Biblio
Algorithms for unsupervised anomaly detection have proven their effectiveness and flexibility, however, first it is necessary to calculate with what ratio a certain class begins to be considered anomalous by the autoencoder. For this reason, we propose to conduct a study of the efficiency of autoencoders depending on the ratio of anomalous and non-anomalous classes. The emergence of high-speed networks in electric power systems creates a tight interaction of cyberinfrastructure with the physical infrastructure and makes the power system susceptible to cyber penetration and attacks. To address this problem, this paper proposes an innovative approach to develop a specification-based intrusion detection framework that leverages available information provided by components in a contemporary power system. An autoencoder is used to encode the causal relations among the available information to create patterns with temporal state transitions, which are used as features in the proposed intrusion detection. This allows the proposed method to detect anomalies and cyber attacks.
with the continuous growing threat of cyber terrorism, the vulnerability of the industrial control systems (ICS) is the most common subject for security researchers now. Attacks on ICS systems keep increasing and their impact leads to human safety issues, equipment damage, system down, unusual output, loss of visibility and control, and various other catastrophic failures. Many of the industrial control systems are relatively insecure with chronic and pervasive vulnerabilities. Modbus-Tcpis one of the widely used communication protocols in the ICS/ Supervisory control and data acquisition (SCADA) system to transmit signals from instrumentation and control devices to the main controller of the control center. Modbus is a plain text protocol without any built-in security mechanisms, and Modbus is a standard communication protocol, widely used in critical infrastructure applications such as power systems, water, oil & gas, etc.. This paper proposes a passive security solution called Deep-security-scanner (DSS) tailored to Modbus-Tcpcommunication based Industrial control system (ICS). DSS solution detects attacks on Modbus-TcpIcs networks in a passive manner without disturbing the availability requirements of the system.
Digitization has pioneered to drive exceptional changes across all industries in the advancement of analytics, automation, and Artificial Intelligence (AI) and Machine Learning (ML). However, new business requirements associated with the efficiency benefits of digitalization are forcing increased connectivity between IT and OT networks, thereby increasing the attack surface and hence the cyber risk. Cyber threats are on the rise and securing industrial networks are challenging with the shortage of human resource in OT field, with more inclination to IT/OT convergence and the attackers deploy various hi-tech methods to intrude the control systems nowadays. We have developed an innovative real-time ICS cyber test kit to obtain the OT industrial network traffic data with various industrial attack vectors. In this paper, we have introduced the industrial datasets generated from ICS test kit, which incorporate the cyber-physical system of industrial operations. These datasets with a normal baseline along with different industrial hacking scenarios are analyzed for research purposes. Metadata is obtained from Deep packet inspection (DPI) of flow properties of network packets. DPI analysis provides more visibility into the contents of OT traffic based on communication protocols. The advancement in technology has led to the utilization of machine learning/artificial intelligence capability in IDS ICS SCADA. The industrial datasets are pre-processed, profiled and the abnormality is analyzed with DPI. The processed metadata is normalized for the easiness of algorithm analysis and modelled with machine learning-based latest deep learning ensemble LSTM algorithms for anomaly detection. The deep learning approach has been used nowadays for enhanced OT IDS performances.
With the continuous emergence of cyber attacks, the security of industrial control system (ICS) has become a hot issue in academia and industry. Intrusion detection technology plays an irreplaceable role in protecting industrial system from attacks. However, the imbalance between normal samples and attack samples seriously affects the performance of intrusion detection algorithms. This paper proposes SE-IDS, which uses generative adversarial networks (GAN) to expand the minority to make the number of normal samples and attack samples relatively balanced, adopts particle swarm optimization (PSO) to optimize the parameters of LightGBM. Finally, we evaluated the performance of the proposed model on the industrial network dataset.
Controller area network is the serial communication protocol, which broadcasts the message on the CAN bus. The transmitted message is read by all the nodes which shares the CAN bus. The message can be eavesdropped and can be re-used by some other node by changing the information or send it by duplicate times. The message reused after some delay is replay attack. In this paper, the CAN network with three CAN nodes is implemented using the universal verification components and the replay attack is demonstrated by creating the faulty node. Two types of replay attack are implemented in this paper, one is to replay the entire message and the other one is to replay only the part of the frame. The faulty node uses the first replay attack method where it behaves like the other node in the network by duplicating the identifier. CAN frame except the identifier is reused in the second method which is hard to detect the attack as the faulty node uses its own identifier and duplicates only the data in the CAN frame.