Visible to the public Biblio

Found 1057 results

Filters: Keyword is data privacy  [Clear All Filters]
2021-05-13
Feng, Liu, Jie, Yang, Deli, Kong, Jiayin, Qi.  2020.  A Secure Multi-party Computation Protocol Combines Pederson Commitment with Schnorr Signature for Blockchain. 2020 IEEE 20th International Conference on Communication Technology (ICCT). :57—63.

Blockchain is being pursued by a growing number of people with its characteristics of openness, transparency, and decentralization. At the same time, how to secure privacy protection in such an open and transparent ledger is an urgent issue to be solved for deep study. Therefore, this paper proposes a protocol based on Secure multi-party computation, which can merge and sign different transaction messages under the anonymous condition by using Pedersen commitment and Schnorr Signature. Through the rationality proof and security analysis, this paper demonstrates the private transaction is safe under the semi-honest model. And its computational cost is less than the equivalent multi-signature model. The research has made some innovative contributions to the privacy computing theory.

2021-05-05
Coulter, Rory, Zhang, Jun, Pan, Lei, Xiang, Yang.  2020.  Unmasking Windows Advanced Persistent Threat Execution. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :268—276.

The advanced persistent threat (APT) landscape has been studied without quantifiable data, for which indicators of compromise (IoC) may be uniformly analyzed, replicated, or used to support security mechanisms. This work culminates extensive academic and industry APT analysis, not as an incremental step in existing approaches to APT detection, but as a new benchmark of APT related opportunity. We collect 15,259 APT IoC hashes, retrieving subsequent sandbox execution logs across 41 different file types. This work forms an initial focus on Windows-based threat detection. We present a novel Windows APT executable (APT-EXE) dataset, made available to the research community. Manual and statistical analysis of the APT-EXE dataset is conducted, along with supporting feature analysis. We draw upon repeat and common APT paths access, file types, and operations within the APT-EXE dataset to generalize APT execution footprints. A baseline case analysis successfully identifies a majority of 117 of 152 live APT samples from campaigns across 2018 and 2019.

2021-04-27
Khalid, O., Senthilananthan, S..  2020.  A review of data analytics techniques for effective management of big data using IoT. 2020 5th International Conference on Innovative Technologies in Intelligent Systems and Industrial Applications (CITISIA). :1—10.
IoT and big data are energetic technology of the world for quite a time, and both of these have become a necessity. On the one side where IoT is used to connect different objectives via the internet, the big data means having a large number of the set of structured, unstructured, and semi-structured data. The device used for processing based on the tools used. These tools help provide meaningful information used for effective management in different domains. Some of the commonly faced issues with the inadequate about the technologies are related to data privacy, insufficient analytical capabilities, and this issue is faced by in different domains related to the big data. Data analytics tools help discover the pattern of data and consumer preferences which is resulting in better decision making for the organizations. The major part of this work is to review different types of data analytics techniques for the effective management of big data using IoT. For the effective management of the ABD solution collection, analysis and control are used as the components. Each of the ingredients is described to find an effective way to manage big data. These components are considered and used in the validation criteria. The solution of effective data management is a stage towards the management of big data in IoT devices which will help the user to understand different types of elements of data management.
Yang, Y., Lu, K., Cheng, H., Fu, M., Li, Z..  2020.  Time-controlled Regular Language Search over Encrypted Big Data. 2020 IEEE 9th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). 9:1041—1045.

The rapid development of cloud computing and the arrival of the big data era make the relationship between users and cloud closer. Cloud computing has powerful data computing and data storage capabilities, which can ubiquitously provide users with resources. However, users do not fully trust the cloud server's storage services, so lots of data is encrypted and uploaded to the cloud. Searchable encryption can protect the confidentiality of data and provide encrypted data retrieval functions. In this paper, we propose a time-controlled searchable encryption scheme with regular language over encrypted big data, which provides flexible search pattern and convenient data sharing. Our solution allows users with data's secret keys to generate trapdoors by themselves. And users without data's secret keys can generate trapdoors with the help of a trusted third party without revealing the data owner's secret key. Our system uses a time-controlled mechanism to collect keywords queried by users and ensures that the querying user's identity is not directly exposed. The obtained keywords are the basis for subsequent big data analysis. We conducted a security analysis of the proposed scheme and proved that the scheme is secure. The simulation experiment and comparison of our scheme show that the system has feasible efficiency.

Himthani, P., Dubey, G. P., Sharma, B. M., Taneja, A..  2020.  Big Data Privacy and Challenges for Machine Learning. 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC). :707—713.

The field of Big Data is expanding at an alarming rate since its inception in 2012. The excessive use of Social Networking Sites, collection of Data from Sensors for analysis and prediction of future events, improvement in Customer Satisfaction on Online S hopping portals by monitoring their past behavior and providing them information, items and offers of their interest instantaneously, etc had led to this rise in the field of Big Data. This huge amount of data, if analyzed and processed properly, can lead to decisions and outcomes that would be of great values and benefits to organizations and individuals. Security of Data and Privacy of User is of keen interest and high importance for individuals, industry and academia. Everyone ensure that their Sensitive information must be kept away from unauthorized access and their assets must be kept safe from security breaches. Privacy and Security are also equally important for Big Data and here, it is typical and complex to ensure the Privacy and Security, as the amount of data is enormous. One possible option to effectively and efficiently handle, process and analyze the Big Data is to make use of Machine Learning techniques. Machine Learning techniques are straightforward; applying them on Big Data requires resolution of various issues and is a challenging task, as the size of Data is too big. This paper provides a brief introduction to Big Data, the importance of Security and Privacy in Big Data and the various challenges that are required to overcome for applying the Machine Learning techniques on Big Data.

Javid, T., Faris, M., Beenish, H., Fahad, M..  2020.  Cybersecurity and Data Privacy in the Cloudlet for Preliminary Healthcare Big Data Analytics. 2020 International Conference on Computing and Information Technology (ICCIT-1441). :1—4.

In cyber physical systems, cybersecurity and data privacy are among most critical considerations when dealing with communications, processing, and storage of data. Geospatial data and medical data are examples of big data that require seamless integration with computational algorithms as outlined in Industry 4.0 towards adoption of fourth industrial revolution. Healthcare Industry 4.0 is an application of the design principles of Industry 4.0 to the medical domain. Mobile applications are now widely used to accomplish important business functions in almost all industries. These mobile devices, however, are resource poor and proved insufficient for many important medical applications. Resource rich cloud services are used to augment poor mobile device resources for data and compute intensive applications in the mobile cloud computing paradigm. However, the performance of cloud services is undesirable for data-intensive, latency-sensitive mobile applications due increased hop count between the mobile device and the cloud server. Cloudlets are virtual machines hosted in server placed nearby the mobile device and offer an attractive alternative to the mobile cloud computing in the form of mobile edge computing. This paper outlines cybersecurity and data privacy aspects for communications of measured patient data from wearable wireless biosensors to nearby cloudlet host server in order to facilitate the cloudlet based preliminary and essential complex analytics for the medical big data.

Wagner, T. J., Ford, T. C..  2020.  Metrics to Meet Security Privacy Requirements with Agile Software Development Methods in a Regulated Environment. 2020 International Conference on Computing, Networking and Communications (ICNC). :17—23.

This work examines metrics that can be used to measure the ability of agile software development methods to meet security and privacy requirements of communications applications. Many implementations of communication protocols, including those in vehicular networks, occur within regulated environments where agile development methods are traditionally discouraged. We propose a framework and metrics to measure adherence to security, quality and software effectiveness regulations if developers desire the cost and schedule benefits of agile methods. After providing an overview of specific challenges that a regulated environment imposes on communications software development, we proceed to examine the 12 agile principles and how they relate to a regulatory environment. From this review we identify two metrics to measure performance of three key regulatory attributes of software for communications applications, and then recommend an approach of either tools, agile methods or DevOps that is best positioned to satisfy its regulated environment attributes. By considering the recommendations in this paper, managers of software-dominant communications programs in a regulated environment can gain insight into leveraging the benefits of agile methods.

Banakar, V., Upadhya, P., Keshavan, M..  2020.  CIED - rapid composability of rack scale resources using Capability Inference Engine across Datacenters. 2020 IEEE Infrastructure Conference. :1–4.
There are multiple steps involved in transitioning a server from the factory to being fully provisioned for an intended workload. These steps include finding the optimal slot for the hardware and to compose the required resources on the hardware for the intended workload. There are many different factors that influence the placement of server hardware in the datacenter, such as physical limitations to connect to a network be it Ethernet or storage networks, power requirements, temperature/cooling considerations, and physical space, etc. In addition to this, there may be custom requirements driven by workload policies (such as security, data privacy, power redundancy, etc.). Once the server has been placed in the right slot it needs to be configured with the appropriate resources for the intended workload. CIED will provide a ranked list of locations for server placement based on the intended workload, connectivity and physical requirements of the server. Once the server is placed in the suggested slot, the solution automatically discovers the server and composes the required resources (compute, storage and networks) for running the appropriate workload. CIED reduces the overall time taken to move hardware from factory to production and also maximizes the server hardware utilization while minimizing downtime by physically placing the resources optimally. From the case study that was undertaken, the time taken to transition a server from factory to being fully provisioned was proportional to the number of devices in the datacenter. With CIED this time is constant irrespective of the complexity or the number of devices in a datacenter.
Alniamy, A. M., Liu, H..  2020.  Blockchain-Based Secure Collaboration Platform for Sharing and Accessing Scientific Research Data. 2020 3rd International Conference on Hot Information-Centric Networking (HotICN). :34—40.
Research teams or institutions in different countries need an effective and secure online platform for collaboration and data sharing. It is essential to build such a collaboration platform with strong data security and privacy. In this paper, we propose a platform for researchers to collaborate and share their data by leveraging attribute-based access control (ABAC) and blockchain technologies. ABAC provides an access control paradigm whereby access rights are granted to users through attribute-based policies, instead of user identities and roles. Hyperledger fabric permission blockchain is used to enable a decentralized secure data sharing environment and preserves user’s privacy. The proposed platform allows researchers to fully control their data, manage access to the data at a fine-grained level, keep file updates with proof of authorship, and ensure data integrity and privacy.
Elavarasan, G., Veni, S..  2020.  Data Sharing Attribute-Based Secure with Efficient Revocation in Cloud Computing. 2020 International Conference on Computing and Information Technology (ICCIT-1441). :1—6.

In recent days, cloud computing is one of the emerging fields. It is a platform to maintain the data and privacy of the users. To process and regulate the data with high security, the access control methods are used. The cloud environment always faces several challenges such as robustness, security issues and so on. Conventional methods like Cipher text-Policy Attribute-Based Encryption (CP-ABE) are reflected in providing huge security, but still, the problem exists like the non-existence of attribute revocation and minimum efficient. Hence, this research work particularly on the attribute-based mechanism to maximize efficiency. Initially, an objective coined out in this work is to define the attributes for a set of users. Secondly, the data is to be re-encrypted based on the access policies defined for the particular file. The re-encryption process renders information to the cloud server for verifying the authenticity of the user even though the owner is offline. The main advantage of this work evaluates multiple attributes and allows respective users who possess those attributes to access the data. The result proves that the proposed Data sharing scheme helps for Revocation under a fine-grained attribute structure.

2021-04-09
Bhattacharya, M. P., Zavarsky, P., Butakov, S..  2020.  Enhancing the Security and Privacy of Self-Sovereign Identities on Hyperledger Indy Blockchain. 2020 International Symposium on Networks, Computers and Communications (ISNCC). :1—7.
Self-sovereign identities provide user autonomy and immutability to individual identities and full control to their identity owners. The immutability and control are possible by implementing identities in a decentralized manner on blockchains that are specially designed for identity operations such as Hyperledger Indy. As with any type of identity, self-sovereign identities too deal with Personally Identifiable Information (PII) of the identity holders and comes with the usual risks of privacy and security. This study examined certain scenarios of personal data disclosure via credential exchanges between such identities and risks of man-in-the-middle attacks in the blockchain based identity system Hyperledger Indy. On the basis of the findings, the paper proposes the following enhancements: 1) A novel attribute sensitivity score model for self-sovereign identity agents to ascertain the sensitivity of attributes shared in credential exchanges 2) A method of mitigating man-in-the-middle attacks between peer self-sovereign identities and 3) A novel quantitative model for determining a credential issuer's reputation based on the number of issued credentials in a window period, which is then utilized to calculate an overall confidence level score for the issuer.
2021-04-08
Guo, T., Zhou, R., Tian, C..  2020.  On the Information Leakage in Private Information Retrieval Systems. IEEE Transactions on Information Forensics and Security. 15:2999—3012.
We consider information leakage to the user in private information retrieval (PIR) systems. Information leakage can be measured in terms of individual message leakage or total leakage. Individual message leakage, or simply individual leakage, is defined as the amount of information that the user can obtain on any individual message that is not being requested, and the total leakage is defined as the amount of information that the user can obtain about all the other messages except the one being requested. In this work, we characterize the tradeoff between the minimum download cost and the individual leakage, and that for the total leakage, respectively. Coding schemes are proposed to achieve these optimal tradeoffs, which are also shown to be optimal in terms of the message size. We further characterize the optimal tradeoff between the minimum amount of common randomness and the total leakage. Moreover, we show that under individual leakage, common randomness is in fact unnecessary when there are more than two messages.
Althebyan, Q..  2019.  A Mobile Edge Mitigation Model for Insider Threats: A Knowledgebase Approach. 2019 International Arab Conference on Information Technology (ACIT). :188—192.
Taking care of security at the cloud is a major issue that needs to be carefully considered and solved for both individuals as well as organizations. Organizations usually expect more trust from employees as well as customers in one hand. On the other hand, cloud users expect their private data is maintained and secured. Although this must be case, however, some malicious outsiders of the cloud as well as malicious insiders who are cloud internal users tend to disclose private data for their malicious uses. Although outsiders of the cloud should be a concern, however, the more serious problems come from Insiders whose malicious actions are more serious and sever. Hence, insiders' threats in the cloud should be the top most problem that needs to be tackled and resolved. This paper aims to find a proper solution for the insider threat problem in the cloud. The paper presents a Mobile Edge Computing (MEC) mitigation model as a solution that suits the specialized nature of this problem where the solution needs to be very close to the place where insiders reside. This in fact gives real-time responses to attack, and hence, reduces the overhead in the cloud.
Roy, P., Mazumdar, C..  2018.  Modeling of Insider Threat using Enterprise Automaton. 2018 Fifth International Conference on Emerging Applications of Information Technology (EAIT). :1—4.
Substantial portions of attacks on the security of enterprises are perpetrated by Insiders having authorized privileges. Thus insider threat and attack detection is an important aspect of Security management. In the published literature, efforts are on to model the insider threats based on the behavioral traits of employees. The psycho-social behaviors are hard to encode in the software systems. Also, in some cases, there are privacy issues involved. In this paper, the human and non-human agents in a system are described in a novel unified model. The enterprise is described as an automaton and its states are classified secure, safe, unsafe and compromised. The insider agents and threats are modeled on the basis of the automaton and the model is validated using a case study.
Jin, R., He, X., Dai, H..  2019.  On the Security-Privacy Tradeoff in Collaborative Security: A Quantitative Information Flow Game Perspective. IEEE Transactions on Information Forensics and Security. 14:3273–3286.
To contest the rapidly developing cyber-attacks, numerous collaborative security schemes, in which multiple security entities can exchange their observations and other relevant data to achieve more effective security decisions, are proposed and developed in the literature. However, the security-related information shared among the security entities may contain some sensitive information and such information exchange can raise privacy concerns, especially when these entities belong to different organizations. With such consideration, the interplay between the attacker and the collaborative entities is formulated as Quantitative Information Flow (QIF) games, in which the QIF theory is adapted to measure the collaboration gain and the privacy loss of the entities in the information sharing process. In particular, three games are considered, each corresponding to one possible scenario of interest in practice. Based on the game-theoretic analysis, the expected behaviors of both the attacker and the security entities are obtained. In addition, the simulation results are presented to validate the analysis.
Bloch, M., Barros, J., Rodrigues, M. R. D., McLaughlin, S. W..  2008.  Wireless Information-Theoretic Security. IEEE Transactions on Information Theory. 54:2515–2534.
This paper considers the transmission of confidential data over wireless channels. Based on an information-theoretic formulation of the problem, in which two legitimates partners communicate over a quasi-static fading channel and an eavesdropper observes their transmissions through a second independent quasi-static fading channel, the important role of fading is characterized in terms of average secure communication rates and outage probability. Based on the insights from this analysis, a practical secure communication protocol is developed, which uses a four-step procedure to ensure wireless information-theoretic security: (i) common randomness via opportunistic transmission, (ii) message reconciliation, (iii) common key generation via privacy amplification, and (iv) message protection with a secret key. A reconciliation procedure based on multilevel coding and optimized low-density parity-check (LDPC) codes is introduced, which allows to achieve communication rates close to the fundamental security limits in several relevant instances. Finally, a set of metrics for assessing average secure key generation rates is established, and it is shown that the protocol is effective in secure key renewal-even in the presence of imperfect channel state information.
Deng, L., Luo, J., Zhou, J., Wang, J..  2020.  Identity-based Secret Sharing Access Control Framework for Information-Centric Networking. 2020 IEEE/CIC International Conference on Communications in China (ICCC). :507–511.
Information-centric networking (ICN) has played an increasingly important role in the next generation network design. However, to make better use of request-response communication mode in the ICN network, revoke user privileges more efficiently and protect user privacy more safely, an effective access control mechanism is needed. In this paper, we propose IBSS (identity-based secret sharing), which achieves efficient content distribution by using improved Shamir's secret sharing method. At the same time, collusion attacks are avoided by associating polynomials' degree with the number of users. When authenticating user identity and transmitting content, IBE and IBS are introduced to achieve more efficient and secure identity encryption. From the experimental results, the scheme only introduces an acceptable delay in file retrieval, and it can request follow-up content very efficiently.
2021-03-29
Moreno, R. T., Rodríguez, J. G., López, C. T., Bernabe, J. B., Skarmeta, A..  2020.  OLYMPUS: A distributed privacy-preserving identity management system. 2020 Global Internet of Things Summit (GIoTS). :1—6.

Despite the latest initiatives and research efforts to increase user privacy in digital scenarios, identity-related cybercrimes such as identity theft, wrong identity or user transactions surveillance are growing. In particular, blanket surveillance that might be potentially accomplished by Identity Providers (IdPs) contradicts the data minimization principle laid out in GDPR. Hence, user movements across Service Providers (SPs) might be tracked by malicious IdPs that become a central dominant entity, as well as a single point of failure in terms of privacy and security, putting users at risk when compromised. To cope with this issue, the OLYMPUS H2020 EU project is devising a truly privacy-preserving, yet user-friendly, and distributed identity management system that addresses the data minimization challenge in both online and offline scenarios. Thus, OLYMPUS divides the role of the IdP among various authorities by relying on threshold cryptography, thereby preventing user impersonation and surveillance from malicious or nosy IdPs. This paper overviews the OLYMPUS framework, including requirements considered, the proposed architecture, a series of use cases as well as the privacy analysis from the legal point of view.

Khan, S., Jadhav, A., Bharadwaj, I., Rooj, M., Shiravale, S..  2020.  Blockchain and the Identity based Encryption Scheme for High Data Security. 2020 Fourth International Conference on Computing Methodologies and Communication (ICCMC). :1005—1008.

Using the blockchain technology to store the privatedocuments of individuals will help make data more reliable and secure, preventing the loss of data and unauthorized access. The Consensus algorithm along with the hash algorithms maintains the integrity of data simultaneously providing authentication and authorization. The paper incorporates the block chain and the Identity Based Encryption management concept. The Identity based Management system allows the encryption of the user's data as well as their identity and thus preventing them from Identity theft and fraud. These two technologies combined will result in a more secure way of storing the data and protecting the privacy of the user.

Amin, A. H. M., Abdelmajid, N., Kiwanuka, F. N..  2020.  Identity-of-Things Model using Composite Identity on Permissioned Blockchain Network. 2020 Seventh International Conference on Software Defined Systems (SDS). :171—176.

The growing prevalence of Internet-of-Things (IoT) technology has led to an increase in the development of heterogeneous smart applications. Smart applications may involve a collaborative participation between IoT devices. Participation of IoT devices for specific application requires a tamper-proof identity to be generated and stored, in order to completely represent the device, as well as to eliminate the possibility of identity spoofing and presence of rogue devices in a network. In this paper, we present a composite Identity-of-Things (IDoT) approach on IoT devices with permissioned blockchain implementation for distributed identity management model. Our proposed approach considers both application and device domains in generating the composite identity. In addition, the use of permissioned blockchain for identity storage and verification allows the identity to be immutable. A simulation has been carried out to demonstrate the application of the proposed identity management model.

Gururaj, P..  2020.  Identity management using permissioned blockchain. 2020 International Conference on Mainstreaming Block Chain Implementation (ICOMBI). :1—3.

Authenticating a person's identity has always been a challenge. While attempts are being made by government agencies to address this challenge, the citizens are being exposed to a new age problem of Identity management. The sharing of photocopies of identity cards in order to prove our identity is a common sight. From score-card to Aadhar-card, the details of our identity has reached many unauthorized hands during the years. In India the identity thefts accounts for 77% [1] of the fraud cases, and the threats are trending. Programs like e-Residency by Estonia[2], Bitnation using Ethereum[3] are being devised for an efficient Identity Management. Even the US Home Land Security is funding a research with an objective of “Design information security and privacy concepts on the Blockchain to support identity management capabilities that increase security and productivity while decreasing costs and security risks for the Homeland Security Enterprise (HSE).” [4] This paper will discuss the challenges specific to India around Identity Management, and the possible solution that the Distributed ledger, hashing algorithms and smart contracts can offer. The logic of hashing the personal data, and controlling the distribution of identity using public-private keys with Blockchain technology will be discussed in this paper.

Naik, N., Jenkins, P..  2020.  Governing Principles of Self-Sovereign Identity Applied to Blockchain Enabled Privacy Preserving Identity Management Systems. 2020 IEEE International Symposium on Systems Engineering (ISSE). :1—6.

Digital identity is the key element of digital transformation in representing any real-world entity in the digital form. To ensure a successful digital future the requirement for an effective digital identity is paramount, especially as demand increases for digital services. Several Identity Management (IDM) systems are developed to cope with identity effectively, nonetheless, existing IDM systems have some limitations corresponding to identity and its management such as sovereignty, storage and access control, security, privacy and safeguarding, all of which require further improvement. Self-Sovereign Identity (SSI) is an emerging IDM system which incorporates several required features to ensure that identity is sovereign, secure, reliable and generic. It is an evolving IDM system, thus it is essential to analyse its various features to determine its effectiveness in coping with the dynamic requirements of identity and its current challenges. This paper proposes numerous governing principles of SSI to analyse any SSI ecosystem and its effectiveness. Later, based on the proposed governing principles of SSI, it performs a comparative analysis of the two most popular SSI ecosystems uPort and Sovrin to present their effectiveness and limitations.

Grundy, J..  2020.  Human-centric Software Engineering for Next Generation Cloud- and Edge-based Smart Living Applications. 2020 20th IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing (CCGRID). :1—10.

Humans are a key part of software development, including customers, designers, coders, testers and end users. In this keynote talk I explain why incorporating human-centric issues into software engineering for next-generation applications is critical. I use several examples from our recent and current work on handling human-centric issues when engineering various `smart living' cloud- and edge-based software systems. This includes using human-centric, domain-specific visual models for non-technical experts to specify and generate data analysis applications; personality impact on aspects of software activities; incorporating end user emotions into software requirements engineering for smart homes; incorporating human usage patterns into emerging edge computing applications; visualising smart city-related data; reporting diverse software usability defects; and human-centric security and privacy requirements for smart living systems. I assess the usefulness of these approaches, highlight some outstanding research challenges, and briefly discuss our current work on new human-centric approaches to software engineering for smart living applications.

Bogdan-Iulian, C., Vasilică-Gabriel, S., Alexandru, M. D., Nicolae, G., Andrei, V..  2020.  Improved Secure Internet of Things System using Web Services and Low Power Single-board Computers. 2020 International Conference on e-Health and Bioengineering (EHB). :1—5.

Internet of Things (IoT) systems are becoming widely used, which makes them to be a high-value target for both hackers and crackers. From gaining access to sensitive information to using them as bots for complex attacks, the variety of advantages after exploiting different security vulnerabilities makes the security of IoT devices to be one of the most challenging desideratum for cyber security experts. In this paper, we will propose a new IoT system, designed to ensure five data principles: confidentiality, integrity, availability, authentication and authorization. The innovative aspects are both the usage of a web-based communication and a custom dynamic data request structure.

Guo, Y., Wang, B., Hughes, D., Lewis, M., Sycara, K..  2020.  Designing Context-Sensitive Norm Inverse Reinforcement Learning Framework for Norm-Compliant Autonomous Agents. 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN). :618—625.

Human behaviors are often prohibited, or permitted by social norms. Therefore, if autonomous agents interact with humans, they also need to reason about various legal rules, social and ethical social norms, so they would be trusted and accepted by humans. Inverse Reinforcement Learning (IRL) can be used for the autonomous agents to learn social norm-compliant behavior via expert demonstrations. However, norms are context-sensitive, i.e. different norms get activated in different contexts. For example, the privacy norm is activated for a domestic robot entering a bathroom where a person may be present, whereas it is not activated for the robot entering the kitchen. Representing various contexts in the state space of the robot, as well as getting expert demonstrations under all possible tasks and contexts is extremely challenging. Inspired by recent work on Modularized Normative MDP (MNMDP) and early work on context-sensitive RL, we propose a new IRL framework, Context-Sensitive Norm IRL (CNIRL). CNIRL treats states and contexts separately, and assumes that the expert determines the priority of every possible norm in the environment, where each norm is associated with a distinct reward function. The agent chooses the action to maximize its cumulative rewards. We present the CNIRL model and show that its computational complexity is scalable in the number of norms. We also show via two experimental scenarios that CNIRL can handle problems with changing context spaces.