Visible to the public Biblio

Found 112 results

Filters: Keyword is Mobile communication  [Clear All Filters]
2023-07-12
Hassan, Shahriar, Muztaba, Md. Asif, Hossain, Md. Shohrab, Narman, Husnu S..  2022.  A Hybrid Encryption Technique based on DNA Cryptography and Steganography. 2022 IEEE 13th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON). :0501—0508.
The importance of data and its transmission rate are increasing as the world is moving towards online services every day. Thus, providing data security is becoming of utmost importance. This paper proposes a secure data encryption and hiding method based on DNA cryptography and steganography. Our approach uses DNA for encryption and data hiding processes due to its high capacity and simplicity in securing various kinds of data. Our proposed method has two phases. In the first phase, it encrypts the data using DNA bases along with Huffman coding. In the second phase, it hides the encrypted data into a DNA sequence using a substitution algorithm. Our proposed method is blind and preserves biological functionality. The result shows a decent cracking probability with comparatively better capacity. Our proposed method has eliminated most limitations identified in the related works. Our proposed hybrid technique can provide a double layer of security to sensitive data.
2023-03-03
Zadeh Nojoo Kambar, Mina Esmail, Esmaeilzadeh, Armin, Kim, Yoohwan, Taghva, Kazem.  2022.  A Survey on Mobile Malware Detection Methods using Machine Learning. 2022 IEEE 12th Annual Computing and Communication Workshop and Conference (CCWC). :0215–0221.
The prevalence of mobile devices (smartphones) along with the availability of high-speed internet access world-wide resulted in a wide variety of mobile applications that carry a large amount of confidential information. Although popular mobile operating systems such as iOS and Android constantly increase their defenses methods, data shows that the number of intrusions and attacks using mobile applications is rising continuously. Experts use techniques to detect malware before the malicious application gets installed, during the runtime or by the network traffic analysis. In this paper, we first present the information about different categories of mobile malware and threats; then, we classify the recent research methods on mobile malware traffic detection.
Aljawarneh, Fatin.  2022.  A Secure Smart Meter Application Framework. 2022 International Conference on Engineering & MIS (ICEMIS). :1–4.
We have proposed a new Smart Meter Application (SMA) Framework. This application registers consumers at utility provider (Electricity), takes the meter reading for electricity and makes billing. The proposed application might offer higher level of flexibility and security, time saving and trustworthiness between consumers and authority offices. It’s expected that the application will be developed by Flutter to support Android and iOS Mobile Operating Systems.
2023-02-17
Khan, Shahnawaz, Yusuf, Ammar, Haider, Mohammad, Thirunavukkarasu, K., Nand, Parma, Imam Rahmani, Mohammad Khalid.  2022.  A Review of Android and iOS Operating System Security. 2022 ASU International Conference in Emerging Technologies for Sustainability and Intelligent Systems (ICETSIS). :67–72.
Mobile devices are an inseparable part of our lives. They have made it possible to access all the information and services anywhere at any time. Almost all of the organizations try to provide a mobile device-based solution to its users. However, this convenience has arisen the risk of losing personal information and has increased the threat to security. It has been observed recently that some of the mobile device manufacturers and mobile apps developers have lost the private information of their users to hackers. It has risen a great concern among mobile device users about their personal information. Android and iOS are the major operating systems for mobile devices and share over 99% of the mobile device market. This research aims to conduct a comparative analysis of the security of the components in the Android and iOS operating systems. It analyses the security from several perspectives such as memory randomization, application sandboxing, isolation, encryption, built-in antivirus, and data storage. From the analysis, it is evident that iOS is more secure than Android operating system. However, this security comes with a cost of losing the freedom.
2022-10-03
Yang, Chen, Jia, Zhen, Li, Shundong.  2021.  Privacy-Preserving Proximity Detection Framework for Location-Based Services. 2021 International Conference on Networking and Network Applications (NaNA). :99–106.
With the popularization of mobile communication and sensing equipment, as well as the rapid development of location-aware technology and wireless communication technology, LBSs(Location-based services) bring convenience to people’s lives and enable people to arrange activities more efficiently and reasonably. It can provide more flexible LBS proximity detection query, which has attracted widespread attention in recent years. However, the development of proximity detection query still faces many severe challenges including query information privacy. For example, when users want to ensure their location privacy and data security, they can get more secure location-based services. In this article, we propose an efficient and privacy-protecting proximity detection framework based on location services: PD(Proximity Detection). Through PD, users can query the range of arbitrary polygons and obtain accurate LBS results. Specifically, based on homomorphic encryption technology, an efficient PRQ(polygon range query) algorithm is constructed. With the help of PRQ, PD, you can obtain accurate polygon range query results through the encryption request and the services provided by the LAS(LBS Agent Server) and the CS(Cloud Server). In addition, the query privacy of the queryer and the information of the data provider are protected. The correctness proof and performance analysis show that the scheme is safe and feasible. Therefore, our scheme is suitable for many practical applications.
2022-09-30
Shabalin, A. M., Kaliberda, E. A..  2021.  Development of a Set of Procedures for Providing Remote Access to a Corporate Computer Network by means of the SSH Protocol (Using the Example of the CISCO IOS Operating System). 2021 Dynamics of Systems, Mechanisms and Machines (Dynamics). :1–5.
The paper proposes ways to solve the problem of secure remote access to telecommunications’ equipment. The purpose of the study is to develop a set of procedures to ensure secure interaction while working remotely with Cisco equipment using the SSH protocol. This set of measures is a complete list of measures which ensures security of remote connection to a corporate computer network using modern methods of cryptography and network administration technologies. It has been tested on the GNS3 software emulator and Cisco telecommunications equipment and provides a high level of confidentiality and integrity of remote connection to a corporate computer network. In addition, the study detects vulnerabilities in the IOS operating system while running SSH service and suggests methods for their elimination.
2022-09-20
Samy, Salma, Banawan, Karim, Azab, Mohamed, Rizk, Mohamed.  2021.  Smart Blockchain-based Control-data Protection Framework for Trustworthy Smart Grid Operations. 2021 IEEE 12th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON). :0963—0969.
The critical nature of smart grids (SGs) attracts various network attacks and malicious manipulations. Existent SG solutions are less capable of ensuring secure and trustworthy operation. This is due to the large-scale nature of SGs and reliance on network protocols for trust management. A particular example of such severe attacks is the false data injection (FDI). FDI refers to a network attack, where meters' measurements are manipulated before being reported in such a way that the energy system takes flawed decisions. In this paper, we exploit the secure nature of blockchains to construct a data management framework based on public blockchain. Our framework enables trustworthy data storage, verification, and exchange between SG components and decision-makers. Our proposed system enables miners to invest their computational power to verify blockchain transactions in a fully distributed manner. The mining logic employs machine learning (ML) techniques to identify the locations of compromised meters in the network, which are responsible for generating FDI attacks. In return, miners receive virtual credit, which may be used to pay their electric bills. Our design circumvents single points of failure and intentional FDI attempts. Our numerical results compare the accuracy of three different ML-based mining logic techniques in two scenarios: focused and distributed FDI attacks for different attack levels. Finally, we proposed a majority-decision mining technique for the practical case of an unknown FDI attack level.
2022-09-09
Khadhim, Ban Jawad, Kadhim, Qusay Kanaan, Khudhair, Wijdan Mahmood, Ghaidan, Marwa Hameed.  2021.  Virtualization in Mobile Cloud Computing for Augmented Reality Challenges. 2021 2nd Information Technology To Enhance e-learning and Other Application (IT-ELA). :113—118.
Mobile cloud computing has suggested as a viable technology as a result of the fast growth of mobile applications and the emergence of the cloud computing idea. Mobile cloud computing incorporates cloud computing into the mobile environment and addresses challenges in mobile cloud computing applications like (processing capacity, battery storage capacity, privacy, and security). We discuss the enabling technologies and obstacles that we will face when we transition from mobile computing to mobile cloud computing to develop next-generation mobile cloud applications. This paper provides an overview of the processes and open concerns for mobility in mobile cloud computing for augmented reality service provisioning. This paper outlines the concept, system architecture, and taxonomy of virtualization technology, as well as research concerns related to virtualization security, and suggests future study fields. Furthermore, we highlight open challenges to provide light on the future of mobile cloud computing and future development.
2022-04-13
Auliani, Aishananda S., Candiwan.  2021.  Information Security Assessment On Court Tracking Information System: A Case Study from Mataram District Court. 2021 IEEE 12th Annual Ubiquitous Computing, Electronics Mobile Communication Conference (UEMCON). :0226–0230.
The Government of Indonesia has implemented an Electronic-Based Government System (SPBE) to provide fast and unlimited services by distance, space, and time. The Case Investigation Information System (SIPP) is a service for the public that requires good integration of information so that legal services are provided quickly and easily. In 2020 court websites experienced many hacker attacks based on data from internal court sources, at least there were more than 20 courts throughout Indonesia that were affected by damage to both the website, the SIPP web feature, and the court library featured. Based on the Minister of Communication and Informatics Regulation No. 4 of 2016 in article 7, every SPBE organizer must implement information security following the information security standards described by the Ministry of Communication and Information. Since this regulation is conceived to minimize the risk of the security breach on SPBE, and there is such numerous security breach in 2020 therefore this indicates poorly implemented of the regulation. Based on this finding this research aims to investigate which area is neglected. To achieve this, this research employs gap analysis using ISO/IEC 27001:2013and maturity level to reveal the neglected areas in information security. Current findings show there are SIPP users that still use weak passwords and lack of awareness of top management personnel in several information security areas such as securing sensitive documents or policies that regulate information security specifically for SIPP. These findings entails that the security management in Court is most likely at the initiative level.
2022-02-22
Barker, John, Hamada, Amal, Azab, Mohamed.  2021.  Lightweight Proactive Moving-target Defense for Secure Data Exchange in IoT Networks. 2021 IEEE 12th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON). :0317—0322.
Internet of Things (IoT) revolutionizes cutting-edge technologies by enabling smart sensing, and actuation of the physical world. IoT enables cooperation between numerous heterogeneous smart devices to exchange and aggregate data from the surrounding environment through the internet. Recently, the range of IoT technology could be utilized in the real world by the rapid spread of sensor devices. These capabilities open the door for vital challenges. Security is the major challenge that faces the IoT networks. Traditional solutions cannot tackle smart and powerful attackers. Moving Target Defense (MTD) deploys mechanisms and strategies that increase attackers' uncertainty and frustrate their attempt to eavesdrop the target to be protected. In addition, Steganography is the practice of concealing a message within another message. For security proposes, Steganography is used to hide significant data within any transmitted messages, such as images, videos, and text files. This paper presents Stegano-MTD framework that enables combination between MTD mechanisms with steganography. This combination offers a lightweight solution that can be implemented on the IoT network. Stegano-MTD slices the message into small labeled chunks and sends them randomly through the network's nodes. Steganography is used for hide the key file that used to reconstruct the original data. Simulation results show the effectiveness of the presented solution.
2021-12-21
Grube, Tim, Egert, Rolf, Mühlhäuser, Max, Daubert, Jörg.  2021.  The Cost of Path Information: Routing in Anonymous Communication. 2021 IEEE 18th Annual Consumer Communications Networking Conference (CCNC). :1–6.
Anonymity is an essential asset for a variety of communication systems, like humans' communication, the internet of things, and sensor networks. Establishing and maintaining such communication systems requires the exchange of information about their participants (called subjects). However, protecting anonymity reduces the availability of subject information, as these can be leveraged to break anonymity. Additionally, established techniques for providing anonymity often reduce the efficiency of communication networks. In this paper, we model four mechanisms to share routing information and discuss them with respect to their influence on anonymity and efficiency. While there is no ``one fits all'' solution, there are suitable trade-offs to establish routing information complying with the technical capabilities of the subjects. Distributed solutions like decentralized lookup tables reduce routing information in messages at the cost of local memory consumption; other mechanisms like multi-layer encrypted path information come with higher communication overhead but reduce memory consumption for each subject.
2021-11-08
Qian, Dazan, Guo, Songhui, Sun, Lei, Liu, Haidong, Hao, Qianfang, Zhang, Jing.  2020.  Trusted Virtual Network Function Based on vTPM. 2020 7th International Conference on Information Science and Control Engineering (ICISCE). :1484–1488.
Mobile communication technology is developing rapidly, and this is integrated with technologies such as Software Defined Network (SDN), cloud computing, and Network Function Virtualization (NFV). Network Functions (NFs) are no longer deployed on dedicated hardware devices, while deployed in Virtual Machines (VMs) or containers as Virtual Network Functions (VNFs). If VNFs are tampered with or replaced, the communication system will not function properly. Our research is to enhance the security of VNFs using trusted computing technology. By adding Virtual Trusted Platform Module (vTPM) to the virtualization platform, the chain of trust extends from the VM operating system to VNFs within the VM. Experimental results prove that the solution can effectively protect the integrity of VNFs from being attacked.
2021-05-25
Qian, Kai, Dan Lo, Chia-Tien, Guo, Minzhe, Bhattacharya, Prabir, Yang, Li.  2012.  Mobile security labware with smart devices for cybersecurity education. IEEE 2nd Integrated STEM Education Conference. :1—3.

Smart mobile devices such as smartphones and tablets have become an integral part of our society. However, it also becomes a prime target for attackers with malicious intents. There have been a number of efforts on developing innovative courseware to promote cybersecurity education and to improve student learning; however, hands-on labs are not well developed for smart mobile devices and for mobile security topics. In this paper, we propose to design and develop a mobile security labware with smart mobile devices to promote the cybersecurity education. The integration of mobile computing technologies and smart devices into cybersecurity education will connect the education to leading-edge information technologies, motivate and engage students in security learning, fill in the gap with IT industry need, and help faculties build expertise on mobile computing. In addition, the hands-on experience with mobile app development will promote student learning and supply them with a better understanding of security knowledge not only in classical security domains but also in the emerging mobile security areas.

2020-11-02
Vaseer, G., Ghai, G., Ghai, D., Patheja, P. S..  2019.  A Neighbor Trust-Based Mechanism to Protect Mobile Networks. IEEE Potentials. 38:20–25.
Mobile nodes in a mobile ad hoc network (MANET) form a temporal link between a sender and receiver due to their continuous movement in a limited area. This network can be easily attacked because there is no organized identity. This article discusses the MANET, its various associated challenges, and selected solutions. As a case study, a neighbor trust-based security scheme that can prevent malicious attacks in a MANET is discussed in detail. The security scheme identifies each node's behavior in the network in terms of packets received and forwarded. Nodes are placed in a suspicious range, and if the security scheme detects malicious function continuously, then it is confirmed that the particular node is the attacker in the network.
2020-09-21
Corneci, Vlad-Mihai, Carabas, Costin, Deaconescu, Razvan, Tapus, Nicolae.  2019.  Adding Custom Sandbox Profiles to iOS Apps. 2019 18th RoEduNet Conference: Networking in Education and Research (RoEduNet). :1–5.
The massive adoption of mobile devices by both individuals and companies is raising many security concerns. The fact that such devices are handling sensitive data makes them a target for attackers. Many attack prevention mechanisms are deployed with a last line of defense that focuses on the containment principle. Currently, iOS treats each 3rd party application alike which may lead to security flaws. We propose a framework in which each application has a custom sandboxed environment. We investigated the current confinement architecture used by Apple and built a solution on top of it.
2020-09-08
Fang, Chao, Wang, Zhuwei, Huang, Huawei, Si, Pengbo, Yu, F. Richard.  2019.  A Stackelberg-Based Optimal Profit Split Scheme in Information-Centric Wireless Networks. 2019 IEEE International Conference on Communications Workshops (ICC Workshops). :1–6.
The explosive growth of mobile traffic in the Internet makes content delivery a challenging issue to cope with. To promote efficiency of content distribution and reduce network cost, Internet Service Providers (ISPs) and content providers (CPs) are motivated to cooperatively work. As a clean-slate solution, nowadays Information-Centric Networking architectures have been proposed and widely researched, where the thought of in-network caching, especially edge caching, can be applied to mobile wireless networks to fundamentally address this problem. Considered the profit split issue between ISPs and CPs and the influence of content popularity is largely ignored, in this paper, we propose a Stackelberg-based optimal network profit split scheme for content delivery in information-centric wireless networks. Simulation results show that the performance of our proposed model is comparable to its centralized solution and obviously superior to current ISP-CP cooperative schemes without considering cache deployment in the network.
2020-08-10
Uddin, Mostafa, Nadeem, Tamer, Nukavarapu, Santosh.  2019.  Extreme SDN Framework for IoT and Mobile Applications Flexible Privacy at the Edge. 2019 IEEE International Conference on Pervasive Computing and Communications (PerCom. :1–11.
With the current significant penetration of mobile devices (i.e. smartphones and tablets) and the tremendous increase in the number of the corresponding mobile applications, they have become an indispensable part of our lives. Nowadays, there is a significant growth in the number of sensitive applications such as personal health applications, personal financial applications, home monitoring applications, etc. In addition, with the significant growth of Internet-of-Things (IoT) devices, smartphones and the corresponding applications are widely considered as the Internet gateways for these devices. Mobile devices mostly use wireless LANs (WLANs) (i.e., WiFi networks) as the prominent network interface to the Internet. However, due to the broadcast nature of WiFi links, wireless traffics are exposed to any eavesdropping adversary within the WLAN. Despite WiFi encryption, studies show that application usage information could be inferred from the encrypted wireless traffic. The leakage of this sensitive information is very serious issue that will significantly impact users' privacy and security. In addressing this privacy concern, we design and develop a lightweight programmable privacy framework, called PrivacyGuard. PrivacyGuard is inspired by the vision of pushing the Software Defined Network (SDN)-like paradigm all the way to wireless network edge, is designed to support of adopting privacy preserving policies to protect the wireless communication of the sensitive applications. In this paper, we demonstrate and evaluate a prototype of PrivacyGuard framework on Android devices showing the flexibility and efficiency of the framework.
2020-07-30
Kellner, Ansgar, Horlboge, Micha, Rieck, Konrad, Wressnegger, Christian.  2019.  False Sense of Security: A Study on the Effectivity of Jailbreak Detection in Banking Apps. 2019 IEEE European Symposium on Security and Privacy (EuroS P). :1—14.
People increasingly rely on mobile devices for banking transactions or two-factor authentication (2FA) and thus trust in the security provided by the underlying operating system. Simultaneously, jailbreaks gain tremendous popularity among regular users for customizing their devices. In this paper, we show that both do not go well together: Jailbreaks remove vital security mechanisms, which are necessary to ensure a trusted environment that allows to protect sensitive data, such as login credentials and transaction numbers (TANs). We find that all but one banking app, available in the iOS App Store, can be fully compromised by trivial means without reverse-engineering, manipulating the app, or other sophisticated attacks. Even worse, 44% of the banking apps do not even try to detect jailbreaks, revealing the prevalent, errant trust in the operating system's security. This study assesses the current state of security of banking apps and pleads for more advanced defensive measures for protecting user data.
2020-04-06
Liu, Lan, Lin, Jun, Wang, Qiang, Xu, Xiaoping.  2018.  Research on Network Malicious Code Detection and Provenance Tracking in Future Network. 2018 IEEE International Conference on Software Quality, Reliability and Security Companion (QRS-C). :264–268.
with the development of SDN, ICN and 5G networks, the research of future network becomes a hot topic. Based on the design idea of SDN network, this paper analyzes the propagation model and detection method of malicious code in future network. We select characteristics of SDN and analyze the features use different feature selection methods and sort the features. After comparison the influence of running time by different classification algorithm of different feature selection, we analyze the choice of reduction dimension m, and find out the different types of malicious code corresponding to the optimal feature subset and matching classification method, designed for malware detection system. We analyze the node migration rate of malware in mobile network and its effect on the outbreak of the time. In this way, it can provide reference for the management strategy of the switch node or the host node by future network controller.
2019-06-17
Gu, R., Zhang, X., Yu, L., Zhang, J..  2018.  Enhancing Security and Scalability in Software Defined LTE Core Networks. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :837–842.

The rapid development of mobile networks has revolutionized the way of accessing the Internet. The exponential growth of mobile subscribers, devices and various applications frequently brings about excessive traffic in mobile networks. The demand for higher data rates, lower latency and seamless handover further drive the demand for the improved mobile network design. However, traditional methods can no longer offer cost-efficient solutions for better user quality of experience with fast time-to-market. Recent work adopts SDN in LTE core networks to meet the requirement. In these software defined LTE core networks, scalability and security become important design issues that must be considered seriously. In this paper, we propose a scalable channel security scheme for the software defined LTE core network. It applies the VxLAN for scalable tunnel establishment and MACsec for security enhancement. According to our evaluation, the proposed scheme not only enhances the security of the channel communication between different network components, but also improves the flexibility and scalability of the core network with little performance penalty. Moreover, it can also shed light on the design of the next generation cellular network.

2019-03-25
Yu, Kuai, Gu, Naijie, Su, Junjie, Bai, Qilin.  2018.  Efficient Software Implementation of ZUC Stream Cipher. Proceedings of the 2Nd International Conference on Vision, Image and Signal Processing. :52:1–52:6.
ZUC stream cipher is the first stream cipher developed independently by Chinese cryptologists as an international standard. The fast implementation of encryption algorithm is an important issue in cryptography application. At present, the research on ZUC stream cipher is mainly based on hardware implementation, and there are many efficient hardware implementations of ZUC stream cipher, but there are few efficient software implementations at present. This paper presents an efficient software design and implementation of ZUC stream cipher. Firstly, we propose the delayed modular, sliding window, and S-box optimizations to reduce the computational cost without modifying the calculation result of ZUC stream cipher. Secondly, single instruction multiple data instructions, reducing the times of memory access, loop unrolling optimization and other code optimization methods can improve the speed of encryption and decryption. Finally, we design and implementation a genetic algorithm to find the optimal sequence of optimizations in compiler. Experiments show that compared with the implementation of ZUC stream cipher given in the official document, these methods can give 102% performance improvement.
2018-09-28
Qu, X., Mu, L..  2017.  An augmented cubature Kalman filter for nonlinear dynamical systems with random parameters. 2017 36th Chinese Control Conference (CCC). :1114–1118.

In this paper, we investigate the Bayesian filtering problem for discrete nonlinear dynamical systems which contain random parameters. An augmented cubature Kalman filter (CKF) is developed to deal with the random parameters, where the state vector is enlarged by incorporating the random parameters. The corresponding number of cubature points is increased, so the augmented CKF method requires more computational complexity. However, the estimation accuracy is improved in comparison with that of the classical CKF method which uses the nominal values of the random parameters. An application to the mobile source localization with time difference of arrival (TDOA) measurements and random sensor positions is provided where the simulation results illustrate that the augmented CKF method leads to a superior performance in comparison with the classical CKF method.

2018-09-05
Mayle, A., Bidoki, N. H., Masnadi, S., Boeloeni, L., Turgut, D..  2017.  Investigating the Value of Privacy within the Internet of Things. GLOBECOM 2017 - 2017 IEEE Global Communications Conference. :1–6.

Many companies within the Internet of Things (IoT) sector rely on the personal data of users to deliver and monetize their services, creating a high demand for personal information. A user can be seen as making a series of transactions, each involving the exchange of personal data for a service. In this paper, we argue that privacy can be described quantitatively, using the game- theoretic concept of value of information (VoI), enabling us to assess whether each exchange is an advantageous one for the user. We introduce PrivacyGate, an extension to the Android operating system built for the purpose of studying privacy of IoT transactions. An example study, and its initial results, are provided to illustrate its capabilities.

Li, C., Palanisamy, B., Joshi, J..  2017.  Differentially Private Trajectory Analysis for Points-of-Interest Recommendation. 2017 IEEE International Congress on Big Data (BigData Congress). :49–56.

Ubiquitous deployment of low-cost mobile positioning devices and the widespread use of high-speed wireless networks enable massive collection of large-scale trajectory data of individuals moving on road networks. Trajectory data mining finds numerous applications including understanding users' historical travel preferences and recommending places of interest to new visitors. Privacy-preserving trajectory mining is an important and challenging problem as exposure of sensitive location information in the trajectories can directly invade the location privacy of the users associated with the trajectories. In this paper, we propose a differentially private trajectory analysis algorithm for points-of-interest recommendation to users that aims at maximizing the accuracy of the recommendation results while protecting the privacy of the exposed trajectories with differential privacy guarantees. Our algorithm first transforms the raw trajectory dataset into a bipartite graph with nodes representing the users and the points-of-interest and the edges representing the visits made by the users to the locations, and then extracts the association matrix representing the bipartite graph to inject carefully calibrated noise to meet έ-differential privacy guarantees. A post-processing of the perturbed association matrix is performed to suppress noise prior to performing a Hyperlink-Induced Topic Search (HITS) on the transformed data that generates an ordered list of recommended points-of-interest. Extensive experiments on a real trajectory dataset show that our algorithm is efficient, scalable and demonstrates high recommendation accuracy while meeting the required differential privacy guarantees.

2018-08-23
Nallusamy, T., Ravi, R..  2017.  Node energy based virus propagation model for bluetooth. 2017 International Conference on Communication and Signal Processing (ICCSP). :1778–1780.

With the continuous development of mobile based Wireless technologies, Bluetooth plays a vital role in smart-phone Era. In such scenario, the security measures are needed to be enhanced for Bluetooth. We propose a Node Energy Based Virus Propagation Model (NBV) for Bluetooth. The algorithm works with key features of node capacity and node energy in Bluetooth network. This proposed NBV model works along with E-mail worm Propagation model. Finally, this work simulates and compares the virus propagation with respect to Node Energy and network traffic.