Visible to the public Biblio

Found 1057 results

Filters: Keyword is data privacy  [Clear All Filters]
2021-08-11
Meskanen, Tommi, Niemi, Valtteri, Kuusijäarvi, Jarkko.  2020.  Privacy-Preserving Peer Discovery for Group Management in p2p Networks. 2020 27th Conference of Open Innovations Association (FRUCT). :150—156.
The necessity for peer-to-peer (p2p) communications is obvious; current centralized solutions are capturing and storing too much information from the individual people communicating with each other. Privacy concerns with a centralized solution in possession of all the users data are a difficult matter. HELIOS platform introduces a new social-media platform that is not in control of any central operator, but brings the power of possession of the data back to the users. It does not have centralized servers that store and handle receiving/sending of the messages. Instead, it relies on the current open-source solutions available in the p2p communities to propagate the messages to the wanted recipients of the data and/or messages. The p2p communications also introduce new problems in terms of privacy and tracking of the user, as the nodes part of a p2p network can see what data the other nodes provide and ask for. How the sharing of data in a p2p network can be achieved securely, taking into account the user's privacy is a question that has not been fully answered so far. We do not claim we answer this question fully in this paper either, but we propose a set of protocols to help answer one specific problem. Especially, this paper proposes how to privately share data (end-point address or other) of the user between other users, provided that they have previously connected with each other securely, either offline or online.
2021-08-02
Wagner, Torrey J., Ford, Thomas C..  2020.  Metrics to Meet Security amp; Privacy Requirements with Agile Software Development Methods in a Regulated Environment. 2020 International Conference on Computing, Networking and Communications (ICNC). :17—23.
This work examines metrics that can be used to measure the ability of agile software development methods to meet security and privacy requirements of communications applications. Many implementations of communication protocols, including those in vehicular networks, occur within regulated environments where agile development methods are traditionally discouraged. We propose a framework and metrics to measure adherence to security, quality and software effectiveness regulations if developers desire the cost and schedule benefits of agile methods. After providing an overview of specific challenges that a regulated environment imposes on communications software development, we proceed to examine the 12 agile principles and how they relate to a regulatory environment. From this review we identify two metrics to measure performance of three key regulatory attributes of software for communications applications, and then recommend an approach of either tools, agile methods or DevOps that is best positioned to satisfy its regulated environment attributes. By considering the recommendations in this paper, managers of software-dominant communications programs in a regulated environment can gain insight into leveraging the benefits of agile methods.
Zhou, Eda, Turcotte, Joseph, De Carli, Lorenzo.  2020.  Enabling Security Analysis of IoT Device-to-Cloud Traffic. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1888—1894.
End-to-end encryption is now ubiquitous on the internet. By securing network communications with TLS, parties can insure that in-transit data remains inaccessible to collection and analysis. In the IoT domain however, end-to-end encryption can paradoxically decrease user privacy, as many IoT devices establish encrypted communications with the manufacturer's cloud backend. The content of these communications remains opaque to the user and in several occasions IoT devices have been discovered to exfiltrate private information (e.g., voice recordings) without user authorization. In this paper, we propose Inspection-Friendly TLS (IF-TLS), an IoT-oriented, TLS-based middleware protocol that preserves the encryption offered by TLS while allowing traffic analysis by middleboxes under the user's control. Differently from related efforts, IF-TLS is designed from the ground up for the IoT world, adding limited complexity on top of TLS and being fully controllable by the residential gateway. At the same time it provides flexibility, enabling the user to offload traffic analysis to either the gateway itself, or cloud-based middleboxes. We implemented a stable, Python-based prototype IF-TLS library; preliminary results show that performance overhead is limited and unlikely to affect quality-of-experience.
2021-07-27
MacDermott, Áine, Carr, John, Shi, Qi, Baharon, Mohd Rizuan, Lee, Gyu Myoung.  2020.  Privacy Preserving Issues in the Dynamic Internet of Things (IoT). 2020 International Symposium on Networks, Computers and Communications (ISNCC). :1–6.
Convergence of critical infrastructure and data, including government and enterprise, to the dynamic Internet of Things (IoT) environment and future digital ecosystems exhibit significant challenges for privacy and identity in these interconnected domains. There are an increasing variety of devices and technologies being introduced, rendering existing security tools inadequate to deal with the dynamic scale and varying actors. The IoT is increasingly data driven with user sovereignty being essential - and actors in varying scenarios including user/customer, device, manufacturer, third party processor, etc. Therefore, flexible frameworks and diverse security requirements for such sensitive environments are needed to secure identities and authenticate IoT devices and their data, protecting privacy and integrity. In this paper we present a review of the principles, techniques and algorithms that can be adapted from other distributed computing paradigms. Said review will be used in application to the development of a collaborative decision-making framework for heterogeneous entities in a distributed domain, whilst simultaneously highlighting privacy preserving issues in the IoT. In addition, we present our trust-based privacy preserving schema using Dempster-Shafer theory of evidence. While still in its infancy, this application could help maintain a level of privacy and nonrepudiation in collaborative environments such as the IoT.
Van Vu, Thi, Luong, The Dung, Hoang, Van Quan.  2020.  An Elliptic Curve-based Protocol for Privacy Preserving Frequency Computation in 2-Part Fully Distributed Setting. 2020 12th International Conference on Knowledge and Systems Engineering (KSE). :91–96.
Privacy-preserving frequency computation is critical to privacy-preserving data mining in 2-Part Fully Distributed Setting (such as association rule analysis, clustering, and classification analysis) and has been investigated in many researches. However, these solutions are based on the Elgamal Cryptosystem, making computation and communication efficiency low. Therefore, this paper proposes an improved protocol using an Elliptic Curve Cryptosystem. The theoretical and experimental analysis shows that the proposed method is effective in both computing and communication compared to other methods.
Jiao, Rui, Zhang, Lan, Li, Anran.  2020.  IEye: Personalized Image Privacy Detection. 2020 6th International Conference on Big Data Computing and Communications (BIGCOM). :91–95.
Massive images are being shared via a variety of ways, such as social networking. The rich content of images raise a serious concern for privacy. A great number of efforts have been devoted to designing mechanisms for privacy protection based on the assumption that the privacy is well defined. However, in practice, given a collection of images it is usually nontrivial to decide which parts of images should be protected, since the sensitivity of objects is context-dependent and user-dependent. To meet personalized privacy requirements of different users, we propose a system IEye to automatically detect private parts of images based on both common knowledge and personal knowledge. Specifically, for each user's images, multi-layered semantic graphs are constructed as feature representations of his/her images and a rule set is learned from those graphs, which describes his/her personalized privacy. In addition, an optimization algorithm is proposed to protect the user's privacy as well as minimize the loss of utility. We conduct experiments on two datasets, the results verify the effectiveness of our design to detect and protect personalized image privacy.
Zheng, Zhihao, Cao, Zhenfu, Shen, Jiachen.  2020.  Practical and Secure Circular Range Search on Private Spatial Data. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :639–645.
With the location-based services (LBS) booming, the volume of spatial data inevitably explodes. In order to reduce local storage and computational overhead, users tend to outsource data and initiate queries to the cloud. However, sensitive data or queries may be compromised if cloud server has access to raw data and plaintext token. To cope with this problem, searchable encryption for geometric range is applied. Geometric range search has wide applications in many scenarios, especially the circular range search. In this paper, a practical and secure circular range search scheme (PSCS) is proposed to support searching for spatial data in a circular range. With our scheme, a semi-honest cloud server will return data for a given circular range correctly without uncovering index privacy or query privacy. We propose a polynomial split algorithm which can decompose the inner product calculation neatly. Then, we define the security of our PSCS formally and prove that it is secure under same-closeness-pattern chosen-plaintext attacks (CLS-CPA) in theory. In addition, we demonstrate the efficiency and accuracy through analysis and experiments compared with existing schemes.
2021-07-08
Chaturvedi, Amit Kumar, Chahar, Meetendra Singh, Sharma, Kalpana.  2020.  Proposing Innovative Perturbation Algorithm for Securing Portable Data on Cloud Servers. 2020 9th International Conference System Modeling and Advancement in Research Trends (SMART). :360—364.
Cloud computing provides an open architecture and resource sharing computing platform with pay-per-use model. It is now a popular computing platform and most of the new internet based computing services are on this innovation supported environment. We consider it as innovation supported because developers are more focused here on the service design, rather on arranging the infrastructure, network, management of the resources, etc. These all things are available in cloud computing on hired basis. Now, a big question arises here is the security of data or privacy of data because the service provider is already using the infrastructure, network, storage, processors, and other more resources from the third party. So, the security or privacy of the portable user's data is the main motivation for writing this research paper. In this paper, we are proposing an innovative perturbation algorithm MAP() to secure the portable user's data on the cloud server.
Rao, Liting, Xie, Qingqing, Zhao, Hui.  2020.  Data Sharing for Multiple Groups with Privacy Preservation in the Cloud. 2020 International Conference on Internet of Things and Intelligent Applications (ITIA). :1—5.
With almost unlimited storage capacity and low maintenance cost, cloud storage becomes a convenient and efficient way for data sharing among cloud users. However, this introduces the challenges of access control and privacy protection when data sharing for multiple groups, as each group usually has its own encryption and access control mechanism to protect data confidentiality. In this paper, we propose a multiple-group data sharing scheme with privacy preservation in the cloud. This scheme constructs a flexible access control framework by using group signature, ciphertext-policy attribute-based encryption and broadcast encryption, which supports both intra-group and cross-group data sharing with anonymous access. Furthermore, our scheme supports efficient user revocation. The security and efficiency of the scheme are proved thorough analysis and experiments.
Ilokah, Munachiso, Eklund, J. Mikael.  2020.  A Secure Privacy Preserving Cloud-based Framework for Sharing Electronic Health Data*. 2020 42nd Annual International Conference of the IEEE Engineering in Medicine Biology Society (EMBC). :5592—5597.
There exists a need for sharing user health data, especially with institutes for research purposes, in a secure fashion. This is especially true in the case of a system that includes a third party storage service, such as cloud computing, which limits the control of the data owner. The use of encryption for secure data storage continues to evolve to meet the need for flexible and fine-grained access control. This evolution has led to the development of Attribute Based Encryption (ABE). The use of ABE to ensure the security and privacy of health data has been explored. This paper presents an ABE based framework which allows for the secure outsourcing of the more computationally intensive processes for data decryption to the cloud servers. This reduces the time needed for decryption to occur at the user end and reduces the amount of computational power needed by users to access data.
Abdo, Mahmoud A., Abdel-Hamid, Ayman A., Elzouka, Hesham A..  2020.  A Cloud-based Mobile Healthcare Monitoring Framework with Location Privacy Preservation. 2020 International Conference on Innovation and Intelligence for Informatics, Computing and Technologies (3ICT). :1—8.
Nowadays, ubiquitous healthcare monitoring applications are becoming a necessity. In a pervasive smart healthcare system, the user's location information is always transmitted periodically to healthcare providers to increase the quality of the service provided to the user. However, revealing the user's location will affect the user's privacy. This paper presents a novel cloud-based secure location privacy-preserving mobile healthcare framework with decision-making capabilities. A user's vital signs are sensed possibly through a wearable healthcare device and transmitted to a cloud server for securely storing user's data, processing, and decision making. The proposed framework integrates a number of features such as machine learning (ML) for classifying a user's health state, and crowdsensing for collecting information about a person's privacy preferences for possible locations and applying such information to a user who did not set his privacy preferences. In addition to location privacy preservation methods (LPPM) such as obfuscation, perturbation and encryption to protect the location of the user and provide a secure monitoring framework. The proposed framework detects clear emergency cases and quickly decides about sending a help message to a healthcare provider before sending data to the cloud server. To validate the efficiency of the proposed framework, a prototype is developed and tested. The obtained results from the proposed prototype prove its feasibility and utility. Compared to the state of art, the proposed framework offers an adaptive context-based decision for location sharing privacy and controlling the trade-off between location privacy and service utility.
Raja, S. Kanaga Suba, Sathya, A., Priya, L..  2020.  A Hybrid Data Access Control Using AES and RSA for Ensuring Privacy in Electronic Healthcare Records. 2020 International Conference on Power, Energy, Control and Transmission Systems (ICPECTS). :1—5.
In the current scenario, the data owners would like to access data from anywhere and anytime. Hence, they will store their data in public or private cloud along with encryption and particular set of attributes to access control on the cloud data. While uploading the data into public or private cloud they will assign some attribute set to their data. If any authorized cloud user wants to download their data they should enter that particular attribute set to perform further actions on the data owner's data. A cloud user wants to register their details under cloud organization to access the data owner's data. Users wants to submit their details as attributes along with their designation. Based on the Users details Semi-Trusted Authority generates decryption keys to get control on owner's data. A user can perform a lot of operation over the cloud data. If the user wants to read the cloud data he needs to be entering some read related, and if he wants to write the data he needs to be entering write related attribute. For each and every action user in an organization would be verified with their unique attribute set. These attributes will be stored by the admins to the authorized users in cloud organization. These attributes will be stored in the policy files in a cloud. Along with this attribute,a rule based engine is used, to provide the access control to user. If any user leaks their decryption key to the any malicious user data owners wants to trace by sending audit request to auditor and auditor will process the data owners request and concludes that who is the convict.
Kanchanadevi, P., Raja, Laxmi, Selvapandian, D., Dhanapal, R..  2020.  An Attribute Based Encryption Scheme with Dynamic Attributes Supporting in the Hybrid Cloud. 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC). :271—273.
Cloud computing is the flexible platform to outsource the data from local server to commercial cloud. However cloud provides tremendous benefits to user, data privacy and data leakage reduce the attention of cloud. For protecting data privacy and reduce data leakage various techniques has to be implemented in cloud. There are various types of cloud environment, but we concentrate on Hybrid cloud. Hybrid cloud is nothing but combination of more than two or more cloud. Where critical operations are performed in private cloud and non critical operations are performed in public cloud. So, it has numerous advantages and criticality too. In this paper, we focus on data security through encryption scheme over Hybrid Cloud. There are various encryption schemes are close to us but it also have data security issues. To overcome these issues, Attribute Based Encryption Scheme with Dynamic Attributes Supporting (ABE-DAS) has proposed. Attribute based Encryption Scheme with Dynamic Attributes Supporting technique enhance the security of the data in hybrid cloud.
2021-07-07
Moustafa, Nour, Ahmed, Mohiuddin, Ahmed, Sherif.  2020.  Data Analytics-Enabled Intrusion Detection: Evaluations of ToNİoT Linux Datasets. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :727–735.
With the widespread of Artificial Intelligence (AI)-enabled security applications, there is a need for collecting heterogeneous and scalable data sources for effectively evaluating the performances of security applications. This paper presents the description of new datasets, named ToNİoT datasets that include distributed data sources collected from Telemetry datasets of Internet of Things (IoT) services, Operating systems datasets of Windows and Linux, and datasets of Network traffic. The paper aims to describe the new testbed architecture used to collect Linux datasets from audit traces of hard disk, memory and process. The architecture was designed in three distributed layers of edge, fog, and cloud. The edge layer comprises IoT and network systems, the fog layer includes virtual machines and gateways, and the cloud layer includes data analytics and visualization tools connected with the other two layers. The layers were programmatically controlled using Software-Defined Network (SDN) and Network-Function Virtualization (NFV) using the VMware NSX and vCloud NFV platform. The Linux ToNİoT datasets would be used to train and validate various new federated and distributed AI-enabled security solutions such as intrusion detection, threat intelligence, privacy preservation and digital forensics. Various Data analytical and machine learning methods are employed to determine the fidelity of the datasets in terms of examining feature engineering, statistics of legitimate and security events, and reliability of security events. The datasets can be publicly accessed from [1].
Suciu, George, Hussain, Ijaz, Petrescu, Gabriel.  2020.  Role of Ubiquitous Computing and Mobile WSN Technologies and Implementation. 2020 International Conference on Electrical, Communication, and Computer Engineering (ICECCE). :1–6.
Computing capabilities such as real time data, unlimited connection, data from sensors, environmental analysis, automated decisions (machine learning) are demanded by many areas like industry for example decision making, machine learning, by research and military, for example GPS, sensor data collection. The possibility to make these features compatible with each domain that demands them is known as ubiquitous computing. Ubiquitous computing includes network topologies such as wireless sensor networks (WSN) which can help further improving the existing communication, for example the Internet. Also, ubiquitous computing is included in the Internet of Things (IoT) applications. In this article, it is discussed the mobility of WSN and its advantages and innovations, which make possible implementations for smart home and office. Knowing the growing number of mobile users, we place the mobile phone as the key factor of the future ubiquitous wireless networks. With secure computing, communicating, and storage capacities of mobile devices, they can be taken advantage of in terms of architecture in the sense of scalability, energy efficiency, packet delay, etc. Our work targets to present a structure from a ubiquitous computing point of view for researchers who have an interest in ubiquitous computing and want to research on the analysis, to implement a novel method structure for the ubiquitous computing system in military sectors. Also, this paper presents security and privacy issues in ubiquitous sensor networks (USN).
2021-06-28
Sendhil, R., Amuthan, A..  2020.  A Comparative Study on security breach in Fog computing and its impact. 2020 International Conference on Electronics and Sustainable Communication Systems (ICESC). :247–251.
Budding technologies like IoT requires minimum latency for performing real-time applications. The IoT devices collect a huge amount of big data and stores in the cloud environment, because of its on-demand services and scalability. But processing the needed information of the IoT devices from the cloud computing environment is found to be time-sensitive one. To eradicate this issue fog computing environment was created which acts an intermediate between the IoT devices and cloud computing environment. The fog computing performs intermediate computation and storage which is needed by IoT devices and it eliminates the drawbacks of latency and bandwidth limitation faced by directly using cloud computing for storage and accessing. The fog computing even though more advantageous it is more exposed to security issues by its architecture. This paper concentrates more on the security issues met by fog computing and the present methods used by the researchers to secure fog with their pros and cons.
2021-06-24
King, Andrew, Kaleem, Faisal, Rabieh, Khaled.  2020.  A Survey on Privacy Issues of Augmented Reality Applications. 2020 IEEE Conference on Application, Information and Network Security (AINS). :32—40.
Privacy is one of the biggest concerns of the coming decade, ranking third among concerns of consumers. Data breaches and leaks are constantly in the news with companies like Facebook and Amazon being outed for their excessive data collection. With companies and governmental agencies tracking and monitoring individuals to a great degree, there are concerns that contemporary technologies that feed into these systems can be misused or misappropriated further. Frameworks currently in place fail to address many of these consumer's concerns and even the legal framework could use further elaboration to better control the way data is handled. In this paper, We address the current industrial standards, frameworks, and concerns of one of the biggest technology trends right now, the Augmented Reality. The expected prevalence of augmented reality applications necessitates a deeper study not only of their security but the expected challenges of users using such applications as well.
Gamagedara Arachchilage, Nalin Asanka, Hameed, Mumtaz Abdul.  2020.  Designing a Serious Game: Teaching Developers to Embed Privacy into Software Systems. 2020 35th IEEE/ACM International Conference on Automated Software Engineering Workshops (ASEW). :7—12.
Software applications continue to challenge user privacy when users interact with them. Privacy practices (e.g. Data Minimisation (DM), Privacy by Design (PbD) or General Data Protection Regulation (GDPR)) and related “privacy engineering” methodologies exist and provide clear instructions for developers to implement privacy into software systems they develop that preserve user privacy. However, those practices and methodologies are not yet a common practice in the software development community. There has been no previous research focused on developing “educational” interventions such as serious games to enhance software developers' coding behaviour. Therefore, this research proposes a game design framework as an educational tool for software developers to improve (secure) coding behaviour, so they can develop privacy-preserving software applications that people can use. The elements of the proposed framework were incorporated into a gaming application scenario that enhances the software developers' coding behaviour through their motivation. The proposed work not only enables the development of privacy-preserving software systems but also helping the software development community to put privacy guidelines and engineering methodologies into practice.
2021-06-02
Anbumani, P., Dhanapal, R..  2020.  Review on Privacy Preservation Methods in Data Mining Based on Fuzzy Based Techniques. 2020 2nd International Conference on Advances in Computing, Communication Control and Networking (ICACCCN). :689—694.
The most significant motivation behind calculations in data mining will play out excavation on incomprehensible past examples since the extremely large data size. During late occasions there are numerous phenomenal improvements in data assembling because of the advancement in the field of data innovation. Lately, Privacy issues in data Preservation didn't get a lot of consideration in the process mining network; nonetheless, a few protection safeguarding procedures in data change strategies have been proposed in the data mining network. There are more normal distinction between data mining and cycle mining exist yet there are key contrasts that make protection safeguarding data mining methods inadmissible to mysterious cycle data. Results dependent on the data mining calculation can be utilized in different regions, for example, Showcasing, climate estimating and Picture Examination. It is likewise uncovered that some delicate data has a result of the mining calculation. Here we can safeguard the Privacy by utilizing PPT (Privacy Preservation Techniques) strategies. Important Concept in data mining is privacy preservation Techniques (PPT) because data exchanged between different persons needs security, so that other persons didn't know what actual data transferred between the actual persons. Preservation in data mining deals that not showing the output information / data in the data mining by using various methods while the output data is precious. There are two techniques used for privacy preservation techniques. One is to alter the input information / data and another one is to alter the output information / data. The method is proposed for protection safeguarding in data base environmental factors is data change. This capacity has fuzzy three-sided participation with this strategy for data change to change the first data collection.
Sun, Mingjing, Zhao, Chengcheng, He, Jianping.  2020.  Privacy-Preserving Correlated Data Publication with a Noise Adding Mechanism. 2020 IEEE 16th International Conference on Control Automation (ICCA). :494—499.
The privacy issue in data publication is critical and has been extensively studied. However, most of the existing works assume the data to be published is independent, i.e., the correlation among data is neglected. The correlation is unavoidable in data publication, which universally manifests intrinsic correlations owing to social, behavioral, and genetic relationships. In this paper, we investigate the privacy concern of data publication where deterministic and probabilistic correlations are considered, respectively. Specifically, (ε,δ)-multi-dimensional data-privacy (MDDP) is proposed to quantify the correlated data privacy. It characterizes the disclosure probability of the published data being jointly estimated with the correlation under a given accuracy. Then, we explore the effects of deterministic correlations on privacy disclosure. For deterministic correlations, it is shown that the successful disclosure rate with correlations increases compared to the one without knowing the correlation. Meanwhile, a closed-form solution of the optimal disclosure probability and the strict bound of privacy disclosure gain are derived. Extensive simulations on a real dataset verify our analytical results.
2021-06-01
Zhu, Luqi, Wang, Jin, Shi, Lianmin, Zhou, Jingya, Lu, Kejie, Wang, Jianping.  2020.  Secure Coded Matrix Multiplication Against Cooperative Attack in Edge Computing. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :547–556.
In recent years, the computation security of edge computing has been raised as a major concern since the edge devices are often distributed on the edge of the network, less trustworthy than cloud servers and have limited storage/ computation/ communication resources. Recently, coded computing has been proposed to protect the confidentiality of computing data under edge device's independent attack and minimize the total cost (resource consumption) of edge system. In this paper, for the cooperative attack, we design an efficient scheme to ensure the information-theory security (ITS) of user's data and further reduce the total cost of edge system. Specifically, we take matrix multiplication as an example, which is an important module appeared in many application operations. Moreover, we theoretically analyze the necessary and sufficient conditions for the existence of feasible scheme, prove the security and decodeability of the proposed scheme. We also prove the effectiveness of the proposed scheme through considerable simulation experiments. Compared with the existing schemes, the proposed scheme further reduces the total cost of edge system. The experiments also show a trade-off between storage and communication.
2021-05-25
Murguia, Carlos, Tabuada, Paulo.  2020.  Privacy Against Adversarial Classification in Cyber-Physical Systems. 2020 59th IEEE Conference on Decision and Control (CDC). :5483–5488.
For a class of Cyber-Physical Systems (CPSs), we address the problem of performing computations over the cloud without revealing private information about the structure and operation of the system. We model CPSs as a collection of input-output dynamical systems (the system operation modes). Depending on the mode the system is operating on, the output trajectory is generated by one of these systems in response to driving inputs. Output measurements and driving inputs are sent to the cloud for processing purposes. We capture this "processing" through some function (of the input-output trajectory) that we require the cloud to compute accurately - referred here as the trajectory utility. However, for privacy reasons, we would like to keep the mode private, i.e., we do not want the cloud to correctly identify what mode of the CPS produced a given trajectory. To this end, we distort trajectories before transmission and send the corrupted data to the cloud. We provide mathematical tools (based on output-regulation techniques) to properly design distorting mechanisms so that: 1) the original and distorted trajectories lead to the same utility; and the distorted data leads the cloud to misclassify the mode.
Zanin, M., Menasalvas, E., González, A. Rodriguez, Smrz, P..  2020.  An Analytics Toolbox for Cyber-Physical Systems Data Analysis: Requirements and Challenges. 2020 43rd International Convention on Information, Communication and Electronic Technology (MIPRO). :271–276.
The fast improvement in telecommunication technologies that has characterised the last decade is enabling a revolution centred on Cyber-Physical Systems (CPSs). Elements inside cities, from vehicles to cars, can now be connected and share data, describing both our environment and our behaviours. These data can also be used in an active way, by becoming the tenet of innovative services and products, i.e. of Cyber-Physical Products (CPPs). Still, having data is not tantamount to having knowledge, and an important overlooked topic is how should them be analysed. In this contribution we tackle the issue of the development of an analytics toolbox for processing CPS data. Specifically, we review and quantify the main requirements that should be fulfilled, both functional (e.g. flexibility or dependability) and technical (e.g. scalability, response time, etc.). We further propose an initial set of analysis that should in it be included. We finally review some challenges and open issues, including how security and privacy could be tackled by emerging new technologies.
Chen, Yingquan, Wang, Yong.  2020.  Efficient Conversion Scheme Of Access Matrix In CP-ABE With Double Revocation Capability. 2020 IEEE International Conference on Progress in Informatics and Computing (PIC). :352–357.
To achieve a fine-grained access control function and guarantee the data confidentiality in the cloud storage environment, ciphertext policy attribute-based encryption (CP-ABE) has been widely implemented. However, due to the high computation and communication overhead, the nature of CP-ABE mechanism makes it difficult to be adopted in resource constrained terminals. Furthermore, the way of realizing varying levels of undo operations remains a problem. To this end, the access matrix that satisfies linear secret sharing scheme (LSSS) was optimized with Cauchy matrix, and then a user-level revocation scheme based on Chinese Remainder Theorem was proposed. Additionally, the attribute level revocation scheme which is based on the method of key encrypt key (KEK) and can help to reduce the storage overhead has also been improved.
2021-05-18
Wingerath, Wolfram, Gessert, Felix, Witt, Erik, Kuhlmann, Hannes, Bücklers, Florian, Wollmer, Benjamin, Ritter, Norbert.  2020.  Speed Kit: A Polyglot GDPR-Compliant Approach For Caching Personalized Content. 2020 IEEE 36th International Conference on Data Engineering (ICDE). :1603–1608.
Users leave when page loads take too long. This simple fact has complex implications for virtually all modern businesses, because accelerating content delivery through caching is not as simple as it used to be. As a fundamental technical challenge, the high degree of personalization in today's Web has seemingly outgrown the capabilities of traditional content delivery networks (CDNs) which have been designed for distributing static assets under fixed caching times. As an additional legal challenge for services with personalized content, an increasing number of regional data protection laws constrain the ways in which CDNs can be used in the first place. In this paper, we present Speed Kit as a radically different approach for content distribution that combines (1) a polyglot architecture for efficiently caching personalized content with (2) a natively GDPR-compliant client proxy that handles all sensitive information within the user device. We describe the system design and implementation, explain the custom cache coherence protocol to avoid data staleness and achieve Δ-atomicity, and we share field experiences from over a year of productive use in the e-commerce industry.