Visible to the public Biblio

Found 15086 results

Filters: Keyword is pubcrawl  [Clear All Filters]
2023-09-18
Ding, Zhenquan, Xu, Hui, Guo, Yonghe, Yan, Longchuan, Cui, Lei, Hao, Zhiyu.  2022.  Mal-Bert-GCN: Malware Detection by Combining Bert and GCN. 2022 IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :175—183.
With the dramatic increase in malicious software, the sophistication and innovation of malware have increased over the years. In particular, the dynamic analysis based on the deep neural network has shown high accuracy in malware detection. However, most of the existing methods only employ the raw API sequence feature, which cannot accurately reflect the actual behavior of malicious programs in detail. The relationship between API calls is critical for detecting suspicious behavior. Therefore, this paper proposes a malware detection method based on the graph neural network. We first connect the API sequences executed by different processes to build a directed process graph. Then, we apply Bert to encode the API sequences of each process into node embedding, which facilitates the semantic execution information inside the processes. Finally, we employ GCN to mine the deep semantic information based on the directed process graph and node embedding. In addition to presenting the design, we have implemented and evaluated our method on 10,000 malware and 10,000 benign software datasets. The results show that the precision and recall of our detection model reach 97.84% and 97.83%, verifying the effectiveness of our proposed method.
Pranav, Putsa Rama Krishna, Verma, Sachin, Shenoy, Sahana, Saravanan, S..  2022.  Detection of Botnets in IoT Networks using Graph Theory and Machine Learning. 2022 6th International Conference on Trends in Electronics and Informatics (ICOEI). :590—597.
The Internet of things (IoT) is proving to be a boon in granting internet access to regularly used objects and devices. Sensors, programs, and other innovations interact and trade information with different gadgets and frameworks over the web. Even in modern times, IoT gadgets experience the ill effects of primary security threats, which expose them to many dangers and malware, one among them being IoT botnets. Botnets carry out attacks by serving as a vector and this has become one of the significant dangers on the Internet. These vectors act against associations and carry out cybercrimes. They are used to produce spam, DDOS attacks, click frauds, and steal confidential data. IoT gadgets bring various challenges unlike the common malware on PCs and Android devices as IoT gadgets have heterogeneous processor architecture. Numerous researches use static or dynamic analysis for detection and classification of botnets on IoT gadgets. Most researchers haven't addressed the multi-architecture issue and they use a lot of computing resources for analyzing. Therefore, this approach attempts to classify botnets in IoT by using PSI-Graphs which effectively addresses the problem of encryption in IoT botnet detection, tackles the multi-architecture problem, and reduces computation time. It proposes another methodology for describing and recognizing botnets utilizing graph-based Machine Learning techniques and Exploratory Data Analysis to analyze the data and identify how separable the data is to recognize bots at an earlier stage so that IoT devices can be prevented from being attacked.
Warmsley, Dana, Waagen, Alex, Xu, Jiejun, Liu, Zhining, Tong, Hanghang.  2022.  A Survey of Explainable Graph Neural Networks for Cyber Malware Analysis. 2022 IEEE International Conference on Big Data (Big Data). :2932—2939.
Malicious cybersecurity activities have become increasingly worrisome for individuals and companies alike. While machine learning methods like Graph Neural Networks (GNNs) have proven successful on the malware detection task, their output is often difficult to understand. Explainable malware detection methods are needed to automatically identify malicious programs and present results to malware analysts in a way that is human interpretable. In this survey, we outline a number of GNN explainability methods and compare their performance on a real-world malware detection dataset. Specifically, we formulated the detection problem as a graph classification problem on the malware Control Flow Graphs (CFGs). We find that gradient-based methods outperform perturbation-based methods in terms of computational expense and performance on explainer-specific metrics (e.g., Fidelity and Sparsity). Our results provide insights into designing new GNN-based models for cyber malware detection and attribution.
Wang, Rui, Zheng, Jun, Shi, Zhiwei, Tan, Yu'an.  2022.  Detecting Malware Using Graph Embedding and DNN. 2022 International Conference on Blockchain Technology and Information Security (ICBCTIS). :28—31.
Nowadays, the popularity of intelligent terminals makes malwares more and more serious. Among the many features of application, the call graph can accurately express the behavior of the application. The rapid development of graph neural network in recent years provides a new solution for the malicious analysis of application using call graphs as features. However, there are still problems such as low accuracy. This paper established a large-scale data set containing more than 40,000 samples and selected the class call graph, which was extracted from the application, as the feature and used the graph embedding combined with the deep neural network to detect the malware. The experimental results show that the accuracy of the detection model proposed in this paper is 97.7%; the precision is 96.6%; the recall is 96.8%; the F1-score is 96.4%, which is better than the existing detection model based on Markov chain and graph embedding detection model.
Oshio, Kei, Takada, Satoshi, Han, Chansu, Tanaka, Akira, Takeuchi, Jun'ichi.  2022.  Poster: Flexible Function Estimation of IoT Malware Using Graph Embedding Technique. 2022 IEEE Symposium on Computers and Communications (ISCC). :1—3.
Most IoT malware is variants generated by editing and reusing parts of the functions based on publicly available source codes. In our previous study, we proposed a method to estimate the functions of a specimen using the Function Call Sequence Graph (FCSG), which is a directed graph of execution sequence of function calls. In the FCSG-based method, the subgraph corresponding to a malware functionality is manually created and called a signature-FSCG. The specimens with the signature-FSCG are expected to have the corresponding functionality. However, this method cannot detect the specimens with a slightly different subgraph from the signature-FSCG. This paper found that these specimens were supposed to have the same functionality for a signature-FSCG. These specimens need more flexible signature matching, and we propose a graph embedding technique to realize it.
2023-09-08
Huang, Junya, Liu, Zhihua, Zheng, Zhongmin, Wei, Xuan, Li, Man, Jia, Man.  2022.  Research and Development of Intelligent Protection Capabilities Against Internet Routing Hijacking and Leakage. 2022 International Conference on Artificial Intelligence, Information Processing and Cloud Computing (AIIPCC). :50–54.
With the rapid growth of the number of global network entities and interconnections, the security risks of network relationships are constantly accumulating. As the basis of network interconnection and communication, Internet routing is facing severe challenges such as insufficient online monitoring capability of large-scale routing events and lack of effective and credible verification mechanism. Major global routing security events emerge one after another, causing extensive and far-reaching impacts. To solve these problems, China Telecom studied the BGP (border gateway protocol) SDN (software defined network) controller technology to monitor the interconnection routing, constructed the global routing information database trust source integrating multi-dimensional information and developed the function of the protocol level based real-time monitoring system of Internet routing security events. Through these means, it realizes the second-level online monitoring capability of large-scale IP network Internet service routing events, forms the minute-level route leakage interception and route hijacking blocking solutions, and achieves intelligent protection capability of Internet routing security.
Shah, Sunil Kumar, Sharma, Raghavendra, Shukla, Neeraj.  2022.  Data Security in IoT Networks using Software-Defined Networking: A Review. 2022 IEEE World Conference on Applied Intelligence and Computing (AIC). :909–913.
Wireless Sensor networks can be composed of smart buildings, smart homes, smart grids, and smart mobility, and they can even interconnect all these fields into a large-scale smart city network. Software-Defined Networking is an ideal technology to realize Internet-of-Things (IoT) Network and WSN network requirements and to efficiently enhance the security of these networks. Software defines Networking (SDN) is used to support IoT and WSN related networking elements, additional security concerns rise, due to the elevated vulnerability of such deployments to specific types of attacks and the necessity of inter-cloud communication any IoT application would require. This work is a study of different security mechanisms available in SDN for IoT and WSN network secure communication. This work also formulates the problems when existing methods are implemented with different networks parameters.
Mandal, Riman, Mondal, Manash Kumar, Banerjee, Sourav, Chatterjee, Pushpita, Mansoor, Wathiq, Biswas, Utpal.  2022.  PbV mSp: A priority-based VM selection policy for VM consolidation in green cloud computing. 2022 5th International Conference on Signal Processing and Information Security (ICSPIS). :32–37.
Cloud computing forms the backbone of the era of automation and the Internet of Things (IoT). It offers computing and storage-based services on consumption-based pricing. Large-scale datacenters are used to provide these service and consumes enormous electricity. Datacenters contribute a large portion of the carbon footprint in the environment. Through virtual machine (VM) consolidation, datacenter energy consumption can be reduced via efficient resource management. VM selection policy is used to choose the VM that needs migration. In this research, we have proposed PbV mSp: A priority-based VM selection policy for VM consolidation. The PbV mSp is implemented in cloudsim and evaluated compared with well-known VM selection policies like gpa, gpammt, mimt, mums, and mxu. The results show that the proposed PbV mSp selection policy has outperformed the exisitng policies in terms of energy consumption and other metrics.
ISSN: 2831-3844
Buddhi, Dharam, A, Prabhu, Hamad, Abdulsattar Abdullah, Sarojwal, Atul, Alanya-Beltran, Joel, Chakravarthi, M. Kalyan.  2022.  Power System Monitoring, Control and protection using IoT and cyber security. 2022 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES). :1–5.
The analysis shows how important Power Network Measuring and Characterization (PSMC) is to the plan. Networks planning and oversight for the transmission of electrical energy is becoming increasingly frequent. In reaction to the current contest of assimilating trying to cut charging in the crate, estimation, information sharing, but rather govern into PSMC reasonable quantities, Electrical Transmit Monitoring and Management provides a thorough outline of founding principles together with smart sensors for domestic spying, security precautions, and control of developed broadening power systems.Electricity supply control must depend increasingly heavily on telecommunications infrastructure to manage and run their processes because of the fluctuation in transmission and distribution of electricity. A wider attack surface will also be available to threat hackers as a result of the more communications. Large-scale blackout have occurred in the past as a consequence of cyberattacks on electrical networks. In order to pinpoint the key issues influencing power grid computer networks, we looked at the network infrastructure supporting electricity grids in this research.
Shi, Kun, Chen, Songsong, Li, Dezhi, Tian, Ke, Feng, Meiling.  2022.  Analysis of the Optimized KNN Algorithm for the Data Security of DR Service. 2022 IEEE 6th Conference on Energy Internet and Energy System Integration (EI2). :1634–1637.
The data of large-scale distributed demand-side iot devices are gradually migrated to the cloud. This cloud deployment mode makes it convenient for IoT devices to participate in the interaction between supply and demand, and at the same time exposes various vulnerabilities of IoT devices to the Internet, which can be easily accessed and manipulated by hackers to launch large-scale DDoS attacks. As an easy-to-understand supervised learning classification algorithm, KNN can obtain more accurate classification results without too many adjustment parameters, and has achieved many research achievements in the field of DDoS detection. However, in the face of high-dimensional data, this method has high operation cost, high cost and not practical. Aiming at this disadvantage, this chapter explores the potential of classical KNN algorithm in data storage structure, K-nearest neighbor search and hyperparameter optimization, and proposes an improved KNN algorithm for DDoS attack detection of demand-side IoT devices.
Yu, Gang, Li, Zhenyu.  2022.  Analysis of Current situation and Countermeasures of Performance Evaluation of Volunteers in Large-scale Games Based on Mobile Internet. 2022 8th Annual International Conference on Network and Information Systems for Computers (ICNISC). :88–91.
Using the methods of literature and interview, this paper analyzes the current situation of performance evaluation of volunteers in large-scale games based on mobile Internet, By analyzing the popularity of mobile Internet, the convenience of performance evaluation, the security and privacy of performance evaluation, this paper demonstrates the necessity of performance evaluation of volunteers in large-scale games based on mobile Internet, This paper puts forward the Countermeasures of performance evaluation of volunteers in large-scale games based on mobile Internet.
Das, Debashis, Banerjee, Sourav, Chatterjee, Pushpita, Ghosh, Uttam, Mansoor, Wathiq, Biswas, Utpal.  2022.  Design of an Automated Blockchain-Enabled Vehicle Data Management System. 2022 5th International Conference on Signal Processing and Information Security (ICSPIS). :22–25.
The Internet of Vehicles (IoV) has a tremendous prospect for numerous vehicular applications. IoV enables vehicles to transmit data to improve roadway safety and efficiency. Data security is essential for increasing the security and privacy of vehicle and roadway infrastructures in IoV systems. Several researchers proposed numerous solutions to address security and privacy issues in IoV systems. However, these issues are not proper solutions that lack data authentication and verification protocols. In this paper, a blockchain-enabled automated data management system for vehicles has been proposed and demonstrated. This work enables automated data verification and authentication using smart contracts. Certified organizations can only access vehicle data uploaded by the vehicle user to the Interplanetary File System (IPFS) server through that vehicle user’s consent. The proposed system increases the security of vehicles and data. Vehicle privacy is also maintained here by increasing data privacy.
ISSN: 2831-3844
Li, Leixiao, Xiong, Xiao, Gao, Haoyu, Zheng, Yue, Niu, Tieming, Du, Jinze.  2022.  Blockchain-based trust evaluation mechanism for Internet of Vehicles. 2022 IEEE Smartworld, Ubiquitous Intelligence & Computing, Scalable Computing & Communications, Digital Twin, Privacy Computing, Metaverse, Autonomous & Trusted Vehicles (SmartWorld/UIC/ScalCom/DigitalTwin/PriComp/Meta). :2011–2018.
In the traditional Internet of Vehicles, communication data is easily tampered with and easily leaked. In order to improve the trust evaluation mechanism of the Internet of Vehicles and establish a trust relationship between vehicles, a blockchain-based Internet of Vehicles trust evaluation (BBTE) scheme is proposed. First, the scheme uses the roadside unit RSU to calculate the trust value of vehicle nodes and maintain the generation, verification and storage of blocks, so as to realize distributed data storage and ensure that data cannot be tampered with. Secondly, an efficient trust evaluation method is designed. The method integrates four trust decision factors: initial trust, historical experience trust, recommendation trust and RSU observation trust to obtain the overall trust value of vehicle nodes. In addition, in the process of constructing the recommendation trust method, the recommendation trust is divided into three categories according to the interaction between the recommended vehicle node and the communicator, use CRITIC to obtain the optimal weights of three recommended trusts, and use CRITIC to obtain the optimal weights of four trust decision-making factors to obtain the final trust value. Finally, the NS3 simulation platform is used to verify the security and accuracy of the trust evaluation method, and to improve the identification accuracy and detection rate of malicious vehicle nodes. The experimental analysis shows that the scheme can effectively deal with the gray hole attack, slander attack and collusion attack of other vehicle nodes, improve the security of vehicle node communication interaction, and provide technical support for the basic application of Internet of Vehicles security.
Liu, Shaogang, Chen, Jiangli, Hong, Guihua, Cao, Lizhu, Wu, Ming.  2022.  Research on UAV Network System Security Risk Evaluation Oriented to Geographic Information Data. 2022 IEEE International Conference on Electrical Engineering, Big Data and Algorithms (EEBDA). :57–60.
With the advent of the Internet era, all walks of life in our country have undergone earth-shaking changes, especially the drone and geographic information industries, which have developed rapidly under the impetus of the Internet of Things era. However, with the continuous development of science and technology, the network structure has become more and more complex, and the types of network attacks have varied. UAV information security and geographic information data have appeared security risks on the network. These hidden dangers have contributed to the progress of the drone and geographic information industry. And development has caused a great negative impact. In this regard, this article will conduct research on the network security of UAV systems and geographic information data, which can effectively assess the network security risks of UAV systems, and propose several solutions to potential safety hazards to reduce UAV networks. Security risks and losses provide a reference for UAV system data security.
Chen, Kai, Wu, Hongjun, Xu, Cheng, Ma, Nan, Dai, Songyin, Liu, Hongzhe.  2022.  An Intelligent Vehicle Data Security System based on Blockchain for Smart City. 2022 International Conference on Virtual Reality, Human-Computer Interaction and Artificial Intelligence (VRHCIAI). :227–231.
With the development of urbanization, the number of vehicles is gradually increasing, and vehicles are gradually developing in the direction of intelligence. How to ensure that the data of intelligent vehicles is not tampered in the process of transmission to the cloud is the key problem of current research. Therefore, we have established a data security transmission system based on blockchain. First, we collect and filter vehicle data locally, and then use blockchain technology to transmit key data. Through the smart contract, the key data is automatically and accurately transmitted to the surrounding node vehicles, and the vehicles transmit data to each other to form a transaction and spread to the whole network. The node data is verified through the node data consensus protocol of intelligent vehicle data security transmission system, and written into the block to form a blockchain. Finally, the vehicle user can query the transaction record through the vehicle address. The results show that we can safely and accurately transmit and query vehicle data in the blockchain database.
Pawar, Sheetal, Kuveskar, Manisha.  2022.  Vehicle Security and Road Safety System Based on Internet of Things. 2022 IEEE International Conference on Current Development in Engineering and Technology (CCET). :1–5.
Roads are the backbone of our country, they play an important role for human progress. Roads seem to be dangerous and harmful for human beings on hills, near rivers, lakes and small ridges. It's possible with the help of IoT (Internet of things) to incorporate all the things made efficiently and effectively. IoT in combination with roads make daily life smart and excellent. This paper shows IoT technology will be the beginning of smart cities and it will reduce road accidents and collisions. If all vehicles are IoT based and connected with the internet, then an efficient method to guide, it performs urgent action, when less time is available. Internet and antenna technology in combination with IoT perform fully automation in our day-to-day life. It will provide excellent service as well as accuracy and precision.
Zhang, Jian, Li, Lei, Liu, Weidong, Li, Xiaohui.  2022.  Multi-subject information interaction and one-way hash chain authentication method for V2G application in Internet of Vehicles. 2022 4th International Conference on Intelligent Information Processing (IIP). :134–137.
Internet of Vehicles consists of a three-layer architecture of electric vehicles, charging piles, and a grid dispatch management control center. Therefore, V2G presents multi-level, multi-agent and frequent information interaction, which requires a highly secure and lightweight identity authentication method. Based on the characteristics of Internet of Vehicles, this paper designs a multi-subject information interaction and one-way hash chain authentication method, it includes one-way hash chain and key distribution update strategy. The operation experiment of multiple electric vehicles and charging piles shows that the algorithm proposed in this paper can meet the V2G ID authentication requirements of Internet of Vehicles, and has the advantages of lightweight and low consumption. It is of great significance to improve the security protection level of Internet of Vehicles V2G.
Chen, Xuan, Li, Fei.  2022.  Research on the Algorithm of Situational Element Extraction of Internet of Vehicles Security based on Optimized-FOA-PNN. 2022 7th International Conference on Cyber Security and Information Engineering (ICCSIE). :109–112.

The scale of the intelligent networked vehicle market is expanding rapidly, and network security issues also follow. A Situational Awareness (SA) system can detect, identify, and respond to security risks from a global perspective. In view of the discrete and weak correlation characteristics of perceptual data, this paper uses the Fly Optimization Algorithm (FOA) based on dynamic adjustment of the optimization step size to improve the convergence speed, and optimizes the extraction model of security situation element of the Internet of Vehicles (IoV), based on Probabilistic Neural Network (PNN), to improve the accuracy of element extraction. Through the comparison of experimental algorithms, it is verified that the algorithm has fast convergence speed, high precision and good stability.

Bai, Songhao, Zhang, Zhen.  2022.  Anonymous Identity Authentication scheme for Internet of Vehicles based on moving target Defense. 2021 International Conference on Advanced Computing and Endogenous Security. :1–4.
As one of the effective methods to enhance traffic safety and improve traffic efficiency, the Internet of vehicles has attracted wide attention from all walks of life. V2X secure communication, as one of the research hotspots of the Internet of vehicles, also has many security and privacy problems. Attackers can use these vulnerabilities to obtain vehicle identity information and location information, and can also attack vehicles through camouflage.Therefore, the identity authentication process in vehicle network communication must be effectively protected. The anonymous identity authentication scheme based on moving target defense proposed in this paper not only ensures the authenticity and integrity of information sources, but also avoids the disclosure of vehicle identity information.
Miao, Yu.  2022.  Construction of Computer Big Data Security Technology Platform Based on Artificial Intelligence. 2022 Second International Conference on Advanced Technologies in Intelligent Control, Environment, Computing & Communication Engineering (ICATIECE). :1–4.
Artificial technology developed in recent years. It is an intelligent system that can perform tasks without human intervention. AI can be used for various purposes, such as speech recognition, face recognition, etc. AI can be used for good or bad purposes, depending on how it is implemented. The discuss the application of AI in data security technology and its advantages over traditional security methods. We will focus on the good use of AI by analyzing the impact of AI on the development of big data security technology. AI can be used to enhance security technology by using machine learning algorithms, which can analyze large amounts of data and identify patterns that cannot be detected automatically by humans. The computer big data security technology platform based on artificial intelligence in this paper is the process of creating a system that can identify and prevent malicious programs. The system must be able to detect all types of threats, including viruses, worms, Trojans and spyware. It should also be able to monitor network activity and respond quickly in the event of an attack.
Zalozhnev, Alexey Yu., Ginz, Vasily N., Loktionov, Anatoly Eu..  2022.  Intelligent System and Human-Computer Interaction for Personal Data Cyber Security in Medicaid Enterprises. 2022 International Conference on Electrical, Computer and Energy Technologies (ICECET). :1–4.
Intelligent Systems for Personal Data Cyber Security is a critical component of the Personal Information Management of Medicaid Enterprises. Intelligent Systems for Personal Data Cyber Security combines components of Cyber Security Systems with Human-Computer Interaction. It also uses the technology and principles applied to the Internet of Things. The use of software-hardware concepts and solutions presented in this report is, in the authors’ opinion, some step in the working-out of the Intelligent Systems for Personal Data Cyber Security in Medicaid Enterprises. These concepts may also be useful for developers of these types of systems.
Li, Bo, Jia, Yupeng, Jin, Chengxue.  2022.  Research on the Efficiency Factors Affecting Airport Security Check Based on Intelligent Passenger Security Check Equipment. 2022 13th International Conference on Mechanical and Aerospace Engineering (ICMAE). :459–464.
In the field of airport passenger security, a new type of security inspection equipment called intelligent passenger security equipment is applied widely, which can significantly improve the efficiency of airport security screening and passenger satisfaction. This paper establishes a security check channel model based on intelligent passenger security check equipment, and studies the factors affecting the efficiency of airport security screening, such as the number of baggage unloading points, baggage loading points, secondary inspection points, etc. A simulation model of security check channel is established based on data from existing intelligent passenger security check equipment and data collected from Beijing Daxing Airport. Equipment utilization and queue length data is obtained by running the simulation model. According to the data, the bottleneck is that the manual inspection process takes too long, and the utilization rate of the baggage unloading point is too low. For the bottleneck link, an optimization scheme is proposed. With more manual check points and secondary inspection points and less baggage unloading points, the efficiency of airport security screening significantly increases by running simulation model. Based on the optimized model, the effect of baggage unloading point and baggage loading point on efficiency is further studied. The optimal parameter configuration scheme under the expected efficiency is obtained. This research can assist engineers to find appropriate equipment configuration quickly and instruct the airport to optimize the arrangement of security staff, which can effectively improve the efficiency of airport security screening and reduce the operating costs of airport.
Zhong, Luoyifan.  2022.  Optimization and Prediction of Intelligent Tourism Data. 2022 IEEE 8th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS). :186–188.
Tourism is one of the main sources of income in Australia. The number of tourists will affect airlines, hotels and other stakeholders. Predicting the arrival of tourists can make full preparations for welcoming tourists. This paper selects Queensland Tourism data as intelligent data. Carry out data visualization around the intelligent data, establish seasonal ARIMA model, find out the characteristics and predict. In order to improve the accuracy of prediction. Based on the tourism data around Queensland, build a 10 layer Back Propagation neural network model. It is proved that the network shows good performance for the data prediction of this paper.
Sengul, M. Kutlu, Tarhan, Cigdem, Tecim, Vahap.  2022.  Application of Intelligent Transportation System Data using Big Data Technologies. 2022 Innovations in Intelligent Systems and Applications Conference (ASYU). :1–6.
Problems such as the increase in the number of private vehicles with the population, the rise in environmental pollution, the emergence of unmet infrastructure and resource problems, and the decrease in time efficiency in cities have put local governments, cities, and countries in search of solutions. These problems faced by cities and countries are tried to be solved in the concept of smart cities and intelligent transportation by using information and communication technologies in line with the needs. While designing intelligent transportation systems (ITS), beyond traditional methods, big data should be designed in a state-of-the-art and appropriate way with the help of methods such as artificial intelligence, machine learning, and deep learning. In this study, a data-driven decision support system model was established to help the business make strategic decisions with the help of intelligent transportation data and to contribute to the elimination of public transportation problems in the city. Our study model has been established using big data technologies and business intelligence technologies: a decision support system including data sources layer, data ingestion/ collection layer, data storage and processing layer, data analytics layer, application/presentation layer, developer layer, and data management/ data security layer stages. In our study, the decision support system was modeled using ITS data supported by big data technologies, where the traditional structure could not find a solution. This paper aims to create a basis for future studies looking for solutions to the problems of integration, storage, processing, and analysis of big data and to add value to the literature that is missing within the framework of the model. We provide both the lack of literature, eliminate the lack of models before the application process of existing data sets to the business intelligence architecture and a model study before the application to be carried out by the authors.
ISSN: 2770-7946
Lee, Jonghoon, Kim, Hyunjin, Park, Chulhee, Kim, Youngsoo, Park, Jong-Geun.  2022.  AI-based Network Security Enhancement for 5G Industrial Internet of Things Environments. 2022 13th International Conference on Information and Communication Technology Convergence (ICTC). :971–975.
The recent 5G networks aim to provide higher speed, lower latency, and greater capacity; therefore, compared to the previous mobile networks, more advanced and intelligent network security is essential for 5G networks. To detect unknown and evolving 5G network intrusions, this paper presents an artificial intelligence (AI)-based network threat detection system to perform data labeling, data filtering, data preprocessing, and data learning for 5G network flow and security event data. The performance evaluations are first conducted on two well-known datasets-NSL-KDD and CICIDS 2017; then, the practical testing of proposed system is performed in 5G industrial IoT environments. To demonstrate detection against network threats in real 5G environments, this study utilizes the 5G model factory, which is downscaled to a real smart factory that comprises a number of 5G industrial IoT-based devices.
ISSN: 2162-1241