Visible to the public Biblio

Filters: Keyword is Nash equilibrium  [Clear All Filters]
2023-09-01
Wu, Yingzhen, Huo, Yan, Gao, Qinghe, Wu, Yue, Li, Xuehan.  2022.  Game-theoretic and Learning-aided Physical Layer Security for Multiple Intelligent Eavesdroppers. 2022 IEEE Globecom Workshops (GC Wkshps). :233—238.
Artificial Intelligence (AI) technology is developing rapidly, permeating every aspect of human life. Although the integration between AI and communication contributes to the flourishing development of wireless communication, it induces severer security problems. As a supplement to the upper-layer cryptography protocol, physical layer security has become an intriguing technology to ensure the security of wireless communication systems. However, most of the current physical layer security research does not consider the intelligence and mobility of collusive eavesdroppers. In this paper, we consider a MIMO system model with a friendly intelligent jammer against multiple collusive intelligent eavesdroppers, and zero-sum game is exploited to formulate the confrontation of them. The Nash equilibrium is derived by convex optimization and alternative optimization in the free-space scenario of a single user system. We propose a zero-sum game deep learning algorithm (ZGDL) for general situations to solve non-convex game problems. In terms of the effectiveness, simulations are conducted to confirm that the proposed algorithm can obtain the Nash equilibrium.
2023-08-04
Xu, Zhifan, Baykal-Gürsoy, Melike.  2022.  Cost-Efficient Network Protection Games Against Uncertain Types of Cyber-Attackers. 2022 IEEE International Symposium on Technologies for Homeland Security (HST). :1–7.
This paper considers network protection games for a heterogeneous network system with N nodes against cyber-attackers of two different types of intentions. The first type tries to maximize damage based on the value of each net-worked node, while the second type only aims at successful infiltration. A defender, by applying defensive resources to networked nodes, can decrease those nodes' vulnerabilities. Meanwhile, the defender needs to balance the cost of using defensive resources and potential security benefits. Existing literature shows that, in a Nash equilibrium, the defender should adopt different resource allocation strategies against different types of attackers. However, it could be difficult for the defender to know the type of incoming cyber-attackers. A Bayesian game is investigated considering the case that the defender is uncertain about the attacker's type. We demonstrate that the Bayesian equilibrium defensive resource allocation strategy is a mixture of the Nash equilibrium strategies from the games against the two types of attackers separately.
2023-05-12
Zhang, Xinyan.  2022.  Access Control Mechanism Based on Game Theory in the Internet of Things Environment. 2022 IEEE 8th International Conference on Computer and Communications (ICCC). :1–6.
In order to solve the problem that the traditional “centralized” access control technology can no longer guarantee the security of access control in the current Internet of Things (IoT)environment, a dynamic access control game mechanism based on trust is proposed. According to the reliability parameters of the recommended information obtained by the two elements of interaction time and the number of interactions, the user's trust value is dynamically calculated, and the user is activated and authorized to the role through the trust level corresponding to the trust value. The trust value and dynamic adjustment factor are introduced into the income function to carry out game analysis to avoid malicious access behavior of users. The hybrid Nash equilibrium strategy of both sides of the transaction realizes the access decision-making work in the IoT environment. Experimental results show that the game mechanism proposed in this paper has a certain restraining effect on malicious nodes and can play a certain incentive role in the legitimate access behavior of IoT users.
2022-10-16
Shao, Pengfei, Jin, Shuyuan.  2021.  A Dynamic Access Control Model Based on Game Theory for the Cloud. 2021 IEEE Global Communications Conference (GLOBECOM). :1–6.
The user's access history can be used as an important reference factor in determining whether to allow the current access request or not. And it is often ignored by the existing access control models. To make up for this defect, a Dynamic Trust - game theoretic Access Control model is proposed based on the previous work. This paper proposes a method to quantify the user's trust in the cloud environment, which uses identity trust, behavior trust, and reputation trust as metrics. By modeling the access process as a game and introducing the user's trust value into the pay-off matrix, the mixed strategy Nash equilibrium of cloud user and service provider is calculated respectively. Further, a calculation method for the threshold predefined by the service provider is proposed. Authorization of the access request depends on the comparison of the calculated probability of the user's adopting a malicious access policy with the threshold. Finally, we summarize this paper and make a prospect for future work.
2022-09-20
Yao, Pengchao, Hao, Weijie, Yan, Bingjing, Yang, Tao, Wang, Jinming, Yang, Qiang.  2021.  Game-Theoretic Model for Optimal Cyber-Attack Defensive Decision-Making in Cyber-Physical Power Systems. 2021 IEEE 5th Conference on Energy Internet and Energy System Integration (EI2). :2359—2364.

Cyber-Physical Power Systems (CPPSs) currently face an increasing number of security attacks and lack methods for optimal proactive security decisions to defend the attacks. This paper proposed an optimal defensive method based on game theory to minimize the system performance deterioration of CPPSs under cyberspace attacks. The reinforcement learning algorithmic solution is used to obtain the Nash equilibrium and a set of metrics of system vulnerabilities are adopted to quantify the cost of defense against cyber-attacks. The minimax-Q algorithm is utilized to obtain the optimal defense strategy without the availability of the attacker's information. The proposed solution is assessed through experiments based on a realistic power generation microsystem testbed and the numerical results confirmed its effectiveness.

2022-08-26
Sun, Pengyu, Zhang, Hengwei, Ma, Junqiang, Li, Chenwei, Mi, Yan, Wang, Jindong.  2021.  A Selection Strategy for Network Security Defense Based on a Time Game Model. 2021 International Conference on Digital Society and Intelligent Systems (DSInS). :223—228.
Current network assessment models often ignore the impact of attack-defense timing on network security, making it difficult to characterize the dynamic game of attack-defense effectively. To effectively manage the network security risks and reduce potential losses, in this article, we propose a selection strategy for network defense based on a time game model. By analyzing the attack-defense status by analogy with the SIR infectious disease model, construction of an optimal defense strategy model based on time game, and calculation of the Nash equilibrium of the the attacker and the defender under different strategies, we can determine an optimal defense strategy. With the Matlab simulation, this strategy is verified to be effective.
Li, Kai, Yang, Dawei, Bai, Liang, Wang, Tianjun.  2021.  Security Risk Assessment Method of Edge Computing Container Based on Dynamic Game. 2021 IEEE 6th International Conference on Cloud Computing and Big Data Analytics (ICCCBDA). :195—199.
Compared with other virtualization technologies, container technology is widely used in edge computing because of its low cost, high reliability, high flexibility and fast portability. However, the use of container technology can alleviate the pressure of massive data, but also bring complex and diverse security problems. Reliable information security risk assessment method is the key to ensure the smooth application of container technology. According to the risk assessment theory, a security risk assessment method for edge computing containers based on dynamic game theory is proposed. Aiming at the complex container security attack and defense process, the container system's security model is constructed based on dynamic game theory. By combining the attack and defense matrix, the Nash equilibrium solution of the model is calculated, and the dynamic process of the mutual game between security defense and malicious attackers is analyzed. By solving the feedback Nash equilibrium solution of the model, the optimal strategies of the attackers are calculated. Finally, the simulation tool is used to solve the feedback Nash equilibrium solution of the two players in the proposed model, and the experimental environment verifies the usability of the risk assessment method.
2022-06-09
Anwar, Ahmed H., Leslie, Nandi O., Kamhoua, Charles A..  2021.  Honeypot Allocation for Cyber Deception in Internet of Battlefield Things Systems. MILCOM 2021 - 2021 IEEE Military Communications Conference (MILCOM). :1005–1010.
Cyber deception plays an important role in both proactive and reactive defense systems. Internet of Battlefield things connecting smart devices of any military tactical network is of great importance. The goal of cyber deception is to provide false information regarding the network state, and topology to protect the IoBT's network devices. In this paper, we propose a novel deceptive approach based on game theory that takes into account the topological aspects of the network and the criticality of each device. To find the optimal deceptive strategy, we formulate a two-player game to study the interactions between the network defender and the adversary. The Nash equilibrium of the game model is characterized. Moreover, we propose a scalable game-solving algorithm to overcome the curse of dimensionality. This approach is based on solving a smaller in-size subgame per node. Our numerical results show that the proposed deception approach effectively reduced the impact and the reward of the attacker
2022-05-20
Cotae, Paul, Reindorf, Nii Emil Alexander.  2021.  Using Counterfactual Regret Minimization and Monte Carlo Tree Search for Cybersecurity Threats. 2021 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom). :1–6.
Mitigating cyber threats requires adequate understanding of the attacker characteristics in particular their patterns. Such knowledge is essential in addressing the defensive measures that mitigate the attack. If the attacker enters in the network system, the game tree model generates resources by to counter such threat. This is done by altering the parity in the next game tree iteration which yield an adequate response to counter it. If an attacker enters a network system, and a game tree models the resources he must interface with, then that game tree can be altered, by changing the parity on the next to last iteration. This paper analyzes the sequence of patterns based on incoming attacks. The detection of attacker’s pattern and subsequent changes in iterations to counter threat can be viewed as adequate resource or know how in cyber threat mitigations It was realized that changing the game tree of the hacker deprives the attacker of network resources and hence would represent a defensive measure against the attack; that is changing varying or understanding attacker paths, creates an effective defensive measure to protect the system against the incoming threats.. In this paper we analyze a unique combination of CFR and MCTS that attempts to detect the behavior of a hacker. Counterfactual Regret (CFR) is a game theory concept that helps identify patterns of attacks. The pattern recognition concept of Monte Carlo Tree Search (MCTS) is used in harmony with CFR in order to enhance the detection of attacks.
2022-04-20
Sanjab, Anibal, Saad, Walid.  2016.  On Bounded Rationality in Cyber-Physical Systems Security: Game-Theoretic Analysis with Application to Smart Grid Protection. 2016 Joint Workshop on Cyber- Physical Security and Resilience in Smart Grids (CPSR-SG). :1–6.
In this paper, a general model for cyber-physical systems (CPSs), that captures the diffusion of attacks from the cyber layer to the physical system, is studied. In particular, a game-theoretic approach is proposed to analyze the interactions between one defender and one attacker over a CPS. In this game, the attacker launches cyber attacks on a number of cyber components of the CPS to maximize the potential harm to the physical system while the system operator chooses to defend a number of cyber nodes to thwart the attacks and minimize potential damage to the physical side. The proposed game explicitly accounts for the fact that both attacker and defender can have different computational capabilities and disparate levels of knowledge of the system. To capture such bounded rationality of attacker and defender, a novel approach inspired from the behavioral framework of cognitive hierarchy theory is developed. In this framework, the defender is assumed to be faced with an attacker that can have different possible thinking levels reflecting its knowledge of the system and computational capabilities. To solve the game, the optimal strategies of each attacker type are characterized and the optimal response of the defender facing these different types is computed. This general approach is applied to smart grid security considering wide area protection with energy markets implications. Numerical results show that a deviation from the Nash equilibrium strategy is beneficial when the bounded rationality of the attacker is considered. Moreover, the results show that the defender's incentive to deviate from the Nash equilibrium decreases when faced with an attacker that has high computational ability.
Zhu, Konglin, Yan, Wenke, Zhao, Wenqi, Chen, Liyang, Zhang, Lin, Oki, Eiji.  2018.  Cyber-Physical-Social Aware Privacy Preserving in Location-Based Service. IEEE Access. 6:54167–54176.
The privacy leakage resulting from location-based service (LBS) has become a critical issue. To preserve user privacy, many previous studies have investigated to prevent LBS servers from user privacy theft. However, they only consider whether the peers are innocent or malicious but ignore the relationship between the peers, whereas such a relationship between each pairwise of users affects the privacy leakage tremendously. For instance, a user has less concern of privacy leakage from a social friend than a stranger. In this paper, we study cyber-physical-social (CPS) aware method to address the privacy preserving in the case that not only LBS servers but also every other participant in the network has the probability to be malicious. Furthermore, by exploring the physical coupling and social ties among users, we construct CPS-aware privacy utility maximization (CPUM) game. We then study the potential Nash equilibrium of the game and show the existence of Nash equilibrium of CPUM game. Finally, we design a CPS-aware algorithm to find the Nash equilibrium for the maximization of privacy utility. Extensive evaluation results show that the proposed approach reduces privacy leakage by 50% in the case that malicious servers and users exist in the network.
Conference Name: IEEE Access
2021-07-27
Sharma, Prince, Shukla, Shailendra, Vasudeva, Amol.  2020.  Trust-based Incentive for Mobile Offloaders in Opportunistic Networks. 2020 International Conference on Smart Electronics and Communication (ICOSEC). :872—877.
Mobile data offloading using opportunistic network has recently gained its significance to increase mobile data needs. Such offloaders need to be properly incentivized to encourage more and more users to act as helpers in such networks. The extent of help offered by mobile data offloading alternatives using appropriate incentive mechanisms is significant in such scenarios. The limitation of existing incentive mechanisms is that they are partial in implementation while most of them use third party intervention based derivation. However, none of the papers considers trust as an essential factor for incentive distribution. Although few works contribute to the trust analysis, but the implementation is limited to offloading determination only while the incentive is independent of trust. We try to investigate if trust could be related to the Nash equilibrium based incentive evaluation. Our analysis results show that trust-based incentive distribution encourages more than 50% offloaders to act positively and contribute successfully towards efficient mobile data offloading. We compare the performance of our algorithm with literature based salary-bonus scheme implementation and get optimum incentive beyond 20% dependence over trust-based output.
2021-06-01
Hatti, Daneshwari I., Sutagundar, Ashok V..  2020.  Trust Induced Resource Provisioning (TIRP) Mechanism in IoT. 2020 4th International Conference on Computer, Communication and Signal Processing (ICCCSP). :1–5.
Due to increased number of devices with limited resources in Internet of Things (IoT) has to serve time sensitive applications including health monitoring, emergency response, industrial applications and smart city etc. This has incurred the problem of solving the provisioning of limited computational resources of the devices to fulfill the requirement with reduced latency. With rapid increase of devices and heterogeneity characteristic the resource provisioning is crucial and leads to conflict of trusting among the devices requests. Trust is essential component in any context for communicating or sharing the resources in the network. The proposed work comprises of trusting and provisioning based on deadline. Trust quantity is measured with concept of game theory and optimal strategy decision among provider and customer and provision resources within deadline to execute the tasks is done by finding Nash equilibrium. Nash equilibrium (NE) is estimated by constructing the payoff matrix with choice of two player strategies. NE is obtained in the proposed work for the Trust- Respond (TR) strategy. The latency aware approach for avoiding resource contention due to limited resources of the edge devices, fog computing leverages the cloud services in a distributed way at the edge of the devices. The communication is established between edge devices-fog-cloud and provision of resources is performed based on scalar chain and Gang Plank theory of management to reduce latency and increase trust quantity. To test the performance of proposed work performance parameter considered are latency and computational time.
2021-03-29
Solovey, R., Lavrova, D..  2020.  Game-Theoretic Approach to Self-Regulation of Dynamic Network Infrastructure to Protect Against Cyber Attacks. 2020 International Scientific and Technical Conference Modern Computer Network Technologies (MoNeTeC). :1–7.
The paper presents the concept of applying a game theory approach in infrastructure of wireless dynamic networks to counter computer attacks. The applying of this approach will allow to create mechanism for adaptive reconfiguration of network structure in the context of implementation various types of computer attacks and to provide continuous operation of network even in conditions of destructive information impacts.
2021-02-16
Khoury, J., Nassar, M..  2020.  A Hybrid Game Theory and Reinforcement Learning Approach for Cyber-Physical Systems Security. NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management Symposium. :1—9.
Cyber-Physical Systems (CPS) are monitored and controlled by Supervisory Control and Data Acquisition (SCADA) systems that use advanced computing, sensors, control systems, and communication networks. At first, CPS and SCADA systems were protected and secured by isolation. However, with recent industrial technology advances, the increased connectivity of CPSs and SCADA systems to enterprise networks has uncovered them to new cybersecurity threats and made them a primary target for cyber-attacks with the potential of causing catastrophic economic, social, and environmental damage. Recent research focuses on new methodologies for risk modeling and assessment using game theory and reinforcement learning. This paperwork proposes to frame CPS security on two different levels, strategic and battlefield, by meeting ideas from game theory and Multi-Agent Reinforcement Learning (MARL). The strategic level is modeled as imperfect information, extensive form game. Here, the human administrator and the malware author decide on the strategies of defense and attack, respectively. At the battlefield level, strategies are implemented by machine learning agents that derive optimal policies for run-time decisions. The outcomes of these policies manifest as the utility at a higher level, where we aim to reach a Nash Equilibrium (NE) in favor of the defender. We simulate the scenario of a virus spreading in the context of a CPS network. We present experiments using the MiniCPS simulator and the OpenAI Gym toolkit and discuss the results.
2021-01-22
Zhang, H., Liu, H., Liang, J., Li, T., Geng, L., Liu, Y., Chen, S..  2020.  Defense Against Advanced Persistent Threats: Optimal Network Security Hardening Using Multi-stage Maze Network Game. 2020 IEEE Symposium on Computers and Communications (ISCC). :1—6.

Advanced Persistent Threat (APT) is a stealthy, continuous and sophisticated method of network attacks, which can cause serious privacy leakage and millions of dollars losses. In this paper, we introduce a new game-theoretic framework of the interaction between a defender who uses limited Security Resources(SRs) to harden network and an attacker who adopts a multi-stage plan to attack the network. The game model is derived from Stackelberg games called a Multi-stage Maze Network Game (M2NG) in which the characteristics of APT are fully considered. The possible plans of the attacker are compactly represented using attack graphs(AGs), but the compact representation of the attacker's strategies presents a computational challenge and reaching the Nash Equilibrium(NE) is NP-hard. We present a method that first translates AGs into Markov Decision Process(MDP) and then achieves the optimal SRs allocation using the policy hill-climbing(PHC) algorithm. Finally, we present an empirical evaluation of the model and analyze the scalability and sensitivity of the algorithm. Simulation results exhibit that our proposed reinforcement learning-based SRs allocation is feasible and efficient.

2020-12-21
Jithish, J., Sankaran, S., Achuthan, K..  2020.  Towards Ensuring Trustworthiness in Cyber-Physical Systems: A Game-Theoretic Approach. 2020 International Conference on COMmunication Systems NETworkS (COMSNETS). :626–629.

The emergence of Cyber-Physical Systems (CPSs) is a potential paradigm shift for the usage of Information and Communication Technologies (ICT). From predominantly a facilitator of information and communication services, the role of ICT in the present age has expanded to the management of objects and resources in the physical world. Thus, it is imperative to devise mechanisms to ensure the trustworthiness of data to secure vulnerable devices against security threats. This work presents an analytical framework based on non-cooperative game theory to evaluate the trustworthiness of individual sensor nodes that constitute the CPS. The proposed game-theoretic model captures the factors impacting the trustworthiness of CPS sensor nodes. Further, the model is used to estimate the Nash equilibrium solution of the game, to derive a trust threshold criterion. The trust threshold represents the minimum trust score required to be maintained by individual sensor nodes during CPS operation. Sensor nodes with trust scores below the threshold are potentially malicious and may be removed or isolated to ensure the secure operation of CPS.

2020-09-21
Razin, Yosef, Feigh, Karen.  2019.  Toward Interactional Trust for Humans and Automation: Extending Interdependence. 2019 IEEE SmartWorld, Ubiquitous Intelligence Computing, Advanced Trusted Computing, Scalable Computing Communications, Cloud Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). :1348–1355.
Trust in human-automation interaction is increasingly imperative as AI and robots become ubiquitous at home, school, and work. Interdependence theory allows for the identification of one-on-one interactions that require trust by analyzing the structure of the potential outcomes. This paper synthesizes multiple, formerly disparate research approaches by extending Interdependence theory to create a unified framework for outcome-based trust in human-automation interaction. This framework quantitatively contextualizes validated empirical results from social psychology on relationship formation, stability, and betrayal. It also contributes insights into trust-related concepts, such as power and commitment, which help further our understanding of trustworthy system design. This new integrated interactional approach reveals how trust and trustworthiness machines from merely reliable tools to trusted teammates working hand-in-actuator toward an automated future.
2020-09-04
Elliott, Sean.  2019.  Nash Equilibrium of Multiple, Non-Uniform Bitcoin Block Withholding Attackers. 2019 2nd International Conference on Data Intelligence and Security (ICDIS). :144—151.
This research analyzes a seemingly malicious behavior known as a block withholding (BWH) attack between pools of cryptocurrency miners in Bitcoin-like systems featuring blockchain distributed databases. This work updates and builds on a seminal paper, The Miner's Dilemma, which studied a simplified scenario and showed that a BWH attack can be rational behavior that is profitable for the attacker. The new research presented here provides an in-depth profit analysis of a more complex and realistic BWH attack scenario, which includes mutual attacks between multiple, non-uniform Bitcoin mining pools. As a result of mathematical analysis and MATLAB modeling, this paper illustrates the Nash equilibrium conditions of a system of independent mining pools with varied mining rates and computes the equilibrium rates of mutual BWH attack. The analysis method quantifies the additional profit the largest pools extract from the system at the expense of the smaller pools. The results indicate that while the presence of BWH is a net negative for smaller pools, they must participate in BWH to maximize their remaining profits, and the results quantify the attack rates the smaller pools must maintain. Also, the smallest pools maximize profit by not attacking at all-that is, retaliation is not a rational move for them.
2020-08-17
Yang, Shiman, Shi, Yijie, Guo, Fenzhuo.  2019.  Risk Assessment of Industrial Internet System By Using Game-Attack Graphs. 2019 IEEE 5th International Conference on Computer and Communications (ICCC). :1660–1663.
In this paper, we propose a game-attack graph-based risk assessment model for industrial Internet system. Firstly, use non-destructive asset profiling to scan components and devices included in the system and their open services and communication protocols. Further compare the CNVD and CVE to find the vulnerability through the search engine keyword segment matching method, and generate an asset threat list. Secondly, build the attack rule base based on the network information, and model the system using the attribute attack graph. Thirdly, combine the game theory with the idea of the established model. Finally, optimize and quantify the analysis to get the best attack path and the best defense strategy.
2020-06-08
Sahabandu, Dinuka, Moothedath, Shana, Bushnell, Linda, Poovendran, Radha, Aller, Joey, Lee, Wenke, Clark, Andrew.  2019.  A Game Theoretic Approach for Dynamic Information Flow Tracking with Conditional Branching. 2019 American Control Conference (ACC). :2289–2296.
In this paper, we study system security against Advanced Persistent Threats (APTs). APTs are stealthy and persistent but APTs interact with system and introduce information flows in the system as data-flow and control-flow commands. Dynamic Information Flow Tracking (DIFT) is a promising detection mechanism against APTs which taints suspicious input sources in the system and performs online security analysis when a tainted information is used in unauthorized manner. Our objective in this paper is to model DIFT that handle data-flow and conditional branches in the program that arise from control-flow commands. We use game theoretic framework and provide the first analytical model of DIFT with data-flow and conditional-branch tracking. Our game model which is an undiscounted infinite-horizon stochastic game captures the interaction between APTs and DIFT and the notion of conditional branching. We prove that the best response of the APT is a maximal reachability probability problem and provide a polynomial-time algorithm to find the best response by solving a linear optimization problem. We formulate the best response of the defense as a linear optimization problem and show that an optimal solution to the linear program returns a deterministic optimal policy for the defense. Since finding Nash equilibrium for infinite-horizon undiscounted stochastic games is computationally difficult, we present a nonlinear programming based polynomial-time algorithm to find an E-Nash equilibrium. Finally, we perform experimental analysis of our algorithm on real-world data for NetRecon attack augmented with conditional branching.
He, Fei, Chandrasekar, Santhosh, Rao, Nageswara S. V., Ma, Chris Y. T..  2019.  Effects of Interdependencies on Game-Theoretic Defense of Cyber-Physical Infrastructures. 2019 22th International Conference on Information Fusion (FUSION). :1–8.
Resilience and security of infrastructures depend not only on their constituent systems but also on interdependencies among them. This paper studies how these interdependencies in infrastructures affect the defense effort needed to counter external attacks, by formulating a simultaneous game between a service provider (i.e., defender) and an attacker. Effects of interdependencies in three basic topological structures, namely, bus, star and ring, are considered and compared in terms of the game-theoretic defense strategy. Results show that in a star topology, the attacker's and defender's pure strategies at Nash Equilibrium (NE) are sensitive to interdependency levels whereas in a bus structure, the interdependencies show little impact on both defender's and attacker's pure strategies. The sensitivity estimates of defense and attack strategies at NE with respect to target valuation and unit cost are also presented. The results provide insights into infrastructure design and resource allocation for reinforcement of constituent systems.
Pirani, Mohammad, Nekouei, Ehsan, Sandberg, Henrik, Johansson, Karl Henrik.  2019.  A Game-theoretic Framework for Security-aware Sensor Placement Problem in Networked Control Systems. 2019 American Control Conference (ACC). :114–119.
This paper studies the sensor placement problem in a networked control system for improving its security against cyber-physical attacks. The problem is formulated as a zero-sum game between an attacker and a detector. The attacker's decision is to select f nodes of the network to attack whereas the detector's decision is to place f sensors to detect the presence of the attack signals. In our formulation, the attacker minimizes its visibility, defined as the system L2 gain from the attack signals to the deployed sensors' outputs, and the detector maximizes the visibility of the attack signals. The equilibrium strategy of the game determines the optimal locations of the sensors. The existence of Nash equilibrium for the attacker-detector game is studied when the underlying connectivity graph is a directed or an undirected tree. When the game does not admit a Nash equilibrium, it is shown that the Stackelberg equilibrium of the game, with the detector as the game leader, can be computed efficiently. Our results show that, under the optimal sensor placement strategy, an undirected topology provides a higher security level for a networked control system compared with its corresponding directed topology.
Zhu, Ziming.  2019.  Game theoretic framework for cyber-physical system security incorporating bounded rationality. 2019 International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob). :360–365.

This paper presents a novel game theoretic attack-defence decision making framework for cyber-physical system (CPS) security. Game theory is a powerful tool to analyse the interaction between the attacker and the defender in such scenarios. In the formulation of games, participants are usually assumed to be rational. They will always choose the action to pursuit maximum payoff according to the knowledge of the strategic situation they are in. However, in reality the capacity of rationality is often bounded by the level of intelligence, computational resources and the amount of available information. This paper formulates the concept of bounded rationality into the decision making process, in order to optimise the defender's strategy considering that the defender and the attacker have incomplete information of each other and limited computational capacity. Under the proposed framework, the defender can often benefit from deviating from the minimax Nash Equilibrium strategy, the theoretically expected outcome of rational game playing. Numerical results are presented and discussed in order to demonstrate the proposed technique.

2019-12-30
Shirasaki, Yusuke, Takyu, Osamu, Fujii, Takeo, Ohtsuki, Tomoaki, Sasamori, Fumihito, Handa, Shiro.  2018.  Consideration of security for PLNC with untrusted relay in game theoretic perspective. 2018 IEEE Radio and Wireless Symposium (RWS). :109–112.
A physical layer network coding (PLNC) is a highly efficient scheme for exchanging information between two nodes. Since the relay receives the interfered signal between two signals sent by two nodes, it hardly decodes any information from received signal. Therefore, the secure wireless communication link to the untrusted relay is constructed. The two nodes optimize the transmit power control for maximizing the secure capacity but these depend on the channel state information informed by the relay station. Therefore, the untrusted relay disguises the informed CSI for exploiting the information from two nodes. This paper constructs the game of two optimizations between the legitimate two nodes and the untrusted relay for clarifying the security of PLNC with untrusted relay.