Visible to the public Biblio

Found 148 results

Filters: Keyword is Computer science  [Clear All Filters]
2021-02-23
Shah, A., Clachar, S., Minimair, M., Cook, D..  2020.  Building Multiclass Classification Baselines for Anomaly-based Network Intrusion Detection Systems. 2020 IEEE 7th International Conference on Data Science and Advanced Analytics (DSAA). :759—760.
This paper showcases multiclass classification baselines using different machine learning algorithms and neural networks for distinguishing legitimate network traffic from direct and obfuscated network intrusions. This research derives its baselines from Advanced Security Network Metrics & Tunneling Obfuscations dataset. The dataset captured legitimate and obfuscated malicious TCP communications on selected vulnerable network services. The multiclass classification NIDS is able to distinguish obfuscated and direct network intrusion with up to 95% accuracy.
2021-02-22
Alzakari, N., Dris, A. B., Alahmadi, S..  2020.  Randomized Least Frequently Used Cache Replacement Strategy for Named Data Networking. 2020 3rd International Conference on Computer Applications Information Security (ICCAIS). :1–6.
To accommodate the rapidly changing Internet requirements, Information-Centric Networking (ICN) was recently introduced as a promising architecture for the future Internet. One of the ICN primary features is `in-network caching'; due to its ability to minimize network traffic and respond faster to users' requests. Therefore, various caching algorithms have been presented that aim to enhance the network performance using different measures, such as cache hit ratio and cache hit distance. Choosing a caching strategy is critical, and an adequate replacement strategy is also required to decide which content should be dropped. Thus, in this paper, we propose a content replacement scheme for ICN, called Randomized LFU that is implemented with respect to content popularity taking the time complexity into account. We use Abilene and Tree network topologies in our simulation models. The proposed replacement achieves encouraging results in terms of the cache hit ratio, inner hit, and hit distance and it outperforms FIFO, LRU, and Random replacement strategies.
Li, Y., Liu, Y., Wang, Y., Guo, Z., Yin, H., Teng, H..  2020.  Synergetic Denial-of-Service Attacks and Defense in Underwater Named Data Networking. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications. :1569–1578.
Due to the harsh environment and energy limitation, maintaining efficient communication is crucial to the lifetime of Underwater Sensor Networks (UWSN). Named Data Networking (NDN), one of future network architectures, begins to be applied to UWSN. Although Underwater Named Data Networking (UNDN) performs well in data transmission, it still faces some security threats, such as the Denial-of-Service (DoS) attacks caused by Interest Flooding Attacks (IFAs). In this paper, we present a new type of DoS attacks, named as Synergetic Denial-of-Service (SDoS). Attackers synergize with each other, taking turns to reply to malicious interests as late as possible. SDoS attacks will damage the Pending Interest Table, Content Store, and Forwarding Information Base in routers with high concealment. Simulation results demonstrate that the SDoS attacks quadruple the increased network traffic compared with normal IFAs and the existing IFA detection algorithm in UNDN is completely invalid to SDoS attacks. In addition, we analyze the infection problem in UNDN and propose a defense method Trident based on carefully designed adaptive threshold, burst traffic detection, and attacker identification. Experiment results illustrate that Trident can effectively detect and resist both SDoS attacks and normal IFAs. Meanwhile, Trident can robustly undertake burst traffic and congestion.
2021-01-28
Kalaiyarasi, G., Balaji, K., Narmadha, T., Naveen, V..  2020.  E-Voting System In Smart Phone Using Mobile Application. 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS). :1466—1469.

The development in the web technologies given growth to the new application that will make the voting process very easy and proficient. The E-voting helps in providing convenient, capture and count the votes in an election. This project provides the description about e-voting using an Android platform. The proposed e-voting system helps the user to cast the vote without visiting the polling booth. The application provides authentication measures in order to avoid fraud voters using the OTP. Once the voting process is finished the results will be available within a fraction of seconds. All the casted vote count is encrypted using AES256 algorithm and stored in the database in order to avoid any outbreaks and revelation of results by third person other than the administrator.

Wang, Y., Gao, W., Hei, X., Mungwarama, I., Ren, J..  2020.  Independent credible: Secure communication architecture of Android devices based on TrustZone. 2020 International Conferences on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics). :85—92.

The development of mobile internet has brought convenience to people, but the openness and diversity of mobile Internet make it face the security threat of communication privacy data disclosure. In this paper, a trusted android device security communication method based on TrustZone is proposed. Firstly, Elliptic Curve Diffie-Hellman (ECDH) key agreement algorithm is used to make both parties negotiate the session key in the Trusted Execution Environment (TEE), and then, we stored the key safely in the TEE. Finally, TEE completes the encryption and decryption of the transmitted data. This paper constructs a secure communication between mobile devices without a trusted third party and analyzes the feasibility of the method from time efficiency and security. The experimental results show that the method can resist malicious application monitoring in the process of data encryption and ensures the security of the session key. Compared with the traditional scheme, it is found that the performance of the scheme is not significantly reduced.

2021-01-11
Tiwari, P., Skanda, C. S., Sanjana, U., Aruna, S., Honnavalli, P..  2020.  Secure Wipe Out in BYOD Environment. 2020 International Workshop on Big Data and Information Security (IWBIS). :109–114.
Bring Your Own Device (BYOD) is a new trend where employees use their personal devices to connect to their organization networks to access sensitive information and work-related systems. One of the primary challenges in BYOD is to securely delete company data when an employee leaves an organization. In common BYOD programs, the personal device in use is completely wiped out. This may lead to the deletion of personal data during exit procedures. Due to performance and deletion latency, erasure of data in most file systems today results in unlinking the file location and marking data blocks as unused. This may suffice the need of a normal user trying to delete unwanted files but the file content is not erased from the data blocks and can be retrieved with the help of various data recovery and forensic tools. In this paper, we discuss: (1) existing work related to secure deletion, and (2) secure and selective deletion methods that delete only the required files or directories without tampering personal data. We present two per-file deletion methods: Overwriting data and Encryption based deletion which erase specific files securely. Our proposed per-file deletion methods reduce latency and performance overheads caused by overwriting an entire disk.
2020-12-01
Geiskkovitch, D. Y., Thiessen, R., Young, J. E., Glenwright, M. R..  2019.  What? That's Not a Chair!: How Robot Informational Errors Affect Children's Trust Towards Robots 2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI). :48—56.

Robots that interact with children are becoming more common in places such as child care and hospital environments. While such robots may mistakenly provide nonsensical information, or have mechanical malfunctions, we know little of how these robot errors are perceived by children, and how they impact trust. This is particularly important when robots provide children with information or instructions, such as in education or health care. Drawing inspiration from established psychology literature investigating how children trust entities who teach or provide them with information (informants), we designed and conducted an experiment to examine how robot errors affect how young children (3-5 years old) trust robots. Our results suggest that children utilize their understanding of people to develop their perceptions of robots, and use this to determine how to interact with robots. Specifically, we found that children developed their trust model of a robot based on the robot's previous errors, similar to how they would for a person. We however failed to replicate other prior findings with robots. Our results provide insight into how children as young as 3 years old might perceive robot errors and develop trust.

2020-11-09
Göktaş, E., Kollenda, B., Koppe, P., Bosman, E., Portokalidis, G., Holz, T., Bos, H., Giuffrida, C..  2018.  Position-Independent Code Reuse: On the Effectiveness of ASLR in the Absence of Information Disclosure. 2018 IEEE European Symposium on Security and Privacy (EuroS P). :227–242.
Address-space layout randomization is a wellestablished defense against code-reuse attacks. However, it can be completely bypassed by just-in-time code-reuse attacks that rely on information disclosure of code addresses via memory or side-channel exposure. To address this fundamental weakness, much recent research has focused on detecting and mitigating information disclosure. The assumption being that if we perfect such techniques, we will not only maintain layout secrecy but also stop code reuse. In this paper, we demonstrate that an advanced attacker can mount practical code-reuse attacks even in the complete absence of information disclosure. To this end, we present Position-Independent Code-Reuse Attacks, a new class of codereuse attacks relying on the relative rather than absolute location of code gadgets in memory. By means of memory massaging, the attacker first makes the victim program generate a rudimentary ROP payload (for instance, containing code pointers that target instructions "close" to relevant gadgets). Afterwards, the addresses in this payload are patched with small offsets via relative memory writes. To establish the practicality of such attacks, we present multiple Position-Independent ROP exploits against real-world software. After showing that we can bypass ASLR in current systems without requiring information disclosures, we evaluate the impact of our technique on other defenses, such as fine-grained ASLR, multi-variant execution, execute-only memory and re-randomization. We conclude by discussing potential mitigations.
2020-11-04
Bell, S., Oudshoorn, M..  2018.  Meeting the Demand: Building a Cybersecurity Degree Program With Limited Resources. 2018 IEEE Frontiers in Education Conference (FIE). :1—7.

This innovative practice paper considers the heightening awareness of the need for cybersecurity programs in light of several well publicized cyber-attacks in recent years. An examination of the academic job market reveals that a significant number of institutions are looking to hire new faculty in the area of cybersecurity. Additionally, a growing number of universities are starting to offer courses, certifications and degrees in cybersecurity. Other recent activity includes the development of a model cybersecurity curriculum and the creation of a program accreditation criteria for cybersecurity through ABET. This sudden and significant growth in demand for cybersecurity expertise has some similarities to the significant demand for networking faculty that Computer Science programs experienced in the late 1980s as a result of the rise of the Internet. This paper examines the resources necessary to respond to the demand for cybersecurity courses and programs and draws some parallels and distinctions to the demand for networking faculty over 25 years ago. Faculty and administration are faced with a plethora of questions to answer as they approach this problem: What degree and courses to offer, what certifications to consider, which curriculum to incorporate and how to deliver the material (online, faceto-face, or something in-between)? However, the most pressing question in today's fiscal climate in higher education is: what resources will it take to deliver a cybersecurity program?

Deng, Y., Lu, D., Chung, C., Huang, D., Zeng, Z..  2018.  Personalized Learning in a Virtual Hands-on Lab Platform for Computer Science Education. 2018 IEEE Frontiers in Education Conference (FIE). :1—8.

This Innovate Practice full paper presents a cloud-based personalized learning lab platform. Personalized learning is gaining popularity in online computer science education due to its characteristics of pacing the learning progress and adapting the instructional approach to each individual learner from a diverse background. Among various instructional methods in computer science education, hands-on labs have unique requirements of understanding learner's behavior and assessing learner's performance for personalization. However, it is rarely addressed in existing research. In this paper, we propose a personalized learning platform called ThoTh Lab specifically designed for computer science hands-on labs in a cloud environment. ThoTh Lab can identify the learning style from student activities and adapt learning material accordingly. With the awareness of student learning styles, instructors are able to use techniques more suitable for the specific student, and hence, improve the speed and quality of the learning process. With that in mind, ThoTh Lab also provides student performance prediction, which allows the instructors to change the learning progress and take other measurements to help the students timely. For example, instructors may provide more detailed instructions to help slow starters, while assigning more challenging labs to those quick learners in the same class. To evaluate ThoTh Lab, we conducted an experiment and collected data from an upper-division cybersecurity class for undergraduate students at Arizona State University in the US. The results show that ThoTh Lab can identify learning style with reasonable accuracy. By leveraging the personalized lab platform for a senior level cybersecurity course, our lab-use study also shows that the presented solution improves students engagement with better understanding of lab assignments, spending more effort on hands-on projects, and thus greatly enhancing learning outcomes.

2020-11-02
Bilanová, Z., Perháč, J..  2019.  About possibilities of applying logical analysis of natural language in computer science. 2019 IEEE 13th International Symposium on Applied Computational Intelligence and Informatics (SACI). :251–256.
This paper deals with the comparison of the most popular methods of a logical analysis of natural language Montague intensional logic and Transparent intensional logic. At first, these logical apparatuses are compared in terms of their founding theoretical principles. Later, the selected sentence is examined through the logical analysis. The aim of the paper is to identify a more expressive logical method, which will be a suitable basis for the future design of an algorithm for the automated translation of the natural language into a formal representation of its meaning through a semantic machine.
2020-10-29
Hossain, Sazzat, Hussain, Md. Sazzad, Ema, Romana Rahman, Dutta, Songita, Sarkar, Suborna, Islam, Tajul.  2019.  Detecting Black hole attack by selecting appropriate routes for authentic message passing using SHA-3 and Diffie-Hellman algorithm in AODV and AOMDV routing protocols in MANET. 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1—7.
Ad hoc network is sensitive to attacks because it has temporary nature and frequently recognized insecure environment. Both Ad hoc On-demand Distance Vector (AODV) and Ad hoc On-demand Multipath Distance vector (AOMDV) routing protocols have the strategy to take help from Wireless and mobile ad hoc networks. A mobile ad hoc network (MANET) is recognized as an useful internet protocol and where the mobile nodes are self-configuring and self-organizing in character. This research paper has focused on the detection and influence of black hole attack on the execution of AODV and AOMDV routing protocols and has also evaluated the performance of those two on-demand routing protocols in MANETs. AODV has the characteristics for discovering a single path in single route discovery and AOMDV has the characteristics for discovering multiple paths in single route discovery. Here a proposed method for both AODV and AOMDV routing protocol, has been applied for the detection of the black hole attack, which is the merge of both SHA-3 and Diffie-Hellman algorithm. This merge technique has been applied to detect black hole attack in MANET. This technique has been applied to measure the performance matrices for both AODV and AOMDV and those performance matrices are Average Throughput, Average End to End delay and Normalized Routing Load. Both AODV and AOMDV routing protocol have been compared with each other to show that under black hole attack, AOMDV protocol always has better execution than AODV protocol. Here, NS-2.35 has been used as the Network Simulator tool for the simulation of these particular three types of performance metrics stated above.
2020-10-26
Samantray, Om Prakash, Tripathy, Satya Narayan, Das, Susanta Kumar.  2019.  A study to Understand Malware Behavior through Malware Analysis. 2019 IEEE International Conference on System, Computation, Automation and Networking (ICSCAN). :1–5.
Most of the malware detection techniques use malware signatures for detection. It is easy to detect known malicious program in a system but the problem arises when the malware is unknown. Because, unknown malware cannot be detected by using available known malware signatures. Signature based detection techniques fails to detect unknown and zero-day attacks. A novel approach is required to represent malware features effectively to detect obfuscated, unknown, and mutated malware. This paper emphasizes malware behavior, characteristics and properties extracted by different analytic techniques and to decide whether to include them to create behavioral based malware signature. We have made an attempt to understand the malware behavior using a few openly available tools for malware analysis.
Adilbekov, Ulugbek, Adilova, Anar, Saginbekov, Sain.  2018.  Providing Location Privacy Using Fake Sources in Wireless Sensor Networks. 2018 IEEE 12th International Conference on Application of Information and Communication Technologies (AICT). :1–4.
Wireless Sensor Networks (WSNs) consist of low-cost, resource-constrained sensor nodes and a designated node called a sink which collects data from the sensor nodes. A WSN can be used in numerous applications such as subject tracking and monitoring, where it is often desirable to keep the location of the subject private. Without location privacy protection, an adversary can locate the subject. In this paper, we propose an algorithm that tries to keep the subject location private from a global adversary, which can see the entire network traffic, in an energy efficient way.
2020-10-05
Chakraborty, Anit, Dutta, Sayandip, Bhattacharyya, Siddhartha, Platos, Jan, Snasel, Vaclav.  2018.  Reinforcement Learning inspired Deep Learned Compositional Model for Decision Making in Tracking. 2018 Fourth International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN). :158—163.

We formulate a tracker which performs incessant decision making in order to track objects where the objects may undergo different challenges such as partial occlusions, moving camera, cluttered background etc. In the process, the agent must make a decision on whether to keep track of the object when it is occluded or has moved out of the frame temporarily based on its prediction from the previous location or to reinitialize the tracker based on the belief that the target has been lost. Instead of the heuristic methods we depend on reward and penalty based training that helps the agent reach an optimal solution via this partially observable Markov decision making (POMDP). Furthermore, we employ deeply learned compositional model to estimate human pose in order to better handle occlusion without needing human inputs. By learning compositionality of human bodies via deep neural network the agent can make better decision on presence of human in a frame or lack thereof under occlusion. We adapt skeleton based part representation and do away with the large spatial state requirement. This especially helps in cases where orientation of the target in focus is unorthodox. Finally we demonstrate that the deep reinforcement learning based training coupled with pose estimation capabilities allows us to train and tag multiple large video datasets much quicker than previous works.

Hong, Jin Bum, Yusuf, Simon Enoch, Kim, Dong Seong, Khan, Khaled MD.  2018.  Stateless Security Risk Assessment for Dynamic Networks. 2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W). :65–66.
Emerging networking technologies, such as cloud and Software Defined Networking, provide flexibility, elasticity and functionalities to change the network configurations over time. However, changes also impose unpredictable security postures at different times, creating difficulties to the security assessment of the network. To address this issue, we propose a stateless security risk assessment, which combines the security posture of network states at different times to provide an overall security overview. This paper describes the methodologies of the stateless security risk assessment. Our approach is applicable to any emerging networking technologies with dynamic changes.
2020-09-14
Sivaram, M., Ahamed A, Mohamed Uvaze, Yuvaraj, D., Megala, G., Porkodi, V., Kandasamy, Manivel.  2019.  Biometric Security and Performance Metrics: FAR, FER, CER, FRR. 2019 International Conference on Computational Intelligence and Knowledge Economy (ICCIKE). :770–772.
Biometrics manages the computerized acknowledgment of people dependent on natural and social attributes. The example acknowledgment framework perceives an individual by deciding the credibility of a particular conduct normal for person. The primary rule of biometric framework is recognizable proof and check. A biometric confirmation framework use fingerprints, face, hand geometry, iris, and voice, mark, and keystroke elements of a person to recognize an individual or to check a guaranteed character. Biometrics authentication is a form of identification and access control process which identify individuals in packs that are under reconnaissance. Biometric security system increase in the overall security and individuals no longer have to deal with lost ID Cards or forgotten passwords. It helps much organization to see everyone is at a certain time when something might have happened that needs reviewed. The current issues in biometric system with individuals and many organization facing are personal privacy, expensive, data's may be stolen.
Eggendorfer, Tobias, Eiseler, Volker.  2019.  On the Relevance of IT Security in TDL. 2019 International Conference on Computational Science and Computational Intelligence (CSCI). :220–223.
Tactical Data Links (TDL) and Computer Science meet usually when it comes to interoperability andimplementation. However looking at it from an IT security perspective, some interesting issues occur. These become more relevant the more military hard-and software is built using commercial of the shelf (COTS) systems, that are usually implemented using standard Internet technology and software development patterns. This paper looks at Link 16, Link 11 and VMF security considerations and how compatible they are to current IT security standards. Typical security issues are discussed and concepts to mitigate them presented, which however need to be analysed for their suitability to TDL.
Lochbihler, Andreas, Sefidgar, S. Reza, Basin, David, Maurer, Ueli.  2019.  Formalizing Constructive Cryptography using CryptHOL. 2019 IEEE 32nd Computer Security Foundations Symposium (CSF). :152–15214.
Computer-aided cryptography increases the rigour of cryptographic proofs by mechanizing their verification. Existing tools focus mainly on game-based proofs, and efforts to formalize composable frameworks such as Universal Composability have met with limited success. In this paper, we formalize an instance of Constructive Cryptography, a generic theory allowing for clean, composable cryptographic security statements. Namely, we extend CryptHOL, a framework for game-based proofs, with an abstract model of Random Systems and provide proof rules for their equality and composition. We formalize security as a special kind of system construction in which a complex system is built from simpler ones. As a simple case study, we formalize the construction of an information-theoretically secure channel from a key, a random function, and an insecure channel.
2020-09-11
Spradling, Matthew, Allison, Mark, Tsogbadrakh, Tsenguun, Strong, Jay.  2019.  Toward Limiting Social Botnet Effectiveness while Detection Is Performed: A Probabilistic Approach. 2019 International Conference on Computational Science and Computational Intelligence (CSCI). :1388—1391.
The prevalence of social botnets has increased public distrust of social media networks. Current methods exist for detecting bot activity on Twitter, Reddit, Facebook, and other social media platforms. Most of these detection methods rely upon observing user behavior for a period of time. Unfortunately, the behavior observation period allows time for a botnet to successfully propagate one or many posts before removal. In this paper, we model the post propagation patterns of normal users and social botnets. We prove that a botnet may exploit deterministic propagation actions to elevate a post even with a small botnet population. We propose a probabilistic model which can limit the impact of social media botnets until they can be detected and removed. While our approach maintains expected results for non-coordinated activity, coordinated botnets will be detected before propagation with high probability.
Zhang, Yang, Gao, Haichang, Pei, Ge, Luo, Sainan, Chang, Guoqin, Cheng, Nuo.  2019.  A Survey of Research on CAPTCHA Designing and Breaking Techniques. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :75—84.
The Internet plays an increasingly important role in people's lives, but it also brings security problems. CAPTCHA, which stands for Completely Automated Public Turing Test to Tell Computers and Humans Apart, has been widely used as a security mechanism. This paper outlines the scientific and technological progress in both the design and attack of CAPTCHAs related to these three CAPTCHA categories. It first presents a comprehensive survey of recent developments for each CAPTCHA type in terms of usability, robustness and their weaknesses and strengths. Second, it summarizes the attack methods for each category. In addition, the differences between the three CAPTCHA categories and the attack methods will also be discussed. Lastly, this paper provides suggestions for future research and proposes some problems worthy of further study.
2020-09-04
Wu, Yan, Luo, Anthony, Xu, Dianxiang.  2019.  Forensic Analysis of Bitcoin Transactions. 2019 IEEE International Conference on Intelligence and Security Informatics (ISI). :167—169.
Bitcoin [1] as a popular digital currency has been a target of theft and other illegal activities. Key to the forensic investigation is to identify bitcoin addresses involved in bitcoin transfers. This paper presents a framework, FABT, for forensic analysis of bitcoin transactions by identifying suspicious bitcoin addresses. It formalizes the clues of a given case as transaction patterns defined over a comprehensive set of features. FABT converts the bitcoin transaction data into a formal model, called Bitcoin Transaction Net (BTN). The traverse of all bitcoin transactions in the order of their occurrences is captured by the firing sequence of all transitions in the BTN. We have applied FABT to identify suspicious addresses in the Mt.Gox case. A subgroup of the suspicious addresses has been found to share many characteristics about the received/transferred amount, number of transactions, and time intervals.
2020-08-28
Aravindhar, D. John, Gino Sophia, S. G., Krishnan, Padmaveni, Kumar, D. Praveen.  2019.  Minimization of Black hole Attacks in AdHoc Networks using Risk Aware Response Mechanism. 2019 3rd International conference on Electronics, Communication and Aerospace Technology (ICECA). :1391—1394.

Mobile Ad hoc Network (MANET) is the collection of mobile devices which could change the locations and configure themselves without a centralized base point. Mobile Ad hoc Networks are vulnerable to attacks due to its dynamic infrastructure. The routing attacks are one among the possible attacks that causes damage to MANET. This paper gives a new method of risk aware response technique which is combined version the Dijkstra's shortest path algorithm and Destination Sequenced Distance Vector (DSDV) algorithm. This can reduce black hole attacks. Dijkstra's algorithm finds the shortest path from the single source to the destination when the edges have positive weights. The DSDV is an improved version of the conventional technique by adding the sequence number and next hop address in each routing table.

2020-08-13
Junjie, Jia, Haitao, Qin, Wanghu, Chen, Huifang, Ma.  2019.  Trajectory Anonymity Based on Quadratic Anonymity. 2019 3rd International Conference on Electronic Information Technology and Computer Engineering (EITCE). :485—492.
Due to the leakage of privacy information in the sensitive region of trajectory anonymity publishing, which is resulted by the attack, this paper aims at the trajectory anonymity algorithm of division of region. According to the start stop time of the trajectory, the current sensitive region is found with the k-anonymity set on the synchronous trajectory. If the distance between the divided sub-region and the adjacent anonymous area is not greater than the threshold d, the area will be combined. Otherwise, with the guidance of location mapping, the forged location is added to the sub-region according to the original location so that the divided sub-region can meet the principle of k-anonymity. While the forged location retains the relative position of each point in the sensitive region, making that the divided sub-region and the original Regional anonymity are consistent. Experiments show that compared with the existing trajectory anonymous algorithm and the synchronous trajectory data set with the same privacy, the algorithm is highly effective in both privacy protection and validity of data quality.
2020-07-27
Sandosh, S., Govindasamy, V., Akila, G., Deepasangavy, K., FemidhaBegam, S., Sowmiya, B..  2019.  A Progressive Intrusion Detection System through Event Processing: Challenges and Motivation. 2019 IEEE International Conference on System, Computation, Automation and Networking (ICSCAN). :1–7.
In this contemporary world, working on internet is a crucial task owing to the security threats in the network like intrusions, injections etc. To recognize and reduce these system attacks, analysts and academicians have introduced Intrusion Detection Systems (IDSs) with the various standards and applications. There are different types of Intrusion Detection Systems (IDS) arise to solve the attacks in various environments. Though IDS is more powerful, it produces the results on the abnormal behaviours said to be attacks with false positive and false negative rates which leads to inaccurate detection rate. The other problem is that, there are more number of attacks arising simultaneously with different behaviour being detected by the IDS with high false positive rates which spoils the strength and lifetime of the system, system's efficiency and fault tolerance. Complex Event Processing (CEP) plays a vital role in handling the alerts as events in real time environment which mainly helps to recognize and reduce the redundant alerts.CEP identifies and analyses relationships between events in real time, allowing the system to proactively take efficient actions to respond to specific alerts.In this study, the tendency of Complex Event Processing (CEP) over Intrusion Detection System (IDS) which offers effective handling of the alerts received from IDS in real time and the promotion of the better detection of the attacks are discussed. The merits and challenges of CEP over IDS described in this paper helps to understand and educate the IDS systems to focus on how to tackle the dynamic attacks and its alerts in real time.