-to-decision loops at the tactical edge, reducing their network communication footprint, and improving the inference quality of intelligent components in the loop. These requirements pose resource management challenges, calling for operating-system-like constructs that optimize the use of limited computational resources at the tactical edge. This paper describes these challenges and presents IoBT-OS, an operating system for the Internet of Battlefield Things that aims to optimize decision latency, improve decision accuracy, and reduce corresponding resource demands on computational and network components. A simple case-study with initial evaluation results is shown from a target tracking application scenario.
2023-02-17
Sikder, Md Nazmul Kabir, Batarseh, Feras A., Wang, Pei, Gorentala, Nitish.  2022.  Model-Agnostic Scoring Methods for Artificial Intelligence Assurance. 2022 IEEE 29th Annual Software Technology Conference (STC). :9–18.
State of the art Artificial Intelligence Assurance (AIA) methods validate AI systems based on predefined goals and standards, are applied within a given domain, and are designed for a specific AI algorithm. Existing works do not provide information on assuring subjective AI goals such as fairness and trustworthiness. Other assurance goals are frequently required in an intelligent deployment, including explainability, safety, and security. Accordingly, issues such as value loading, generalization, context, and scalability arise; however, achieving multiple assurance goals without major trade-offs is generally deemed an unattainable task. In this manuscript, we present two AIA pipelines that are model-agnostic, independent of the domain (such as: healthcare, energy, banking), and provide scores for AIA goals including explainability, safety, and security. The two pipelines: Adversarial Logging Scoring Pipeline (ALSP) and Requirements Feedback Scoring Pipeline (RFSP) are scalable and tested with multiple use cases, such as a water distribution network and a telecommunications network, to illustrate their benefits. ALSP optimizes models using a game theory approach and it also logs and scores the actions of an AI model to detect adversarial inputs, and assures the datasets used for training. RFSP identifies the best hyper-parameters using a Bayesian approach and provides assurance scores for subjective goals such as ethical AI using user inputs and statistical assurance measures. Each pipeline has three algorithms that enforce the final assurance scores and other outcomes. Unlike ALSP (which is a parallel process), RFSP is user-driven and its actions are sequential. Data are collected for experimentation; the results of both pipelines are presented and contrasted.
Biström, Dennis, Westerlund, Magnus, Duncan, Bob, Jaatun, Martin Gilje.  2022.  Privacy and security challenges for autonomous agents : A study of two social humanoid service robots. 2022 IEEE International Conference on Cloud Computing Technology and Science (CloudCom). :230–237.
The development of autonomous agents have gained renewed interest, largely due to the recent successes of machine learning. Social robots can be considered a special class of autonomous agents that are often intended to be integrated into sensitive environments. We present experiences from our work with two specific humanoid social service robots, and highlight how eschewing privacy and security by design principles leads to implementations with serious privacy and security flaws. The paper introduces the robots as platforms and their associated features, ecosystems and cloud platforms that are required for certain use cases or tasks. The paper encourages design aims for privacy and security, and then in this light studies the implementation from two different manufacturers. The results show a worrisome lack of design focus in handling privacy and security. The paper aims not to cover all the security flaws and possible mitigations, but does look closer into the use of the WebSocket protocol and it’s challenges when used for operational control. The conclusions of the paper provide insights on how manufacturers can rectify the discovered security flaws and presents key policies like accountability when it comes to implementing technical features of autonomous agents.
ISSN: 2330-2186
Lu, Shaofeng, Lv, Chengzhe, Wang, Wei, Xu, Changqing, Fan, Huadan, Lu, Yuefeng, Hu, Yulong, Li, Wenxi.  2022.  Secret Numerical Interval Decision Protocol for Protecting Private Information and Its Application. 2022 Asia Conference on Algorithms, Computing and Machine Learning (CACML). :726–731.
Cooperative secure computing based on the relationship between numerical value and numerical interval is not only the basic problems of secure multiparty computing but also the core problems of cooperative secure computing. It is of substantial theoretical and practical significance for information security in relation to scientific computing to continuously investigate and construct solutions to such problems. Based on the Goldwasser-Micali homomorphic encryption scheme, this paper propose the Morton rule, according to the characteristics of the interval, a double-length vector is constructed to participate in the exclusive-or operation, and an efficient cooperative decision-making solution for integer and integer interval security is designed. This solution can solve more basic problems in cooperative security computation after suitable transformations. A theoretical analysis shows that this solution is safe and efficient. Finally, applications that are based on these protocols are presented.
Liu, Xuanyu, Cheng, Guozhen, Wang, Yawen, Zhang, Shuai.  2022.  Overview of Scientific Workflow Security Scheduling in Clouds. 2021 International Conference on Advanced Computing and Endogenous Security. :1–6.
With the development of cloud computing technology, more and more scientific researchers choose to deliver scientific workflow tasks to public cloud platforms for execution. This mode effectively reduces scientific research costs while also bringing serious security risks. In response to this problem, this article summarizes the current security issues facing cloud scientific workflows, and analyzes the importance of studying cloud scientific workflow security issues. Then this article analyzes, summarizes and compares the current cloud scientific workflow security methods from three perspectives: system architecture, security model, and security strategy. Finally made a prospect for the future development direction.
Li, Ying, Chen, Lan, Wang, Jian, Gong, Guanfei.  2022.  Partial Reconfiguration for Run-time Memory Faults and Hardware Trojan Attacks Detection. 2022 IEEE International Symposium on Hardware Oriented Security and Trust (HOST). :173–176.
Embedded memory are important components in system-on-chip, which may be crippled by aging and wear faults or Hardware Trojan attacks to compromise run-time security. The current built-in self-test and pre-silicon verification lack efficiency and flexibility to solve this problem. To this end, we address such vulnerabilities by proposing a run-time memory security detecting framework in this paper. The solution builds mainly upon a centralized security detection controller for partially reconfigurable inspection content, and a static memory wrapper to handle access conflicts and buffering testing cells. We show that a field programmable gate array prototype of the proposed framework can pursue 16 memory faults and 3 types Hardware Trojans detection with one reconfigurable partition, whereas saves 12.7% area and 2.9% power overhead compared to a static implementation. This architecture has more scalable capability with little impact on the memory accessing throughput of the original chip system in run-time detection.
Yang, Kaicheng, Wu, Yongtang, Chen, Yuling.  2022.  A Blockchain-based Scalable Electronic Contract Signing System. 2022 IEEE International Conferences on Internet of Things (iThings) and IEEE Green Computing & Communications (GreenCom) and IEEE Cyber, Physical & Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics). :343–348.
As the COVID-19 continues to spread globally, more and more companies are transforming into remote online offices, leading to the expansion of electronic signatures. However, the existing electronic signatures platform has the problem of data-centered management. The system is subject to data loss, tampering, and leakage when an attack from outside or inside occurs. In response to the above problems, this paper designs an electronic signature solution and implements a prototype system based on the consortium blockchain. The solution divides the contract signing process into four states: contract upload, initiation signing, verification signing, and confirm signing. The signing process is mapped with the blockchain-linked data. Users initiate the signature transaction by signing the uploaded contract's hash. The sign state transition is triggered when the transaction is uploaded to the blockchain under the consensus mechanism and the smart contract control, which effectively ensures the integrity of the electronic contract and the non-repudiation of the electronic signature. Finally, the blockchain performance test shows that the system can be applied to the business scenario of contract signing.
Luo, Zhengwu, Wang, Lina, Wang, Run, Yang, Kang, Ye, Aoshuang.  2022.  Improving Robustness Verification of Neural Networks with General Activation Functions via Branching and Optimization. 2022 International Joint Conference on Neural Networks (IJCNN). :1–8.
Robustness verification of neural networks (NNs) is a challenging and significant problem, which draws great attention in recent years. Existing researches have shown that bound propagation is a scalable and effective method for robustness verification, and it can be implemented on GPUs and TPUs to get parallelized. However, the bound propagation methods naturally produce weak bound due to linear relaxations on the neurons, which may cause failure in verification. Although tightening techniques for simple ReLU networks have been explored, they are not applicable for NNs with general activation functions such as Sigmoid and Tanh. Improving robustness verification on these NNs is still challenging. In this paper, we propose a Branch-and-Bound (BaB) style method to address this problem. The proposed BaB procedure improves the weak bound by splitting the input domain of neurons into sub-domains and solving the corresponding sub-problems. We propose a generic heuristic function to determine the priority of neuron splitting by scoring the relaxation and impact of neurons. Moreover, we combine bound optimization with the BaB procedure to improve the weak bound. Experimental results demonstrate that the proposed method gains up to 35% improvement compared to the state-of-art CROWN method on Sigmoid and Tanh networks.
ISSN: 2161-4407
Chen, Yenan, Li, Linsen, Zhu, Zhaoqian, Wu, Yue.  2022.  Work-in-Progress: Reliability Evaluation of Power SCADA System with Three-Layer IDS. 2022 International Conference on Compilers, Architecture, and Synthesis for Embedded Systems (CASES). :1–2.
The SCADA (Supervisory Control And Data Acquisition) has become ubiquitous in industrial control systems. However, it may be exposed to cyber attack threats when it accesses the Internet. We propose a three-layer IDS (Intrusion Detection System) model, which integrates three main functions: access control, flow detection and password authentication. We use the reliability test system IEEE RTS-79 to evaluate the reliability. The experimental results provide insights into the establishment of the power SCADA system reliability enhancement strategies.
ISSN: 2643-1726
Mayoral-Vilches, Victor, White, Ruffin, Caiazza, Gianluca, Arguedas, Mikael.  2022.  SROS2: Usable Cyber Security Tools for ROS 2. 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). :11253–11259.
ROS 2 is rapidly becoming a standard in the robotics industry. Built upon DDS as its default communication middleware and used in safety-critical scenarios, adding secu-rity to robots and ROS computational graphs is increasingly becoming a concern. The present work introduces SROS2, a series of developer tools and libraries that facilitate adding security to ROS 2 graphs. Focusing on a usability-centric approach in SROS2, we present a methodology for securing graphs systematically while following the DevSecOps model. We also demonstrate the use of our security tools by presenting an application case study that considers securing a graph using the popular Navigation2 and SLAM Toolbox stacks applied in a TurtieBot3 robot. We analyse the current capabilities of SROS2 and discuss the shortcomings, which provides insights for future contributions and extensions. Ultimately, we present SROS2 as usable security tools for ROS 2 and argue that without usability, security in robotics will be greatly impaired.
ISSN: 2153-0866
Morón, Paola Torrico, Salimi, Salma, Queralta, Jorge Peña, Westerlund, Tomi.  2022.  UWB Role Allocation with Distributed Ledger Technologies for Scalable Relative Localization in Multi-Robot Systems. 2022 IEEE International Symposium on Robotic and Sensors Environments (ROSE). :1–8.
Systems for relative localization in multi-robot systems based on ultra-wideband (UWB) ranging have recently emerged as robust solutions for GNSS-denied environments. Scalability remains one of the key challenges, particularly in adhoc deployments. Recent solutions include dynamic allocation of active and passive localization modes for different robots or nodes in the system. with larger-scale systems becoming more distributed, key research questions arise in the areas of security and trustability of such localization systems. This paper studies the potential integration of collaborative-decision making processes with distributed ledger technologies. Specifically, we investigate the design and implementation of a methodology for running an UWB role allocation algorithm within smart contracts in a blockchain. In previous works, we have separately studied the integration of ROS2 with the Hyperledger Fabric blockchain, and introduced a new algorithm for scalable UWB-based localization. In this paper, we extend these works by (i) running experiments with larger number of mobile robots switching between different spatial configurations and (ii) integrating the dynamic UWB role allocation algorithm into Fabric smart contracts for distributed decision-making in a system of multiple mobile robots. This enables us to deliver the same functionality within a secure and trustable process, with enhanced identity and data access management. Our results show the effectiveness of the UWB role allocation for continuously varying spatial formations of six autonomous mobile robots, while demonstrating a low impact on latency and computational resources of adding the blockchain layer that does not affect the localization process.
Aartsen, Max, Banga, Kanta, Talko, Konrad, Touw, Dustin, Wisman, Bertus, Meïnsma, Daniel, Björkqvist, Mathias.  2022.  Analyzing Interoperability and Security Overhead of ROS2 DDS Middleware. 2022 30th Mediterranean Conference on Control and Automation (MED). :976–981.
Robot Operating System 2 (ROS2) is the latest release of a framework for enabling robot applications. Data Distribution Service (DDS) middleware is used for communication between nodes in a ROS2 cluster. The DDS middleware provides a distributed discovery system, message definitions and serialization, and security. In ROS2, the DDS middleware is accessed through an abstraction layer, making it easy to switch from one implementation to another. The existing middleware implementations differ in a number of ways, e.g., in how they are supported in ROS2, in their support for the security features, their ease of use, their performance, and their interoperability. In this work, the focus is on the ease of use, interoperability, and security features aspects of ROS2 DDS middleware. We compare the ease of installation and ease of use of three different DDS middleware, and test the interoperability of different middleware combinations in simple deployment scenarios. We highlight the difference that enabling the security option makes to interoperability, and conduct performance experiments that show the effect that turning on security has on the communication performance. Our results provide guidelines for choosing and deploying DDS middleware on a ROS2 cluster.
ISSN: 2473-3504
Luo, Zhiyong, Wang, Bo.  2022.  A Secure and Efficient Analytical Encryption Method for Industrial Internet Identification based on SHA-256 and RSA. 2022 IEEE 6th Information Technology and Mechatronics Engineering Conference (ITOEC). 6:1874–1878.
With the development of Industrial Internet identification analysis, various encryption methods have been widely used in identification analysis to ensure the security of identification encoding and data. However, the past encryption methods failed to consider the problem of encryption efficiency in the case of high concurrency, so it will reduce the identification resolution efficiency and increase the computational pressure of secondary nodes when applying these methods to the identification analysis. In this paper, in order to improve the efficiency of identification analysis under the premise of ensuring information security, a safe and efficient analytical encryption method for industrial Internet identification based on Secure Hash Algorithm 256 (SHA-256), and Rivest-Shamir-Adleman (RSA) is presented. Firstly, by replacing the secret key in the identification encoding encryption with the SHA-256 function, the number of secret keys is reduced, which is beneficial to improve the efficiency of identification analysis. Secondly, by replacing the large prime number of the RSA encryption algorithm with multiple small prime numbers, the generation speed of RSA key pair is improved, which is conducive to reduce the computation of secondary nodes. Finally, by assigning a unique RSA private key to the identification code during the identification registration phase, SHA-256 and RSA are associated, the number of key exchanges is reduced during the encryption process, which is conducive to improve the security of encryption. The experiment verifies that the proposed method can improve security of encryption and efficiency of identification analysis, by comparing the complexity of ciphertext cracking and the identification security analysis time between the traditional encryption method and this method.
Wei, Lizhuo, Xu, Fengkai, Zhang, Ni, Yan, Wei, Chai, Chuchu.  2022.  Dynamic malicious code detection technology based on deep learning. 2022 20th International Conference on Optical Communications and Networks (ICOCN). :1–3.
In this paper, the malicious code is run in the sandbox in a safe and controllable environment, the API sequence is deduplicated by the idea of the longest common subsequence, and the CNN and Bi-LSTM are integrated to process and analyze the API sequence. Compared with the method, the method using deep learning can have higher accuracy and work efficiency.
Erkert, Keith, Lamontagne, Andrew, Chen, Jereming, Cummings, John, Hoikka, Mitchell, Xu, Kuai, Wang, Feng.  2022.  An End-to-End System for Monitoring IoT Devices in Smart Homes. 2022 IEEE 19th Annual Consumer Communications & Networking Conference (CCNC). :929–930.
The technology advance and convergence of cyber physical systems, smart sensors, short-range wireless communications, cloud computing, and smartphone apps have driven the proliferation of Internet of things (IoT) devices in smart homes and smart industry. In light of the high heterogeneity of IoT system, the prevalence of system vulnerabilities in IoT devices and applications, and the broad attack surface across the entire IoT protocol stack, a fundamental and urgent research problem of IoT security is how to effectively collect, analyze, extract, model, and visualize the massive network traffic of IoT devices for understanding what is happening to IoT devices. Towards this end, this paper develops and demonstrates an end-to-end system with three key components, i.e., the IoT network traffic monitoring system via programmable home routers, the backend IoT traffic behavior analysis system in the cloud, and the frontend IoT visualization system via smartphone apps, for monitoring, analyzing and virtualizing network traffic behavior of heterogeneous IoT devices in smart homes. The main contributions of this demonstration paper is to present a novel system with an end-to-end process of collecting, analyzing and visualizing IoT network traffic in smart homes.
Wu, Hua, Zhang, Xuange, Chen, Tingzheng, Cheng, Guang, Hu, Xiaoyan.  2022.  IM-Shield: A Novel Defense System against DDoS Attacks under IP Spoofing in High-speed Networks. ICC 2022 - IEEE International Conference on Communications. :4168–4173.
DDoS attacks are usually accompanied by IP spoofing, but the availability of existing DDoS defense systems for high-speed networks decreases when facing DDoS attacks with IP spoofing. Although IP traceback technologies are proposed to focus on IP spoofing in DDoS attacks, there are problems in practical application such as the need to change existing protocols and extensive infrastructure support. To defend against DDoS attacks under IP spoofing in high-speed networks, we propose a novel DDoS defense system, IM-Shield. IM-Shield uses the address pair consisting of the upper router interface MAC address and the destination IP address for DDoS attack detection. IM-Shield implements fine-grained defense against DDoS attacks under IP spoofing by filtering the address pairs of attack traffic without requiring protocol and infrastructure extensions to be applied on the Internet. Detection experiments using the public dataset show that in a 10Gbps high-speed network, the detection precision of IM-Shield for DDoS attacks under IP spoofing is higher than 99.9%; and defense experiments simulating real-time processing in a 10Gbps high-speed network show that IM-Shield can effectively defend against DDoS attacks under IP spoofing.
Syambas, Nana Rachmana, Juhana, Tutun, Hendrawan, Mulyana, Eueung, Edward, Ian Joseph Matheus, Situmorang, Hamonangan, Mayasari, Ratna, Negara, Ridha Muldina, Yovita, Leanna Vidya, Wibowo, Tody Ariefianto et al..  2022.  Research Progress On Name Data Networking To Achieve A Superior National Product In Indonesia. 2022 8th International Conference on Wireless and Telematics (ICWT). :1–6.
Global traffic data are proliferating, including in Indonesia. The number of internet users in Indonesia reached 205 million in January 2022. This data means that 73.7% of Indonesia’s population has used the internet. The median internet speed for mobile phones in Indonesia is 15.82 Mbps, while the median internet connection speed for Wi-Fi in Indonesia is 20.13 Mbps. As predicted by many, real-time traffic such as multimedia streaming dominates more than 79% of traffic on the internet network. This condition will be a severe challenge for the internet network, which is required to improve the Quality of Experience (QoE) for user mobility, such as reducing delay, data loss, and network costs. However, IP-based networks are no longer efficient at managing traffic. Named Data Network (NDN) is a promising technology for building an agile communication model that reduces delays through a distributed and adaptive name-based data delivery approach. NDN replaces the ‘where’ paradigm with the concept of ‘what’. User requests are no longer directed to a specific IP address but to specific content. This paradigm causes responses to content requests to be served by a specific server and can also be served by the closest device to the requested data. NDN router has CS to cache the data, significantly reducing delays and improving the internet network’s quality of Service (QoS). Motivated by this, in 2019, we began intensive research to achieve a national flagship product, an NDN router with different functions from ordinary IP routers. NDN routers have cache, forwarding, and routing functions that affect data security on name-based networks. Designing scalable NDN routers is a new challenge as NDN requires fast hierarchical name-based lookups, perpackage data field state updates, and large-scale forward tables. We have a research team that has conducted NDN research through simulation, emulation, and testbed approaches using virtual machines to get the best NDN router design before building a prototype. Research results from 2019 show that the performance of NDN-based networks is better than existing IP-based networks. The tests were carried out based on various scenarios on the Indonesian network topology using NDNsimulator, MATLAB, Mininet-NDN, and testbed using virtual machines. Various network performance parameters, such as delay, throughput, packet loss, resource utilization, header overhead, packet transmission, round trip time, and cache hit ratio, showed the best results compared to IP-based networks. In addition, NDN Testbed based on open source is free, and the flexibility of creating topology has also been successfully carried out. This testbed includes all the functions needed to run an NDN network. The resource capacity on the server used for this testbed is sufficient to run a reasonably complex topology. However, bugs are still found on the testbed, and some features still need improvement. The following exploration of the NDN testbed will run with more new strategy algorithms and add Artificial Intelligence (AI) to the NDN function. Using AI in cache and forwarding strategies can make the system more intelligent and precise in making decisions according to network conditions. It will be a step toward developing NDN router products by the Bandung Institute of Technology (ITB) Indonesia.
Wang, Ke, Zheng, Hao, Li, Yuan, Li, Jiajun, Louri, Ahmed.  2022.  AGAPE: Anomaly Detection with Generative Adversarial Network for Improved Performance, Energy, and Security in Manycore Systems. 2022 Design, Automation & Test in Europe Conference & Exhibition (DATE). :849–854.
The security of manycore systems has become increasingly critical. In system-on-chips (SoCs), Hardware Trojans (HTs) manipulate the functionalities of the routing components to saturate the on-chip network, degrade performance, and result in the leakage of sensitive data. Existing HT detection techniques, including runtime monitoring and state-of-the-art learning-based methods, are unable to timely and accurately identify the implanted HTs, due to the increasingly dynamic and complex nature of on-chip communication behaviors. We propose AGAPE, a novel Generative Adversarial Network (GAN)-based anomaly detection and mitigation method against HTs for secured on-chip communication. AGAPE learns the distribution of the multivariate time series of a number of NoC attributes captured by on-chip sensors under both HT-free and HT-infected working conditions. The proposed GAN can learn the potential latent interactions among different runtime attributes concurrently, accurately distinguish abnormal attacked situations from normal SoC behaviors, and identify the type and location of the implanted HTs. Using the detection results, we apply the most suitable protection techniques to each type of detected HTs instead of simply isolating the entire HT-infected router, with the aim to mitigate security threats as well as reducing performance loss. Simulation results show that AGAPE enhances the HT detection accuracy by 19%, reduces network latency and power consumption by 39% and 30%, respectively, as compared to state-of-the-art security designs.
Li, Nige, Zhou, Peng, Wang, Tengyan, Chen, Jingnan.  2022.  Control flow integrity check based on LBR register in power 5G environment. 2022 China International Conference on Electricity Distribution (CICED). :1211–1216.
This paper proposes a control flow integrity checking method based on the LBR register: through an analysis of the static target program loaded binary modules, gain function attributes such as borders and build the initial transfer of legal control flow boundary, real-time maintenance when combined with the dynamic execution of the program flow of control transfer record, build a complete profile control flow transfer security; Get the call location of /bin/sh or system() in the program to build an internal monitor for control-flow integrity checks. In the process of program execution, on the one hand, the control flow transfer outside the outline is judged as the abnormal control flow transfer with attack threat; On the other hand, abnormal transitions across the contour are picked up by an internal detector. In this method, by identifying abnormal control flow transitions, attacks are initially detected before the attack code is executed, while some attacks that bypass the coarse-grained verification of security profile are captured by the refined internal detector of control flow integrity. This method reduces the cost of control flow integrity check by using the safety profile analysis of coarse-grained check. In addition, a fine-grained shell internal detector is inserted into the contour to improve the safety performance of the system and achieve a good balance between performance and efficiency.