Visible to the public Biblio

Found 2493 results

Filters: First Letter Of Last Name is W  [Clear All Filters]
2023-09-20
Winahyu, R R Kartika, Somantri, Maman, Nurhayati, Oky Dwi.  2022.  Predicting Creditworthiness of Smartphone Users in Indonesia during the COVID-19 pandemic using Machine Learning. 2021 International Seminar on Machine Learning, Optimization, and Data Science (ISMODE). :223—227.
In this research work, we attempted to predict the creditworthiness of smartphone users in Indonesia during the COVID-19 pandemic using machine learning. Principal Component Analysis (PCA) and Kmeans algorithms are used for the prediction of creditworthiness with the used a dataset of 1050 respondents consisting of twelve questions to smartphone users in Indonesia during the COVID-19 pandemic. The four different classification algorithms (Logistic Regression, Support Vector Machine, Decision Tree, and Naive Bayes) were tested to classify the creditworthiness of smartphone users in Indonesia. The tests carried out included testing for accuracy, precision, recall, F1-score, and Area Under Curve Receiver Operating Characteristics (AUCROC) assesment. Logistic Regression algorithm shows the perfect performances whereas Naïve Bayes (NB) shows the least. The results of this research also provide new knowledge about the influential and non-influential variables based on the twelve questions conducted to the respondents of smartphone users in Indonesia during the COVID-19 pandemic.
Zhang, Zhe, Wang, Yaonan, Zhang, Jing, Xiao, Xu.  2022.  Dynamic analysis for a novel fractional-order malware propagation model system with time delay. 2022 China Automation Congress (CAC). :6561—6566.
The rapid development of network information technology, individual’s information networks security has become a very critical issue in our daily life. Therefore, it is necessary to study the malware propagation model system. In this paper, the traditional integer order malware propagation model system is extended to the field of fractional-order. Then we analyze the asymptotic stability of the fractional-order malware propagation model system when the equilibrium point is the origin and the time delay is 0. Next, the asymptotic stability and bifurcation analysis of the fractional-order malware propagation model system when the equilibrium point is the origin and the time delay is not 0 are carried out. Moreover, we study the asymptotic stability of the fractional-order malware propagation model system with an interior equilibrium point. In the end, so as to verify our theoretical results, many numerical simulations are provided.
2023-09-18
Herath, Jerome Dinal, Wakodikar, Priti Prabhakar, Yang, Ping, Yan, Guanhua.  2022.  CFGExplainer: Explaining Graph Neural Network-Based Malware Classification from Control Flow Graphs. 2022 52nd Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :172—184.
With the ever increasing threat of malware, extensive research effort has been put on applying Deep Learning for malware classification tasks. Graph Neural Networks (GNNs) that process malware as Control Flow Graphs (CFGs) have shown great promise for malware classification. However, these models are viewed as black-boxes, which makes it hard to validate and identify malicious patterns. To that end, we propose CFG-Explainer, a deep learning based model for interpreting GNN-oriented malware classification results. CFGExplainer identifies a subgraph of the malware CFG that contributes most towards classification and provides insight into importance of the nodes (i.e., basic blocks) within it. To the best of our knowledge, CFGExplainer is the first work that explains GNN-based mal-ware classification. We compared CFGExplainer against three explainers, namely GNNExplainer, SubgraphX and PGExplainer, and showed that CFGExplainer is able to identify top equisized subgraphs with higher classification accuracy than the other three models.
Warmsley, Dana, Waagen, Alex, Xu, Jiejun, Liu, Zhining, Tong, Hanghang.  2022.  A Survey of Explainable Graph Neural Networks for Cyber Malware Analysis. 2022 IEEE International Conference on Big Data (Big Data). :2932—2939.
Malicious cybersecurity activities have become increasingly worrisome for individuals and companies alike. While machine learning methods like Graph Neural Networks (GNNs) have proven successful on the malware detection task, their output is often difficult to understand. Explainable malware detection methods are needed to automatically identify malicious programs and present results to malware analysts in a way that is human interpretable. In this survey, we outline a number of GNN explainability methods and compare their performance on a real-world malware detection dataset. Specifically, we formulated the detection problem as a graph classification problem on the malware Control Flow Graphs (CFGs). We find that gradient-based methods outperform perturbation-based methods in terms of computational expense and performance on explainer-specific metrics (e.g., Fidelity and Sparsity). Our results provide insights into designing new GNN-based models for cyber malware detection and attribution.
Wang, Rui, Zheng, Jun, Shi, Zhiwei, Tan, Yu'an.  2022.  Detecting Malware Using Graph Embedding and DNN. 2022 International Conference on Blockchain Technology and Information Security (ICBCTIS). :28—31.
Nowadays, the popularity of intelligent terminals makes malwares more and more serious. Among the many features of application, the call graph can accurately express the behavior of the application. The rapid development of graph neural network in recent years provides a new solution for the malicious analysis of application using call graphs as features. However, there are still problems such as low accuracy. This paper established a large-scale data set containing more than 40,000 samples and selected the class call graph, which was extracted from the application, as the feature and used the graph embedding combined with the deep neural network to detect the malware. The experimental results show that the accuracy of the detection model proposed in this paper is 97.7%; the precision is 96.6%; the recall is 96.8%; the F1-score is 96.4%, which is better than the existing detection model based on Markov chain and graph embedding detection model.
2023-09-08
Huang, Junya, Liu, Zhihua, Zheng, Zhongmin, Wei, Xuan, Li, Man, Jia, Man.  2022.  Research and Development of Intelligent Protection Capabilities Against Internet Routing Hijacking and Leakage. 2022 International Conference on Artificial Intelligence, Information Processing and Cloud Computing (AIIPCC). :50–54.
With the rapid growth of the number of global network entities and interconnections, the security risks of network relationships are constantly accumulating. As the basis of network interconnection and communication, Internet routing is facing severe challenges such as insufficient online monitoring capability of large-scale routing events and lack of effective and credible verification mechanism. Major global routing security events emerge one after another, causing extensive and far-reaching impacts. To solve these problems, China Telecom studied the BGP (border gateway protocol) SDN (software defined network) controller technology to monitor the interconnection routing, constructed the global routing information database trust source integrating multi-dimensional information and developed the function of the protocol level based real-time monitoring system of Internet routing security events. Through these means, it realizes the second-level online monitoring capability of large-scale IP network Internet service routing events, forms the minute-level route leakage interception and route hijacking blocking solutions, and achieves intelligent protection capability of Internet routing security.
Liu, Shaogang, Chen, Jiangli, Hong, Guihua, Cao, Lizhu, Wu, Ming.  2022.  Research on UAV Network System Security Risk Evaluation Oriented to Geographic Information Data. 2022 IEEE International Conference on Electrical Engineering, Big Data and Algorithms (EEBDA). :57–60.
With the advent of the Internet era, all walks of life in our country have undergone earth-shaking changes, especially the drone and geographic information industries, which have developed rapidly under the impetus of the Internet of Things era. However, with the continuous development of science and technology, the network structure has become more and more complex, and the types of network attacks have varied. UAV information security and geographic information data have appeared security risks on the network. These hidden dangers have contributed to the progress of the drone and geographic information industry. And development has caused a great negative impact. In this regard, this article will conduct research on the network security of UAV systems and geographic information data, which can effectively assess the network security risks of UAV systems, and propose several solutions to potential safety hazards to reduce UAV networks. Security risks and losses provide a reference for UAV system data security.
Chen, Kai, Wu, Hongjun, Xu, Cheng, Ma, Nan, Dai, Songyin, Liu, Hongzhe.  2022.  An Intelligent Vehicle Data Security System based on Blockchain for Smart City. 2022 International Conference on Virtual Reality, Human-Computer Interaction and Artificial Intelligence (VRHCIAI). :227–231.
With the development of urbanization, the number of vehicles is gradually increasing, and vehicles are gradually developing in the direction of intelligence. How to ensure that the data of intelligent vehicles is not tampered in the process of transmission to the cloud is the key problem of current research. Therefore, we have established a data security transmission system based on blockchain. First, we collect and filter vehicle data locally, and then use blockchain technology to transmit key data. Through the smart contract, the key data is automatically and accurately transmitted to the surrounding node vehicles, and the vehicles transmit data to each other to form a transaction and spread to the whole network. The node data is verified through the node data consensus protocol of intelligent vehicle data security transmission system, and written into the block to form a blockchain. Finally, the vehicle user can query the transaction record through the vehicle address. The results show that we can safely and accurately transmit and query vehicle data in the blockchain database.
2023-09-07
Cheng, Cheng, Liu, Zixiang, Zhao, Feng, Wang, Xiang, Wu, Feng.  2022.  Security Protection of Research Sensitive Data Based on Blockchain. 2022 21st International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES). :237–241.
In order to meet the needs of intellectual property protection and controlled sharing of scientific research sensitive data, a mechanism is proposed for security protection throughout “transfer, store and use” process of sensitive data which based on blockchain. This blockchain bottom layer security is reinforced. First, the encryption algorithm used is replaced by the national secret algorithm and the smart contract is encapsulated as API at the gateway level. Signature validation is performed when the API is used to prevent illegal access. Then the whole process of data up-chain, storage and down-chain is encrypted, and a mechanism of data structure query and data query condition construction based on blockchain smart is provided to ensure that the data is “usable and invisible”. Finally, data access control is ensured through role-based and hierarchical protection, and the blockchain base developed has good extensibility, which can meet the requirement of sensitive data security protection in scientific research filed and has broad application prospects.
ISSN: 2473-3636
Jin, Bo, Zhou, Zheng, Long, Fei, Xu, Huan, Chen, Shi, Xia, Fan, Wei, Xiaoyan, Zhao, Qingyao.  2022.  Software Supply Chain Security of Power Industry Based on BAS Technology. 2022 International Conference on Artificial Intelligence of Things and Crowdsensing (AIoTCs). :556–561.
The rapid improvement of computer and network technology not only promotes the improvement of productivity and facilitates people's life, but also brings new threats to production and life. Cyberspace security has attracted more and more attention. Different from traditional cyberspace security, APT attacks on key networks or infrastructure, with the main goal of stealing intellectual property, confidential information or sabotage, seriously threatening the interests and security of governments, enterprises and scientific research institutions. Timely detection and blocking is particularly important. The purpose of this paper is to study the security of software supply chain in power industry based on BAS technology. The experimental data shows that Type 1 projects account for the least amount and Type 2 projects account for the highest proportion. Type 1 projects have high unit price contracts and high profits, but the number is small and the time for signing orders is long.
Wanigasooriya, C. S., Gunasekara, A. D. A. I., Kottegoda, K. G. K. G..  2022.  Blockchain-based Intellectual Property Management Using Smart Contracts. 2022 3rd International Conference for Emerging Technology (INCET). :1–5.
Smart contracts are an attractive aspect of blockchain technology. A smart contract is a piece of executable code that runs on top of the blockchain and is used to facilitate, execute, and enforce agreements between untrustworthy parties without the need for a third party. This paper offers a review of the literature on smart contract applications in intellectual property management. The goal is to look at technology advancements and smart contract deployment in this area. The theoretical foundation of many papers published in recent years is used as a source of theoretical and implementation research for this purpose. According to the literature review we conducted, smart contracts function automatically, control, or document legally significant events and activities in line with the contract agreement's terms. This is a relatively new technology that is projected to deliver solutions for trust, security, and transparency across a variety of areas. An exploratory strategy was used to perform this literature review.
2023-09-01
Shang, Siyuan, Zhou, Aoyang, Tan, Ming, Wang, Xiaohan, Liu, Aodi.  2022.  Access Control Audit and Traceability Forensics Technology Based on Blockchain. 2022 4th International Conference on Frontiers Technology of Information and Computer (ICFTIC). :932—937.
Access control includes authorization of security administrators and access of users. Aiming at the problems of log information storage difficulty and easy tampering faced by auditing and traceability forensics of authorization and access in cross-domain scenarios, we propose an access control auditing and traceability forensics method based on Blockchain, whose core is Ethereum Blockchain and IPFS interstellar mail system, and its main function is to store access control log information and trace forensics. Due to the technical characteristics of blockchain, such as openness, transparency and collective maintenance, the log information metadata storage based on Blockchain meets the requirements of distribution and trustworthiness, and the exit of any node will not affect the operation of the whole system. At the same time, by storing log information in the blockchain structure and using mapping, it is easy to locate suspicious authorization or judgment that lead to permission leakage, so that security administrators can quickly grasp the causes of permission leakage. Using this distributed storage structure for security audit has stronger anti-attack and anti-risk.
Liu, Zhiqin, Zhu, Nan, Wang, Kun.  2022.  Recaptured Image Forensics Based on Generalized Central Difference Convolution Network. 2022 IEEE 2nd International Conference on Software Engineering and Artificial Intelligence (SEAI). :59—63.
With large advancements in image display technology, recapturing high-quality images from high-fidelity LCD screens becomes much easier. Such recaptured images can be used to hide image tampering traces and fool some intelligent identification systems. In order to prevent such a security loophole, we propose a recaptured image detection approach based on generalized central difference convolution (GCDC) network. Specifically, by using GCDC instead of vanilla convolution, more detailed features can be extracted from both intensity and gradient information from an image. Meanwhile, we concatenate the feature maps from multiple GCDC modules to fuse low-, mid-, and high-level features for higher performance. Extensive experiments on three public recaptured image databases demonstrate the superior of our proposed method when compared with the state-of-the-art approaches.
Chen, Guangxuan, Chen, Guangxiao, Wu, Di, Liu, Qiang, Zhang, Lei.  2022.  A Crawler-based Digital Forensics Method Oriented to Illegal Website. 2022 IEEE 5th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC). 5:1883—1887.
There are a large number of illegal websites on the Internet, such as pornographic websites, gambling websites, online fraud websites, online pyramid selling websites, etc. This paper studies the use of crawler technology for digital forensics on illegal websites. First, a crawler based illegal website forensics program is designed and developed, which can detect the peripheral information of illegal websites, such as domain name, IP address, network topology, and crawl key information such as website text, pictures, and scripts. Then, through comprehensive analysis such as word cloud analysis, word frequency analysis and statistics on the obtained data, it can help judge whether a website is illegal.
Meixner, Kristof, Musil, Jürgen, Lüder, Arndt, Winkler, Dietmar, Biffl, Stefan.  2022.  A Coordination Artifact for Multi-disciplinary Reuse in Production Systems Engineering. 2022 IEEE 27th International Conference on Emerging Technologies and Factory Automation (ETFA). :1—8.
In Production System Engineering (PSE), domain experts from different disciplines reuse assets such as products, production processes, and resources. Therefore, PSE organizations aim at establishing reuse across engineering disciplines. However, the coordination of multi-disciplinary reuse tasks, e.g., the re-validation of related assets after changes, is hampered by the coarse-grained representation of tasks and by scattered, heterogeneous domain knowledge. This paper introduces the Multi-disciplinary Reuse Coordination (MRC) artifact to improve task management for multi-disciplinary reuse. For assets and their properties, the MRC artifact describes sub-tasks with progress and result states to provide references for detailed reuse task management across engineering disciplines. In a feasibility study on a typical robot cell in automotive manufacturing, we investigate the effectiveness of task management with the MRC artifact compared to traditional approaches. Results indicate that the MRC artifact is feasible and provides effective capabilities for coordinating multi-disciplinary re-validation after changes.
Xie, Genlin, Cheng, Guozhen, Liang, Hao, Wang, Qingfeng, He, Benwei.  2022.  Evaluating Software Diversity Based on Gadget Feature Analysis. 2022 IEEE 8th International Conference on Computer and Communications (ICCC). :1656—1660.
Evaluating the security gains brought by software diversity is one key issue of software diversity research, but the existing software diversity evaluation methods are generally based on conventional code features and are relatively single, which are difficult to accurately reflect the security gains brought by software diversity. To solve these problems, from the perspective of return-oriented programming (ROP) attack, we present a software diversity evaluation method which integrates metrics for the quality and distribution of gadgets. Based on the proposed evaluation method and SpiderMonkey JavaScript engine, we implement a software diversity evaluation system for compiled languages and script languages. Diversity techniques with different granularities are used to test. The evaluation results show that the proposed evaluation method can accurately and comprehensively reflect the security gains brought by software diversity.
Sumoto, Kensuke, Kanakogi, Kenta, Washizaki, Hironori, Tsuda, Naohiko, Yoshioka, Nobukazu, Fukazawa, Yoshiaki, Kanuka, Hideyuki.  2022.  Automatic labeling of the elements of a vulnerability report CVE with NLP. 2022 IEEE 23rd International Conference on Information Reuse and Integration for Data Science (IRI). :164—165.
Common Vulnerabilities and Exposures (CVE) databases contain information about vulnerabilities of software products and source code. If individual elements of CVE descriptions can be extracted and structured, then the data can be used to search and analyze CVE descriptions. Herein we propose a method to label each element in CVE descriptions by applying Named Entity Recognition (NER). For NER, we used BERT, a transformer-based natural language processing model. Using NER with machine learning can label information from CVE descriptions even if there are some distortions in the data. An experiment involving manually prepared label information for 1000 CVE descriptions shows that the labeling accuracy of the proposed method is about 0.81 for precision and about 0.89 for recall. In addition, we devise a way to train the data by dividing it into labels. Our proposed method can be used to label each element automatically from CVE descriptions.
He, Benwei, Guo, Yunfei, Liang, Hao, Wang, Qingfeng, Xie, Genlin.  2022.  Research on Defending Code Reuse Attack Based on Binary Rewriting. 2022 IEEE 8th International Conference on Computer and Communications (ICCC). :1682—1686.
At present, code reuse attacks, such as Return Oriented Programming (ROP), execute attacks through the code of the application itself, bypassing the traditional defense mechanism and seriously threatening the security of computer software. The existing two mainstream defense mechanisms, Address Space Layout Randomization (ASLR), are vulnerable to information disclosure attacks, and Control-Flow Integrity (CFI) will bring high overhead to programs. At the same time, due to the widespread use of software of unknown origin, there is no source code provided or available, so it is not always possible to secure the source code. In this paper, we propose FRCFI, an effective method based on binary rewriting to prevent code reuse attacks. FRCFI first disrupts the program's memory space layout through function shuffling and NOP insertion, then verifies the execution of the control-flow branch instruction ret and indirect call/jmp instructions to ensure that the target address is not modified by attackers. Experiment show shows that FRCFI can effectively defend against code reuse attacks. After randomization, the survival rate of gadgets is only 1.7%, and FRCFI adds on average 6.1% runtime overhead on SPEC CPU2006 benchmark programs.
Wu, Yingzhen, Huo, Yan, Gao, Qinghe, Wu, Yue, Li, Xuehan.  2022.  Game-theoretic and Learning-aided Physical Layer Security for Multiple Intelligent Eavesdroppers. 2022 IEEE Globecom Workshops (GC Wkshps). :233—238.
Artificial Intelligence (AI) technology is developing rapidly, permeating every aspect of human life. Although the integration between AI and communication contributes to the flourishing development of wireless communication, it induces severer security problems. As a supplement to the upper-layer cryptography protocol, physical layer security has become an intriguing technology to ensure the security of wireless communication systems. However, most of the current physical layer security research does not consider the intelligence and mobility of collusive eavesdroppers. In this paper, we consider a MIMO system model with a friendly intelligent jammer against multiple collusive intelligent eavesdroppers, and zero-sum game is exploited to formulate the confrontation of them. The Nash equilibrium is derived by convex optimization and alternative optimization in the free-space scenario of a single user system. We propose a zero-sum game deep learning algorithm (ZGDL) for general situations to solve non-convex game problems. In terms of the effectiveness, simulations are conducted to confirm that the proposed algorithm can obtain the Nash equilibrium.
Torres-Figueroa, Luis, Hörmann, Markus, Wiese, Moritz, Mönich, Ullrich J., Boche, Holger, Holschke, Oliver, Geitz, Marc.  2022.  Implementation of Physical Layer Security into 5G NR Systems and E2E Latency Assessment. GLOBECOM 2022 - 2022 IEEE Global Communications Conference. :4044—4050.
This paper assesses the impact on the performance that information-theoretic physical layer security (IT-PLS) introduces when integrated into a 5G New Radio (NR) system. For this, we implement a wiretap code for IT-PLS based on a modular coding scheme that uses a universal-hash function in its security layer. The main advantage of this approach lies in its flexible integration into the lower layers of the 5G NR protocol stack without affecting the communication's reliability. Specifically, we use IT-PLS to secure the transmission of downlink control information by integrating an extra pre-coding security layer as part of the physical downlink control channel (PDCCH) procedures, thus not requiring any change of the 3GPP 38 series standard. We conduct experiments using a real-time open-source 5G NR standalone implementation and use software-defined radios for over-the-air transmissions in a controlled laboratory environment. The overhead added by IT-PLS is determined in terms of the latency introduced into the system, which is measured at the physical layer for an end-to-end (E2E) connection between the gNB and the user equipment.
Seito, Takenobu, Shikata, Junji, Watanabe, Yohei.  2022.  Multi-Designated Receiver Authentication-Codes with Information-Theoretic Security. 2022 56th Annual Conference on Information Sciences and Systems (CISS). :84—89.
A multi-designated receiver authentication code (MDRA-code) with information-theoretic security is proposed as an extension of the traditional multi-receiver authentication code. The purpose of the MDRA-code is to securely transmit a message via a broadcast channel from a single sender to an arbitrary subset of multiple receivers that have been designated by the sender, and only the receivers in the subset (i.e., not all receivers) should accept the message if an adversary is absent. This paper proposes a model and security formalization of MDRA-codes, and provides constructions of MDRA-codes.
2023-08-25
Zheng, Chaofan, Hu, Wenhui, Li, Tianci, Liu, Xueyang, Zhang, Jinchan, Wang, Litian.  2022.  An Insider Threat Detection Method Based on Heterogeneous Graph Embedding. 2022 IEEE 8th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS). :11—16.
Insider threats have high risk and concealment characteristics, which makes traditional anomaly detection methods less effective in insider threat detection. Existing detection methods ignore the logical relationship between user behaviors and the consistency of behavior sequences among homogeneous users, resulting in poor model effects. We propose an insider threat detection method based on internal user heterogeneous graph embedding. Firstly, according to the characteristics of CERT data, comprehensively consider the relationship between users, the time sequence, and logical relationship, and construct a heterogeneous graph. In the second step, according to the characteristics of heterogeneous graphs, the embedding learning of graph nodes is carried out according to random walk and Word2vec. Finally, we propose an Insider Threat Detection Design (ITDD) model which can map and the user behavior sequence information into a high-dimensional feature space. In the CERT r5.2 dataset, compared with a variety of traditional machine learning methods, the effect of our method is significantly better than the final result.
Zhang, Xue, Wei, Liang, Jing, Shan, Zhao, Chuan, Chen, Zhenxiang.  2022.  SDN-Based Load Balancing Solution for Deterministic Backbone Networks. 2022 5th International Conference on Hot Information-Centric Networking (HotICN). :119–124.
Traffic in a backbone network has high forwarding rate requirements, and as the network gets larger, traffic increases and forwarding rates decrease. In a Software Defined Network (SDN), the controller can manage a global view of the network and control the forwarding of network traffic. A deterministic network has different forwarding requirements for the traffic of different priority levels. Static traffic load balancing is not flexible enough to meet the needs of users and may lead to the overloading of individual links and even network collapse. In this paper, we propose a new backbone network load balancing architecture - EDQN (Edge Deep Q-learning Network), which implements queue-based gate-shaping algorithms at the edge devices and load balancing of traffic on the backbone links. With the advantages of SDN, the link utilization of the backbone network can be improved, the delay in traffic transmission can be reduced and the throughput of traffic during transmission can be increased.
ISSN: 2831-4395
Wu, Bo, Chen, Lei, Zong, Qi.  2022.  Research on New Power System Network Security Guarantee System. 2022 International Conference on Informatics, Networking and Computing (ICINC). :91–94.
Based on the characteristics of the new power system with many points, wide range and unattended, this paper studies the specific Cyberspace security risks faced by the disease control side, the station side and the site side, and proposes a new power system Cyberspace security assurance system of “integration of collection, network, side, end, industry and people”. The site side security access measures, the site side civil air defense technology integration measures, the whole business endogenous security mechanism, the whole domain communication security mechanism, the integrated monitoring and early warning and emergency response mechanism are specifically adopted to form a comprehensive integrated security mechanism for the new power system, form a sustainable protection model, effectively improve the security capability, while taking into account the cost and operational complexity of specific implementation links, Provide comprehensive guarantee capability for the safe operation of the new power system.
Utomo, Rio Guntur, Yahya, Farashazillah, Almarshad, Fahdah, Wills, Gary B.  2022.  Factors Affecting Information Assurance for Big Data. 2022 1st International Conference on Software Engineering and Information Technology (ICoSEIT). :1–5.
Big Data is a concept used in various sectors today, including the government sector in the Smart Government initiative. With a large amount of structured and unstructured data being managed, information assurance becomes important in adopting Big Data. However, so far, no research has focused on information assurance for Big Data. This paper identified information assurance factors for Big Data. This research used the systematic snapshot mapping approach to examine factors relating to information assurance from the literature related to Big Data from 2011 through 2021. The data extraction process in gathering 15 relevant papers. The findings revealed ten factors influencing the information assurance implementation for Big Data, with the security factor becoming the most concentrated factor with 18 sub-factors. The findings are expected to serve as a foundation for adopting information assurance for Big Data to develop an information assurance framework for Smart Government.