Visible to the public Biblio

Found 317 results

Filters: Keyword is Safety  [Clear All Filters]
2022-08-26
Chen, Xi, Qiao, Lei, Liu, Hongbiao, Ma, Zhi, Jiang, Jingjing.  2021.  Security Verification Method of Embedded Operating System Semaphore Mechanism based on Coq. 2021 2nd International Conference on Big Data & Artificial Intelligence & Software Engineering (ICBASE). :392–395.
The semaphore mechanism is an important part of the embedded operating system. Therefore, it is very necessary to ensure its safety. Traditional software testing methods are difficult to ensure 100% coverage of the program. Therefore, it is necessary to adopt a formal verfication method which proves the correctness of the program theoretically. This paper proposes a proof framework based on the theorem proof tool Coq: modeling the semaphore mechanism, extracting important properties from the requirement documents, and finally verifying that the semaphore mechanism can meet these properties, which means the correctness of the semaphore mechanism is proved and also illustrates the feasibility of the verification framework proposed in this paper, which lays a foundation for the verification of other modules of operating systems.
Hounsinou, Sena, Stidd, Mark, Ezeobi, Uchenna, Olufowobi, Habeeb, Nasri, Mitra, Bloom, Gedare.  2021.  Vulnerability of Controller Area Network to Schedule-Based Attacks. 2021 IEEE Real-Time Systems Symposium (RTSS). :495–507.
The secure functioning of automotive systems is vital to the safety of their passengers and other roadway users. One of the critical functions for safety is the controller area network (CAN), which interconnects the safety-critical electronic control units (ECUs) in the majority of ground vehicles. Unfortunately CAN is known to be vulnerable to several attacks. One such attack is the bus-off attack, which can be used to cause a victim ECU to disconnect itself from the CAN bus and, subsequently, for an attacker to masquerade as that ECU. A limitation of the bus-off attack is that it requires the attacker to achieve tight synchronization between the transmission of the victim and the attacker's injected message. In this paper, we introduce a schedule-based attack framework for the CAN bus-off attack that uses the real-time schedule of the CAN bus to predict more attack opportunities than previously known. We describe a ranking method for an attacker to select and optimize its attack injections with respect to criteria such as attack success rate, bus perturbation, or attack latency. The results show that vulnerabilities of the CAN bus can be enhanced by schedule-based attacks.
2022-08-12
R, Prasath, Rajan, Rajesh George.  2021.  Autonomous Application in Requirements Analysis of Information System Development for Producing a Design Model. 2021 2nd International Conference on Communication, Computing and Industry 4.0 (C2I4). :1—8.
The main technology of traditional information security is firewall, intrusion detection and anti-virus software, which is used in the first anti-outer defence, the first anti-service terminal defence terminal passive defence ideas, the complexity and complexity of these security technologies not only increase the complexity of the autonomous system, reduce the efficiency of the system, but also cannot solve the security problem of the information system, and cannot satisfy the security demand of the information system. After a significant stretch of innovative work, individuals utilize the secret word innovation, network security innovation, set forward the idea “confided in figuring” in view of the equipment security module support, Trusted processing from changing the customary protection thoughts, center around the safety efforts taken from the terminal to forestall framework assaults, from the foundation of the stage, the acknowledgment of the security of data frameworks. Believed figuring is chiefly worried about the security of the framework terminal, utilizing a progression of safety efforts to ensure the protection of clients to work on the security of independent frameworks. Its principle plan thought is implanted in a typical machine to oppose altering the equipment gadget - confided in stage module as the base of the trust, the utilization of equipment and programming innovation to join the trust of the base of trust through the trust bind level to the entire independent framework, joined with the security of information stockpiling insurance, client validation and stage respectability of the three significant safety efforts guarantee that the terminal framework security and unwavering quality, to guarantee that the terminal framework is consistently in a condition of conduct anticipated.
El-Korashy, Akram, Tsampas, Stelios, Patrignani, Marco, Devriese, Dominique, Garg, Deepak, Piessens, Frank.  2021.  CapablePtrs: Securely Compiling Partial Programs Using the Pointers-as-Capabilities Principle. 2021 IEEE 34th Computer Security Foundations Symposium (CSF). :1—16.
Capability machines such as CHERI provide memory capabilities that can be used by compilers to provide security benefits for compiled code (e.g., memory safety). The existing C to CHERI compiler, for example, achieves memory safety by following a principle called “pointers as capabilities” (PAC). Informally, PAC says that a compiler should represent a source language pointer as a machine code capability. But the security properties of PAC compilers are not yet well understood. We show that memory safety is only one aspect, and that PAC compilers can provide significant additional security guarantees for partial programs: the compiler can provide security guarantees for a compilation unit, even if that compilation unit is later linked to attacker-provided machine code.As such, this paper is the first to study the security of PAC compilers for partial programs formally. We prove for a model of such a compiler that it is fully abstract. The proof uses a novel proof technique (dubbed TrICL, read trickle), which should be of broad interest because it reuses the whole-program compiler correctness relation for full abstraction, thus saving work. We also implement our scheme for C on CHERI, show that we can compile legacy C code with minimal changes, and show that the performance overhead of compiled code is roughly proportional to the number of cross-compilation-unit function calls.
2022-08-04
Eckel, Michael, Kuzhiyelil, Don, Krauß, Christoph, Zhdanova, Maria, Katzenbeisser, Stefan, Cosic, Jasmin, Drodt, Matthias, Pitrolle, Jean-Jacques.  2021.  Implementing a Security Architecture for Safety-Critical Railway Infrastructure. 2021 International Symposium on Secure and Private Execution Environment Design (SEED). :215—226.
The digitalization of safety-critical railroad infrastructure enables new types of attacks. This increases the need to integrate Information Technology (IT) security measures into railroad systems. For that purpose, we rely on a security architecture for a railway object controller which controls field elements that we developed in previous work. Our architecture enables the integration of security mechanisms into a safety-certified railway system. In this paper, we demonstrate the practical feasibility of our architecture by using a Trusted Platform Module (TPM) 2.0 and a Multiple Independent Levels of Safety and Security (MILS) Separation Kernel (SK) for our implementation. Our evaluation includes a test bed and shows how certification and homologation can be achieved.
2022-08-02
Liu, Zhihao, Wang, Qiang, Li, Yongjian, Zhao, Yongxin.  2021.  CMSS: Collaborative Modeling of Safety and Security Requirements for Network Protocols. 2021 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom). :185—192.
Analyzing safety and security requirements remains a difficult task in the development of real-life network protocols. Although numerous modeling and analyzing methods have been proposed in the past decades, most of them handle safety and security requirements separately without considering their interplay. In this work, we propose a collaborative modeling framework that enables co-analysis of safety and security requirements for network protocols. Our modeling framework is based on a well-defined type system and supports modeling of network topology, message flows, protocol behaviors and attacker behaviors. It also supports the specification of safety requirements as temporal logical formulae and typical security requirements as queries, and leverages on the existing verification tools for formal safety and security analysis via model transformations. We have implemented this framework in a prototype tool CMSS, and illustrated the capability of CMSS by using the 5G AKA initialization protocol as a case study.
2022-07-29
Azhari Halim, Muhammad Arif, Othman, Mohd. Fairuz Iskandar, Abidin, Aa Zezen Zaenal, Hamid, Erman, Harum, Norharyati, Shah, Wahidah Md.  2021.  Face Recognition-based Door Locking System with Two-Factor Authentication Using OpenCV. 2021 Sixth International Conference on Informatics and Computing (ICIC). :1—7.

This project develops a face recognition-based door locking system with two-factor authentication using OpenCV. It uses Raspberry Pi 4 as the microcontroller. Face recognition-based door locking has been around for many years, but most of them only provide face recognition without any added security features, and they are costly. The design of this project is based on human face recognition and the sending of a One-Time Password (OTP) using the Twilio service. It will recognize the person at the front door. Only people who match the faces stored in its dataset and then inputs the correct OTP will have access to unlock the door. The Twilio service and image processing algorithm Local Binary Pattern Histogram (LBPH) has been adopted for this system. Servo motor operates as a mechanism to access the door. Results show that LBPH takes a short time to recognize a face. Additionally, if an unknown face is detected, it will log this instance into a "Fail" file and an accompanying CSV sheet.

TianYu, Pang, Yan, Song, QuanJiang, Shen.  2021.  Research on Security Threat Assessment for Power IOT Terminal Based on Knowledge Graph. 2021 IEEE 5th Information Technology,Networking,Electronic and Automation Control Conference (ITNEC). 5:1717—1721.
Due to the large number of terminal nodes and wide deployment of power IOT, it is vulnerable to attacks such as physical hijacking, communication link theft and replay. In order to sense and measure the security risks and threats of massive power IOT terminals in real time, a security threat assessment for power IOT terminals based on knowledge graph was proposed. Firstly, the basic data, operation data and alarm threat data of power IOT terminal equipment are extracted and correlated, and the power IOT terminal based on knowledge graph is constructed. Then, the real-time monitoring data of the power IOT terminal is preprocessed. Based on the knowledge graph of the power IOT terminal, the safety analysis and operation analysis of the terminal are carried out, and the threat index of the power IOT terminal is perceived in real time. Finally, security operation and maintenance personnel make disposal decisions on the terminals according to the threat index of power IOT terminals to ensure the safe and stable operation of power IOT terminal nodes. The experimental results show that compared with the traditional IPS, the method can effectively detect the security threat of the power IOT terminal and reduce the alarm vulnerability rate.
Tahirovic, Alma Ademovic, Angeli, David, Strbac, Goran.  2021.  A Complex Network Approach to Power System Vulnerability Analysis based on Rebalance Based Flow Centrality. 2021 IEEE Power & Energy Society General Meeting (PESGM). :01—05.
The study of networks is an extensively investigated field of research, with networks and network structure often encoding relationships describing certain systems or processes. Critical infrastructure is understood as being a structure whose failure or damage has considerable impact on safety, security and wellbeing of society, with power systems considered a classic example. The work presented in this paper builds on the long-lasting foundations of network and complex network theory, proposing an extension in form of rebalance based flow centrality for structural vulnerability assessment and critical component identification in adaptive network topologies. The proposed measure is applied to power system vulnerability analysis, with performance demonstrated on the IEEE 30-, 57- and 118-bus test system, outperforming relevant methods from the state-of-the-art. The proposed framework is deterministic (guaranteed), analytically obtained (interpretable) and generalizes well with changing network parameters, providing a complementary tool to power system vulnerability analysis and planning.
2022-07-28
Qian, Tiantian, Yang, Shengchun, Wang, Shenghe, Pan, Dong, Geng, Jian, Wang, Ke.  2021.  Static Security Analysis of Source-Side High Uncertainty Power Grid Based on Deep Learning. 2021 China International Conference on Electricity Distribution (CICED). :973—975.
As a large amount of renewable energy is injected into the power grid, the source side of the power grid becomes extremely uncertain. Traditional static safety analysis methods based on pure physical models can no longer quickly and reliably give analysis results. Therefore, this paper proposes a deep learning-based static security analytical method. First, the static security assessment index of the power grid under the N-1 principle is proposed. Secondly, a neural network model and its input and output data for static safety analysis problems are designed. Finally, the validity of the proposed method was verified by IEEE grid data. Experiments show that the proposed method can quickly and accurately give the static security analysis results of the source-side high uncertainty grid.
2022-07-12
Akmuratovich, Sadikov Mahmudjon, Salimboyevich, Olimov Iskandar, Abdusalomovich, Karimov Abduqodir, Ugli, Tursunov Otabek Odiljon, Botirboevna, Yusupova Shohida, Usmonjanovna, Tojikabarova Umida.  2021.  A Creation Cryptographic Protocol for the Division of Mutual Authentication and Session Key. 2021 International Conference on Information Science and Communications Technologies (ICISCT). :1—6.
In this paper is devoted a creation cryptographic protocol for the division of mutual authentication and session key. For secure protocols, suitable cryptographic algorithms were monitored.
2022-07-01
Boloka, Tlou, Makondo, Ndivhuwo, Rosman, Benjamin.  2021.  Knowledge Transfer using Model-Based Deep Reinforcement Learning. 2021 Southern African Universities Power Engineering Conference/Robotics and Mechatronics/Pattern Recognition Association of South Africa (SAUPEC/RobMech/PRASA). :1—6.
Deep reinforcement learning has recently been adopted for robot behavior learning, where robot skills are acquired and adapted from data generated by the robot while interacting with its environment through a trial-and-error process. Despite this success, most model-free deep reinforcement learning algorithms learn a task-specific policy from a clean slate and thus suffer from high sample complexity (i.e., they require a significant amount of interaction with the environment to learn reasonable policies and even more to reach convergence). They also suffer from poor initial performance due to executing a randomly initialized policy in the early stages of learning to obtain experience used to train a policy or value function. Model based deep reinforcement learning mitigates these shortcomings. However, it suffers from poor asymptotic performance in contrast to a model-free approach. In this work, we investigate knowledge transfer from a model-based teacher to a task-specific model-free learner to alleviate executing a randomly initialized policy in the early stages of learning. Our experiments show that this approach results in better asymptotic performance, enhanced initial performance, improved safety, better action effectiveness, and reduced sample complexity.
Camilo, Marcelo, Moura, David, Salles, Ronaldo.  2021.  Combined Interference and Communications strategy evaluation as a defense mechanism in typical Cognitive Radio Military Networks. 2021 International Symposium on Networks, Computers and Communications (ISNCC). :1—8.
Physical layer security has a paramount importance in tactical wireless networks. Traditional approaches may not fulfill all requirements, demanding additional sophisticated techniques. Thus, Combined Interference and Communications (CIC) emerges as a strategy against message interception in Cognitive Radio Military Networks (CRMN). Since CIC adopts an interference approach under specific CRMN requirements and characteristics, it saves great energy and reduces the receiver detection factor when compared to previous proposals in the literature. However, previous CIC analyses were conducted under vaguely realistic channel models. Thus, the focus of this paper is two-fold. Firstly, we identify more realistic channel models to achieve tactical network scenario channel parameters. Additionally, we use such parameters to evaluate CIC suitability to increase CRMN physical layer security. Numerical experiments and emulations illustrate potential impairments on previous work due to the adoption of unrealistic channel models, concluding that CIC technique remains as an upper limit to increase physical layer security in CRMN.
2022-06-10
Kropp, Alexander, Schwalbe, Mario, Tsokalo, Ievgenii A., Süβkraut, Martin, Schmoll, Robert-Steve, Fitzek, Frank H.P..  2021.  Reliable Control for Robotics - Hardware Resilience Powered by Software. 2021 IEEE 18th Annual Consumer Communications Networking Conference (CCNC). :1–2.
Industry 4.0 is now much more than just a buzzword. However, with the advancement of automation through digitization and softwarization of dedicated hardware, applications are also becoming more susceptible to random hardware errors in the calculation. This cyber-physical demonstrator uses a robotic application to show the effects that even single bit flips can have in the real world due to hardware errors. Using the graphical user interface including the human machine interface, the audience can generate hardware errors in the form of bit flips and see their effects live on the robot. In this paper we will be showing a new technology, the SIListra Safety Transformer (SST), that makes it possible to detect those kind of random hardware errors, which can subsequently make safety-critical applications more reliable.
2022-06-09
Yin, Weiru, Chai, Chen, Zhou, Ziyao, Li, Chenhao, Lu, Yali, Shi, Xiupeng.  2021.  Effects of trust in human-automation shared control: A human-in-the-loop driving simulation study. 2021 IEEE International Intelligent Transportation Systems Conference (ITSC). :1147–1154.
Human-automation shared control is proposed to reduce the risk of driver disengagement in Level-3 autonomous vehicles. Although previous studies have approved shared control strategy is effective to keep a driver in the loop and improve the driver's performance, over- and under-trust may affect the cooperation between the driver and the automation system. This study conducted a human-in-the-loop driving simulation experiment to assess the effects of trust on driver's behavior of shared control. An expert shared control strategy with longitudinal and lateral driving assistance was proposed and implemented in the experiment platform. Based on the experiment (N=24), trust in shared control was evaluated, followed by a correlation analysis of trust and behaviors. Moderating effects of trust on the relationship between gaze focalization and minimum of time to collision were then explored. Results showed that self-reported trust in shared control could be evaluated by three subscales respectively: safety, efficiency and ease of control, which all show stronger correlations with gaze focalization than other behaviors. Besides, with more trust in ease of control, there is a gentle decrease in the human-machine conflicts of mean brake inputs. The moderating effects show trust could enhance the decrease of minimum of time to collision as eyes-off-road time increases. These results indicate over-trust in automation will lead to unsafe behaviors, particularly monitoring behavior. This study contributes to revealing the link between trust and behavior in the context of human-automation shared control. It can be applied in improving the design of shared control and reducing risky behaviors of drivers by further trust calibration.
Başer, Melike, Güven, Ebu Yusuf, Aydın, Muhammed Ali.  2021.  SSH and Telnet Protocols Attack Analysis Using Honeypot Technique: Analysis of SSH AND ℡NET Honeypot. 2021 6th International Conference on Computer Science and Engineering (UBMK). :806–811.
Generally, the defense measures taken against new cyber-attack methods are insufficient for cybersecurity risk management. Contrary to classical attack methods, the existence of undiscovered attack types called’ zero-day attacks’ can invalidate the actions taken. It is possible with honeypot systems to implement new security measures by recording the attacker’s behavior. The purpose of the honeypot is to learn about the methods and tools used by the attacker or malicious activity. In particular, it allows us to discover zero-day attack types and develop new defense methods for them. Attackers have made protocols such as SSH (Secure Shell) and Telnet, which are widely used for remote access to devices, primary targets. In this study, SSHTelnet honeypot was established using Cowrie software. Attackers attempted to connect, and attackers record their activity after providing access. These collected attacker log records and files uploaded to the system are published on Github to other researchers1. We shared the observations and analysis results of attacks on SSH and Telnet protocols with honeypot.
Pour, Morteza Safaei, Watson, Dylan, Bou-Harb, Elias.  2021.  Sanitizing the IoT Cyber Security Posture: An Operational CTI Feed Backed up by Internet Measurements. 2021 51st Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :497–506.

The Internet-of-Things (IoT) paradigm at large continues to be compromised, hindering the privacy, dependability, security, and safety of our nations. While the operational security communities (i.e., CERTS, SOCs, CSIRT, etc.) continue to develop capabilities for monitoring cyberspace, tools which are IoT-centric remain at its infancy. To this end, we address this gap by innovating an actionable Cyber Threat Intelligence (CTI) feed related to Internet-scale infected IoT devices. The feed analyzes, in near real-time, 3.6TB of daily streaming passive measurements ( ≈ 1M pps) by applying a custom-developed learning methodology to distinguish between compromised IoT devices and non-IoT nodes, in addition to labeling the type and vendor. The feed is augmented with third party information to provide contextual information. We report on the operation, analysis, and shortcomings of the feed executed during an initial deployment period. We make the CTI feed available for ingestion through a public, authenticated API and a front-end platform.

Jawad, Sidra, Munsif, Hadeera, Azam, Arsal, Ilahi, Arham Hasib, Zafar, Saima.  2021.  Internet of Things-based Vehicle Tracking and Monitoring System. 2021 15th International Conference on Open Source Systems and Technologies (ICOSST). :1–5.
Vehicles play an integral part in the life of a human being by facilitating in everyday tasks. The major concern that arises with this fact is that the rate of vehicle thefts have increased exponentially and retrieving them becomes almost impossible as the responsible party completely alters the stolen vehicles, leaving them untraceable. Ultimately, tracking and monitoring of vehicles using on-vehicle sensors is a promising and an efficient solution. The Internet of Things (IoT) is expected to play a vital role in revolutionizing the Security and Safety industry through a system of sensor networks by periodically sending the data from the sensors to the cloud for storage, from where it can be accessed to view or take any necessary actions (if required). The main contributions of this paper are the implementation and results of the prototype of a vehicle tracking and monitoring system. The system comprises of an Arduino UNO board connected to the Global Positioning System (GPS) module, Neo-6M, which senses the exact location of the vehicle in the form of latitude and longitude, and the ESP8266 Wi-Fi module, which sends the data to the Application Programming Interface (API) Cloud service, ThingSpeak, for storage and analyzing. An Android based mobile application is developed that utilizes the stored data from the Cloud and presents the user with the findings. Results show that the prototype is not only simple and cost effective, but also efficient and can be readily used by everyone from all walks of life to protect their vehicles.
Philipsen, Simon Grønfeldt, Andersen, Birger, Singh, Bhupjit.  2021.  Threats and Attacks to Modern Vehicles. 2021 IEEE International Conference on Internet of Things and Intelligence Systems (IoTaIS). :22–27.
As modern vehicles are complex IoT devices with intelligence capable to connect to an external infrastructure and use Vehicle-to-Everything (V2X) communication, there is a need to secure the communication to avoid being a target for cyber-attacks. Also, the organs of the car (sensors, communication, and control) each could have a vulnerability, that leads to accidents or potential deaths. Manufactures of cars have a huge responsibility to secure the safety of their costumers and should not skip the important security research, instead making sure to implement important security measures, which makes your car less likely to be attacked. This paper covers the relevant attacks and threats to modern vehicles and presents a security analysis with potential countermeasures. We discuss the future of modern and autonomous vehicles and conclude that more countermeasures must be taken to create a future and safe concept.
2022-06-06
Matsushita, Haruka, Sato, Kaito, Sakura, Mamoru, Sawada, Kenji, Shin, Seiichi, Inoue, Masaki.  2020.  Rear-wheel steering control reflecting driver personality via Human-In-The-Loop System. 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC). :356–362.
One of the typical autonomous driving systems is a human-machine cooperative system that intervenes in the driver operation. The autonomous driving needs to make consideration of the driver individuality in addition to safety. This paper considers a human-machine cooperative system balancing safety with the driver individuality using the Human-In-The-Loop System (HITLS) for rear-wheel steering control. This paper assumes that it is safe for HITLS to follow the target side-slip angle and target angular velocity without conflicts between the controller and driver operations. We propose HITLS using the primal-dual algorithm and the internal model control (IMC) type I-PD controller. In HITLS, the signal expander delimits the human-selectable operating range and the controller cooperates stably the human operation and automated control in that range. The primal-dual algorithm realizes the driver and the signal expander. Our outcomes are the making of the rear-wheel steering system which converges to the target value while reflecting the driver individuality.
Silva, J. Sá, Saldanha, Ruben, Pereira, Vasco, Raposo, Duarte, Boavida, Fernando, Rodrigues, André, Abreu, Madalena.  2019.  WeDoCare: A System for Vulnerable Social Groups. 2019 International Conference on Computational Science and Computational Intelligence (CSCI). :1053–1059.
One of the biggest problems in the current society is people's safety. Safety measures and mechanisms are especially important in the case of vulnerable social groups, such as migrants, homeless, and victims of domestic and/or sexual violence. In order to cope with this problem, we witness an increasing number of personal alarm systems in the market, most of them based on panic buttons. Nevertheless, none of them has got widespread acceptance mainly because of limited Human-Computer Interaction. In the context of this work, we developed an innovative mobile application that recognizes an attack through speech and gesture recognition. This paper describes such a system and presents its features, some of them based on the emerging concept of Human-in-the-Loop Cyber-physical Systems and new concepts of Human-Computer Interaction.
Lau, Tuong Phi.  2021.  Software Reuse Exploits in Node.js Web Apps. 2021 5th International Conference on System Reliability and Safety (ICSRS). :190–197.
The npm ecosystem has the largest number of third-party packages for making node.js-based web apps. Due to its free and open nature, it can raise diversity of security concerns. Adversaries can take advantage of existing software APIs included in node.js web apps for achieving their own malicious targets. More specifically, attackers may inject malicious data into its client requests and then submit them to a victim node.js server. It then may manipulate program states to reuse sensitive APIs as gadgets required in the node.js web app executed on the victim server. Once such sensitive APIs can be successfully accessed, it may indirectly raise security threats such as code injection attacks, software-layer DoS attacks, private data leaks, etc. For example, when the sensitive APIs are implemented as pattern matching operations and are called with hard-to-match input string submitted by clients, it may launch application-level DoS attacks.In this paper, we would like to introduce software reuse exploits through reusing packages available in node.js web apps for posing security threats to servers. In addition, we propose an approach based on data flow analysis to detect vulnerable npm packages that can be exposed to such exploits. To evaluate its effectiveness, we collected a dataset of 15,000 modules from the ecosystem to conduct the experiments. As a result, it discovered out 192 vulnerable packages. By manual analysis, we identified 156 true positives of 192 that can be exposed to code reuse exploits for remotely causing software-layer DoS attacks with 128 modules of 156, for code injection with 18 modules, and for private data leaks including 10 vulnerable ones.
2022-05-10
Ahmed, Foez, Shahriar, T. A. M. Ragib, Paul, Robi, Ahammad, Arif.  2021.  Design and Development of a Smart Surveillance System for Security of an Institution. 2021 International Conference on Electronics, Communications and Information Technology (ICECIT). :1–4.
Conventional Security Systems are improving with the advancement of Internet of Things (IoT) based technology. For better security, in addition to the currently available technology, surveillance systems are used. In this research, a Smart Surveillance System with machine-learning capabilities is designed to detect security breaches and it will resolve safety concerns. Machine learning algorithms are implemented to detect intruders as well as suspicious activities. Enery efficiency is the major concern for constant monitoring systems. As a result, the designed system focuses on power consumption by calibrating the system so that it can work on bare minimum power and additionally provides the required output. Fire sensor has also been integrated to detect fire for safety purposes. By adding upon the security infrastructure, next-generation smart surveillance systems can be created for a safe future. The developed system contains the necessary tools to recognize intruders by face recognition. Also using the ambient sensors (PIR sensor, fire detecting sensor), a secure environment is provided during working and non-working hours. The system shows high accuracy in human & flame detection. A more reliable security system can be created with the further development of this research.
2022-05-06
Lee, Sang Hyun, Oh, Sang Won, Jo, Hye Seon, Na, Man Gyun.  2021.  Abnormality Diagnosis in NPP Using Artificial Intelligence Based on Image Data. 2021 5th International Conference on System Reliability and Safety (ICSRS). :103–107.
Accidents in Nuclear Power Plants (NPPs) can occur for a variety of causes. However, among these, the scale of accidents due to human error can be greater than expected. Accordingly, researches are being actively conducted using artificial intelligence to reduce human error. Most of the research shows high performance based on the numerical data on NPPs, but the expandability of researches using only numerical data is limited. Therefore, in this study, abnormal diagnosis was performed using artificial intelligence based on image data. The methods applied to abnormal diagnosis are the deep neural network, convolution neural network, and convolution recurrent neural network. Consequently, in nuclear power plants, it is expected that the application of more methodologies can be expanded not only in numerical data but also in image-based data.
Wani, Aachal, Sonekar, Shrikant, Lokhande, Trupti.  2021.  Design and Development of Collaborative Approach for Integrity Auditing and Data Recovery based on Fingerprint Identification for Secure Cloud Storage. 2021 2nd Global Conference for Advancement in Technology (GCAT). :1–6.
In a Leading field of Information Technology moreover make information Security a unified piece of it. To manage security, Authentication assumes a significant part. Biometric is the physical unique identification as well as Authentication for third party. We are proposed the Security model for preventing many attacks so we are used Inner most layer as a 3DES (Triple Encryption standard) Cryptography algorithm that is providing 3-key protection as 64-bit And the outer most layer used the MD5 (Message Digest) Algorithm. i. e. Providing 128 – bit protection. As well as we are using Fingerprint Identification as a physical Security that used in third party remote integrity auditing, and remote data integrity auditing is proposed to ensure the uprightness of the information put away in the cloud. Data Storage of cloud services has expanded paces of acknowledgment because of their adaptability and the worry of the security and privacy levels. The large number of integrity and security issues that arise depends on the difference between the customer and the service provider in the sense of an external auditor. The remote data integrity auditing is at this point prepared to be viably executed. In the meantime, the proposed scheme is depends on identity-based cryptography, which works on the convoluted testament the executives. The safety investigation and the exhibition assessment show that the planned property is safe and productive.