Biblio
The analysis of multiple Android malware families indicates malware instances within a common malware family always have similar call graph structures. Based on the isomorphism of sensitive API call graph, we propose a method which is used to construct malware family features via combining static analysis approach with graph similarity metric. The experiment is performed on a malware dataset which contains 1326 malware samples from 16 different malware families. The result shows that the method can differentiate distinct malware family features and divide suspect malware samples into corresponding families with a high accuracy of 96.77% overall and even defend a certain extent of obfuscation.
A Local Area Network (LAN) consists of wireless mobile nodes that can communicate with each other through electromagnetic radio waves. Mobile Ad hoc Network (MANET) consists of mobile nodes, the network is infrastructure less. It dynamically self organizes in arbitrary and temporary network topologies. Security is extremely vital for MANET. Attacks pave way for security. Among all the potential attacks on MANET, detection of wormhole attack is very difficult.One malicious node receives packets from a particular location, tunnels them to a different contagious nodes situated in another location of the network and distorts the full routing method. All routes are converged to the wormhole established by the attackers. The complete routing system in MANET gets redirected. Many existing ways have been surveyed to notice wormhole attack in MANET. Our proposed methodology is a unique wormhole detection and prevention algorithm that shall effectively notice the wormhole attack in theMANET. Our notion is to extend the detection as well as the quantitative relation relative to the existing ways.
Networking system does not liable on static infrastructure that interconnects various nodes in identical broadcast range dynamically called as Mobile Ad-hoc Network. A Network requires adaptive connectivity due to this data transmission rate increased. In this paper, we designed developed a dynamic cluster head selection to detect gray hole attack in MANETs on the origin of battery power. MANETs has dynamic nodes so we delivered novel way to choose cluster head by self-stabilizing election algorithm followed by MD5 algorithm for security purposes. The Dynamic cluster based intrusion revealing system to detect gray hole attack in MANET. This Architecture enhanced performance in terms of Packet delivery ratio and throughput due to dynamic cluster based IDS, associating results of existing system with proposed system, throughput of network increased, end to end delay and routing overhead less compared with existing system due to gray hole nodes in the MANET. The future work can be prolonged by using security algorithm AES and MD6 and also by including additional node to create large network by comparing multiple routing protocol in MANETs.
Social networking sites such as Flickr, YouTube, Facebook, etc. contain huge amount of user contributed data for a variety of real-world events. We describe an unsupervised approach to the problem of automatically detecting subgroups of people holding similar tastes or either taste. Item or taste tags play an important role in detecting group or subgroup, if two or more persons share the same opinion on the item or taste, they tend to use similar content. We consider the latter to be an implicit attitude. In this paper, we have investigated the impact of implicit and explicit attitude in two genres of social media discussion data, more formal wikipedia discussions and a debate discussion forum that is much more informal. Experimental results strongly suggest that implicit attitude is an important complement for explicit attitudes (expressed via sentiment) and it can improve the sub-group detection performance independent of genre. Here, we have proposed taste-based group, which can enhance the quality of service.
Security in smartphones has become one of the major concerns, with prolific growth in its usage scenario. Many applications are available for Android users to protect their applications and data. But all these security applications are not easily accessible for persons with disabilities. For persons with color blindness, authentication mechanisms pose user interface related issues. Color blind users find the inaccessible and complex design in the interface difficult to access and interpret mobile locks. This paper focuses on a novel method for providing color and touch sensitivity based dot pattern lock. This Model automatically replaces the existing display style of a pattern lock with a new user preferred color combination. In addition Pressure Gradient Input (PGI) has been incorporated to enhance authentication strength. The feedback collected from users shows that this accessible security application is easy to use without any major access barrier.
Mobile ad-hoc network (MANET) contains various wireless movable nodes which can communicate with each other and they don't require any centralized administrator or network infrastructure and also can communicate with full capacity because it is composed of mobile nodes. They transmit data to each other with the help of intermediate nodes by establishing a path. But sometime malicious node can easily enter in network due to the mobility of nodes. That malicious node can harm the network by dropping the data packets. These type of attack is called gray hole attack. For detection and prevention from this type of attack a mechanism is proposed in this paper. By using network simulator, the simulation will be carried out for reporting the difficulties of prevention and detection of multiple gray hole attack in the Mobile ad-hoc network (MANET). Particle Swarm Optimization is used in this paper. Because of ad-hoc nature it observers the changing values of the node, if the value is infinite then node has been attacked and it prevents other nodes from sending data to that node. In this paper, we present possible solutions to prevent the network. Firstly, find more than one route to transmit packets to destination. Second, we provide minimum time delay to deliver the packet. The simulation shows the higher throughput, less time delay and less packet drop.
A group of mobile nodes with limited capabilities sparsed in different clusters forms the backbone of Mobile Ad-Hoc Networks (MANET). In such situations, the requirements (mobility, performance, security, trust and timing constraints) vary with change in context, time, and geographic location of deployment. This leads to various performance and security challenges which necessitates a trade-off between them on the application of routing protocols in a specific context. The focus of our research is towards developing an adaptive and secure routing protocol for Mobile Ad-Hoc Networks, which dynamically configures the routing functions using varying contextual features with secure and real-time processing of traffic. In this paper, we propose a formal framework for modelling and verification of requirement constraints to be used in designing adaptive routing protocols for MANET. We formally represent the network topology, behaviour, and functionalities of the network in SMT-LIB language. In addition, our framework verifies various functional, security, and Quality-of-Service (QoS) constraints. The verification engine is built using the Yices SMT Solver. The efficacy of the proposed requirement models is demonstrated with experimental results.
Real-time localization of mobile target has been attracted much attention in recent years. With the limitation of unavailable GPS signals in the complex environments, wireless sensor networks can be applied to real-time locate and track the mobile targets in this paper. The multi wireless signals are used to weaken the effect of abnormal wireless signals in some areas. To verify the real-time localization performance for mobile targets, experiments and analyses are implemented. The results of the experiments reflect that the proposed location method can provide experimental basis for the applications, such as the garage, shopping center, underwater, etc.
Currently, mobile botnet attacks have shifted from computers to smartphones due to its functionality, ease to exploit, and based on financial intention. Mostly, it attacks Android due to its popularity and high usage among end users. Every day, more and more malicious mobile applications (apps) with the botnet capability have been developed to exploit end users' smartphones. Therefore, this paper presents a new mobile botnet classification based on permission and Application Programming Interface (API) calls in the smartphone. This classification is developed using static analysis in a controlled lab environment and the Drebin dataset is used as the training dataset. 800 apps from the Google Play Store have been chosen randomly to test the proposed classification. As a result, 16 permissions and 31 API calls that are most related with mobile botnet have been extracted using feature selection and later classified and tested using machine learning algorithms. The experimental result shows that the Random Forest Algorithm has achieved the highest detection accuracy of 99.4% with the lowest false positive rate of 16.1% as compared to other machine learning algorithms. This new classification can be used as the input for mobile botnet detection for future work, especially for financial matters.
The base station (BS) is the main device in a wireless sensor network (WSN) and used to collect data from all the sensor nodes. The information of the whole network is stored in the BS and hence it is always targeted by the adversaries who want to interrupt the operation of the network. The nodes transmit their data to the BS using multi-hop technique and hence form an eminent traffic pattern that can be easily observed by a remote adversary. The presented research aims to increase the anonymity of the BS. The proposed scheme uses a mobile BS and ring nodes to complete the above mentioned objective. The simulation results show that the proposed scheme has superior outcomes as compared to the existing techniques.
Successful deployment of Low power and Lossy Networks (LLNs) requires self-organising, self-configuring, security, and mobility support. However, these characteristics can be exploited to perform security attacks against the Routing Protocol for Low-Power and Lossy Networks (RPL). In this paper, we address the lack of strong identity and security mechanisms in RPL. We first demonstrate by simulation the impact of Sybil-Mobile attack, namely SybM, on RPL with respect to control overhead, packet delivery and energy consumption. Then, we introduce a new Intrusion Detection System (IDS) scheme for RPL, named Trust-based IDS (T-IDS). T-IDS is a distributed, cooperative and hierarchical trust-based IDS, which can detect novel intrusions by comparing network behavior deviations. In T-IDS, each node is considered as monitoring node and collaborates with his peers to detect intrusions and report them to a 6LoWPAN Border Router (6BR). In our solution, we introduced a new timer and minor extensions to RPL messages format to deal with mobility, identity and multicast issues. In addition, each node is equipped with a Trusted Platform Module co-processor to handle identification and off-load security related computation and storage.
Subscriber Identity Module (SIM) is the backbone of modern mobile communication. SIM can be used to store a number of user sensitive information such as user contacts, SMS, banking information (some banking applications store user credentials on the SIM) etc. Unfortunately, the current SIM model has a major weakness. When the mobile device is lost, an adversary can simply steal a user's SIM and use it. He/she can then extract the user's sensitive information stored on the SIM. Moreover, The adversary can then pose as the user and communicate with the contacts stored on the SIM. This opens up the avenue to a large number of social engineering techniques. Additionally, if the user has provided his/her number as a recovery option for some accounts, the adversary can get access to them. The current methodology to deal with a stolen SIM is to contact your particular service provider and report a theft. The service provider then blocks the services on your SIM, but the adversary still has access to the data which is stored on the SIM. Therefore, a secure scheme is required to ensure that only legal users are able to access and utilize their SIM.
Mobility and multihoming have become the norm in Internet access, e.g. smartphones with Wi-Fi and LTE, and connected vehicles with LTE and DSRC links that change rapidly. Mobility creates challenges for active session continuity when provider-aggregatable locators are used, while multihoming brings opportunities for improving resiliency and allocative efficiency. This paper proposes a novel migration protocol, in the context of the eXpressive Internet Architecture (XIA), the XIA Migration Protocol. We compare it with Mobile IPv6, with respect to handoff latency and overhead, flow migration support, and defense against spoofing and replay of protocol messages. Handoff latencies of the XIA Migration Protocol and Mobile IPv6 Enhanced Route Optimization are comparable and neither protocol opens up avenues for spoofing or replay attacks. However, XIA requires no mobility anchor point to support client mobility while Mobile IPv6 always depends on a home agent. We show that XIA has significant advantage over IPv6 for multihomed hosts and networks in terms of resiliency, scalability, load balancing and allocative efficiency. IPv6 multihoming solutions either forgo scalability (BGP-based) or sacrifice resiliency (NAT-based), while XIA's fallback-based multihoming provides fault tolerance without a heavy-weight protocol. XIA also allows fine-grained incoming load-balancing and QoS-matching by supporting flow migration. Flow migration is not possible using Mobile IPv6 when a single IPv6 address is associated with multiple flows. From a protocol design and architectural perspective, the key enablers of these benefits are flow-level migration, XIA's DAG-based locators and self-certifying identifiers.
Opportunistic Networks are delay-tolerant mobile networks with intermittent node contacts in which data is transferred with the store-carry-forward principle. Owners of smartphones and smart objects form such networks due to their social behaviour. Opportunistic Networking can be used in remote areas with no access to the Internet, to establish communication after disasters, in emergency situations or to bypass censorship, but also in parallel to familiar networking. In this work, we create a mobile network application that connects Android devices over Wi-Fi, offers identification and encryption, and gathers information for routing in the network. The network application is constructed in such a way that third party applications can use the network application as network layer to send and receive data packets. We create secure and reliable connections while maintaining a high transmission speed, and with the gathered information about the network we offer knowledge for state of the art routing protocols. We conduct tests on connectivity, transmission range and speed, battery life and encryption speed and show a proof of concept for routing in the network.
The growing popularity of Android and the increasing amount of sensitive data stored in mobile devices have lead to the dissemination of Android ransomware. Ransomware is a class of malware that makes data inaccessible by blocking access to the device or, more frequently, by encrypting the data; to recover the data, the user has to pay a ransom to the attacker. A solution for this problem is to backup the data. Although backup tools are available for Android, these tools may be compromised or blocked by the ransomware itself. This paper presents the design and implementation of RANSOMSAFEDROID, a TrustZone based backup service for mobile devices. RANSOMSAFEDROID is protected from malware by leveraging the ARM TrustZone extension and running in the secure world. It does backup of files periodically to a secure local persistent partition and pushes these backups to external storage to protect them from ransomware. Initially, RANSOMSAFEDROID does a full backup of the device filesystem, then it does incremental backups that save the changes since the last backup. As a proof-of-concept, we implemented a RANSOMSAFEDROID prototype and provide a performance evaluation using an i.MX53 development board.
Mobile apps are widely adopted in daily life, and contain increasing security flaws. Many regulatory agencies and organizations have announced security guidelines for app development. However, most security guidelines involving technicality and compliance with this requirement is not easily feasible. Thus, we propose Mobile Apps Assessment and Analysis System (MAS), an automatic security validation system to improve guideline compliance. MAS combines static and dynamic analysis techniques, which can be used to verify whether android apps meet the security guideline requirements. We implemented MAS in practice and verified 143 real-world apps produced by the Taiwan government. Besides, we also validated 15,000 popular apps collected from Google Play Store produced in three countries. We found that most apps contain at least three security issues. Finally, we summarize the results and list the most common security flaws for consideration in further app development.
Mobile attack approaches can be categorized as Application Based Attacks and Frequency Based Attacks. Application based attacks are reviewed extensively in the literature. However, frequency based attacks to mobile phones are not experimented in detail. In this work, we have experimentally succeeded to attack an Android smartphone using a simple software based radio circuit. We have developed a software “Primary Mobile Hack Builder” to control Android operated cellphone as a distance. The SMS information and pictures in the cellphone can be obtained using this device. On the other hand, after launching a software into targeting cellphone, the camera of the cellphone can be controlled for taking pictures and downloading them into our computers. It was also possible to eavesdropping the conversation.
Because the authentication method based username-password has the disadvantage of easy disclosure and low reliability, and also the excess password management degrades the user experience tremendously, the user is eager to get rid of the bond of the password in order to seek a new way of authentication. Therefore, the multifactor biometrics-based user authentication wins the favor of people with advantages of simplicity, convenience and high reliability, especially in the mobile payment environment. Unfortunately, in the existing scheme, biometric information is stored on the server side. As thus, once the server is hacked by attackers to cause the leakage of the fingerprint information, it will take a deadly threat to the user privacy. Aim at the security problem due to the fingerprint information in the mobile payment environment, we propose a novel multifactor two-server authentication scheme under mobile computing (MTSAS). In the MTSAS, it divides the authentication method and authentication means, in the meanwhile, the user's biometric characteristics cannot leave the user device. And also, MTSAS chooses the different authentication factors depending on the privacy level of the authentication, and then provides the authentication based on the different security levels. BAN logic's result proves that MTSAS has achieved the purpose of authentication, and meets the security requirements. In comparison with other schemes, the analysis shows that the proposed scheme MTSAS not only has the reasonable computational efficiency, but also keeps the superior communication cost.
This paper considers the security problem of outsourcing storage from user devices to the cloud. A secure searchable encryption scheme is presented to enable searching of encrypted user data in the cloud. The scheme simultaneously supports fuzzy keyword searching and matched results ranking, which are two important factors in facilitating practical searchable encryption. A chaotic fuzzy transformation method is proposed to support secure fuzzy keyword indexing, storage and query. A secure posting list is also created to rank the matched results while maintaining the privacy and confidentiality of the user data, and saving the resources of the user mobile devices. Comprehensive tests have been performed and the experimental results show that the proposed scheme is efficient and suitable for a secure searchable cloud storage system.
Kings Eye is a platform independent situational awareness prototype for smart devices. Platform independence is important as there are more and more soldiers bringing their own devices, with different operating systems, into the field. The concept of Bring Your Own Device (BYOD) is a low-cost approach to equipping soldiers with situational awareness tools and by this it is important to facilitate and evaluate such solutions.
Autonomous vehicles must communicate with each other effectively and securely to make robust decisions. However, today's Internet falls short in supporting efficient data delivery and strong data security, especially in a mobile ad-hoc environment. Named Data Networking (NDN), a new data-centric Internet architecture, provides a better foundation for secure data sharing among autonomous vehicles. We examine two potential threats, false data dissemination and vehicle tracking, in an NDN-based autonomous vehicular network. To detect false data, we propose a four-level hierarchical trust model and the associated naming scheme for vehicular data authentication. Moreover, we address vehicle tracking concerns using a pseudonym scheme to anonymize vehicle names and certificate issuing proxies to further protect vehicle identity. Finally, we implemented and evaluated our AutoNDN application on Raspberry Pi-based mini cars in a wireless environment.