Biblio
Cyber-Physical Power Systems (CPPSs) currently face an increasing number of security attacks and lack methods for optimal proactive security decisions to defend the attacks. This paper proposed an optimal defensive method based on game theory to minimize the system performance deterioration of CPPSs under cyberspace attacks. The reinforcement learning algorithmic solution is used to obtain the Nash equilibrium and a set of metrics of system vulnerabilities are adopted to quantify the cost of defense against cyber-attacks. The minimax-Q algorithm is utilized to obtain the optimal defense strategy without the availability of the attacker's information. The proposed solution is assessed through experiments based on a realistic power generation microsystem testbed and the numerical results confirmed its effectiveness.
Advanced Persistent Threat (APT) is a stealthy, continuous and sophisticated method of network attacks, which can cause serious privacy leakage and millions of dollars losses. In this paper, we introduce a new game-theoretic framework of the interaction between a defender who uses limited Security Resources(SRs) to harden network and an attacker who adopts a multi-stage plan to attack the network. The game model is derived from Stackelberg games called a Multi-stage Maze Network Game (M2NG) in which the characteristics of APT are fully considered. The possible plans of the attacker are compactly represented using attack graphs(AGs), but the compact representation of the attacker's strategies presents a computational challenge and reaching the Nash Equilibrium(NE) is NP-hard. We present a method that first translates AGs into Markov Decision Process(MDP) and then achieves the optimal SRs allocation using the policy hill-climbing(PHC) algorithm. Finally, we present an empirical evaluation of the model and analyze the scalability and sensitivity of the algorithm. Simulation results exhibit that our proposed reinforcement learning-based SRs allocation is feasible and efficient.
The emergence of Cyber-Physical Systems (CPSs) is a potential paradigm shift for the usage of Information and Communication Technologies (ICT). From predominantly a facilitator of information and communication services, the role of ICT in the present age has expanded to the management of objects and resources in the physical world. Thus, it is imperative to devise mechanisms to ensure the trustworthiness of data to secure vulnerable devices against security threats. This work presents an analytical framework based on non-cooperative game theory to evaluate the trustworthiness of individual sensor nodes that constitute the CPS. The proposed game-theoretic model captures the factors impacting the trustworthiness of CPS sensor nodes. Further, the model is used to estimate the Nash equilibrium solution of the game, to derive a trust threshold criterion. The trust threshold represents the minimum trust score required to be maintained by individual sensor nodes during CPS operation. Sensor nodes with trust scores below the threshold are potentially malicious and may be removed or isolated to ensure the secure operation of CPS.
This paper presents a novel game theoretic attack-defence decision making framework for cyber-physical system (CPS) security. Game theory is a powerful tool to analyse the interaction between the attacker and the defender in such scenarios. In the formulation of games, participants are usually assumed to be rational. They will always choose the action to pursuit maximum payoff according to the knowledge of the strategic situation they are in. However, in reality the capacity of rationality is often bounded by the level of intelligence, computational resources and the amount of available information. This paper formulates the concept of bounded rationality into the decision making process, in order to optimise the defender's strategy considering that the defender and the attacker have incomplete information of each other and limited computational capacity. Under the proposed framework, the defender can often benefit from deviating from the minimax Nash Equilibrium strategy, the theoretically expected outcome of rational game playing. Numerical results are presented and discussed in order to demonstrate the proposed technique.