Biblio
The purpose of this study was to propose a model of development of trust in social robots. Insights in interpersonal trust were adopted from social psychology and a novel model was proposed. In addition, this study aimed to investigate the relationship among trust development and self-esteem. To validate the proposed model, an experiment using a communication robot NAO was conducted and changes in categories of trust as well as self-esteem were measured. Results showed that general and category trust have been developed in the early phase. Self-esteem is also increased along the interactions with the robot.
Continued advances in IoT technology have prompted new investigation into its usage for military operations, both to augment and complement existing military sensing assets and support next-generation artificial intelligence and machine learning systems. Under the emerging Internet of Battlefield Things (IoBT) paradigm, a multitude of operational conditions (e.g., diverse asset ownership, degraded networking infrastructure, adversary activities) necessitate the development of novel security techniques, centered on establishment of trust for individual assets and supporting resilience of broader systems. To advance current IoBT efforts, a set of research directions are proposed that aim to fundamentally address the issues of trust and trustworthiness in contested battlefield environments, building on prior research in the cybersecurity domain. These research directions focus on two themes: (1) Supporting trust assessment for known/unknown IoT assets; (2) Ensuring continued trust of known IoBT assets and systems.
Continued advances in IoT technology have prompted new investigation into its usage for military operations, both to augment and complement existing military sensing assets and support next-generation artificial intelligence and machine learning systems. Under the emerging Internet of Battlefield Things (IoBT) paradigm, current operational conditions necessitate the development of novel security techniques, centered on establishment of trust for individual assets and supporting resilience of broader systems. To advance current IoBT efforts, a collection of prior-developed cybersecurity techniques is reviewed for applicability to conditions presented by IoBT operational environments (e.g., diverse asset ownership, degraded networking infrastructure, adversary activities) through use of supporting case study examples. The research techniques covered focus on two themes: (1) Supporting trust assessment for known/unknown IoT assets; (2) ensuring continued trust of known IoT assets and IoBT systems.
The low attention to security and privacy causes some problems on data and information that can lead to a lack of public trust in e-Gov service. Security threats are not only included in technical issues but also non-technical issues and therefore, it needs the implementation of inclusive security. The application of inclusive security to e-Gov needs to develop a model involving security and privacy requirements as a trusted security solution. The method used is the elicitation of security and privacy requirements in a security perspective. Identification is carried out on security and privacy properties, then security and privacy relationships are determined. The next step is developing the design of an inclusive security model on e-Gov. The last step is doing an analysis of e-Gov service activities and the role of inclusive security. The results of this study identified security and privacy requirements for building inclusive security. Identification of security requirements involves properties such as confidentiality (C), integrity (I), availability (A). Meanwhile, privacy requirement involves authentication (Au), authorization (Az), and Non-repudiation (Nr) properties. Furthermore, an inclusive security design model on e-Gov requires trust of internet (ToI) and trust of government (ToG) as an e-Gov service provider. Access control is needed to provide solutions to e-Gov service activities.
In order to improve the accuracy of similarity, an improved collaborative filtering algorithm based on trust and information entropy is proposed in this paper. Firstly, the direct trust between the users is determined by the user's rating to explore the potential trust relationship of the users. The time decay function is introduced to realize the dynamic portrayal of the user's interest decays over time. Secondly, the direct trust and the indirect trust are combined to obtain the overall trust which is weighted with the Pearson similarity to obtain the trust similarity. Then, the information entropy theory is introduced to calculate the similarity based on weighted information entropy. At last, the trust similarity and the similarity based on weighted information entropy are weighted to obtain the similarity combing trust and information entropy which is used to predicted the rating of the target user and create the recommendation. The simulation shows that the improved algorithm has a higher accuracy of recommendation and can provide more accurate and reliable recommendation service.
Cloud systems are becoming more complex and vulnerable to attacks. Cyber attacks are also becoming more sophisticated and harder to detect. Therefore, it is increasingly difficult for a single cloud-based intrusion detection system (IDS) to detect all attacks, because of limited and incomplete knowledge about attacks. The recent researches in cyber-security have shown that a co-operation among IDSs can bring higher detection accuracy in such complex computer systems. Through collaboration, a cloud-based IDS can consult other IDSs about suspicious intrusions and increase the decision accuracy. The problem of existing cooperative IDS approaches is that they overlook having untrusted (malicious or not) IDSs that may negatively effect the decision about suspicious intrusions in the cloud. Moreover, they rely on a centralized architecture in which a central agent regulates the cooperation, which contradicts the distributed nature of the cloud. In this paper, we propose a framework that enables IDSs to distributively form trustworthy IDSs communities. We devise a novel decentralized algorithm, based on coalitional game theory, that allows a set of cloud-based IDSs to cooperatively set up their coalition in such a way to make their individual detection accuracy increase, even in the presence of untrusted IDSs.
With the popularity of smart devices and the widespread use of the Wi-Fi-based indoor localization, edge computing is becoming the mainstream paradigm of processing massive sensing data to acquire indoor localization service. However, these data which were conveyed to train the localization model unintentionally contain some sensitive information of users/devices, and were released without any protection may cause serious privacy leakage. To solve this issue, we propose a lightweight differential privacy-preserving mechanism for the edge computing environment. We extend ε-differential privacy theory to a mature machine learning localization technology to achieve privacy protection while training the localization model. Experimental results on multiple real-world datasets show that, compared with the original localization technology without privacy-preserving, our proposed scheme can achieve high accuracy of indoor localization while providing differential privacy guarantee. Through regulating the value of ε, the data quality loss of our method can be controlled up to 8.9% and the time consumption can be almost negligible. Therefore, our scheme can be efficiently applied in the edge networks and provides some guidance on indoor localization privacy protection in the edge computing.
Internet of Things (IoT) is an evolving research area for the last two decades. The integration of the IoT and social networking concept results in developing an interdisciplinary research area called the Social Internet of Things (SIoT). The SIoT is dominant over the traditional IoT because of its structure, implementation, and operational manageability. In the SIoT, devices interact with each other independently to establish a social relationship for collective goals. To establish trustworthy relationships among the devices significantly improves the interaction in the SIoT and mitigates the phenomenon of risk. The problem is to choose a trustworthy node who is most suitable according to the choice parameters of the node. The best-selected node by one node is not necessarily the most suitable node for other nodes, as the trustworthiness of the node is independent for everyone. We employ some theoretical characterization of the soft-set theory to deal with this kind of decision-making problem. In this paper, we developed a weighted based trustworthiness ranking model by using soft set theory to evaluate the trustworthiness in the SIoT. The purpose of the proposed research is to reduce the risk of fraudulent transactions by identifying the most trusted nodes.
In Internet of Things (IoT) each object is addressable, trackable and accessible on the Internet. To be useful, objects in IoT co-operate and exchange information. IoT networks are open, anonymous, dynamic in nature so, a malicious object may enter into the network and disrupt the network. Trust models have been proposed to identify malicious objects and to improve the reliability of the network. Recommendations in trust computation are the basis of trust models. Due to this, trust models are vulnerable to bad mouthing and collusion attacks. In this paper, we propose a similarity model to mitigate badmouthing and collusion attacks and show that proposed method efficiently removes the impact of malicious recommendations in trust computation.
Federated learning (shorted as FL) recently proposed by Google is a privacy-preserving method to integrate distributed data trainers. FL is extremely useful due to its ensuring privacy, lower latency, less power consumption and smarter models, but it could fail if multiple trainers abort training or send malformed messages to its partners. Such misbehavior are not auditable and parameter server may compute incorrectly due to single point failure. Furthermore, FL has no incentive to attract sufficient distributed training data and computation power. In this paper, we propose FLChain to build a decentralized, public auditable and healthy FL ecosystem with trust and incentive. FLChain replace traditional FL parameter server whose computation result must be consensual on-chain. Our work is not trivial when it is vital and hard to provide enough incentive and deterrence to distributed trainers. We achieve model commercialization by providing a healthy marketplace for collaborative-training models. Honest trainer can gain fairly partitioned profit from well-trained model according to its contribution and the malicious can be timely detected and heavily punished. To reduce the time cost of misbehavior detecting and model query, we design DDCBF for accelerating the query of blockchain-documented information. Finally, we implement a prototype of our work and measure the cost of various operations.
The real-time map updating enables vehicles to obtain accurate and timely traffic information. Especially for driverless cars, real-time map updating can provide high-precision map service to assist the navigation, which requires vehicles to actively upload the latest road conditions. However, due to the untrusted network environment, it is difficult for the real-time map updating server to evaluate the authenticity of the road information from the vehicles. In order to prevent malicious vehicles from deliberately spreading false information and protect the privacy of vehicles from tracking attacks, this paper proposes a trust-based real-time map updating scheme. In this scheme, the public key is used as the identifier of the vehicle for anonymous communication with conditional anonymity. In addition, the blockchain is applied to provide the existence proof for the public key certificate of the vehicle. At the same time, to avoid the spread of false messages, a trust evaluation algorithm is designed. The fog node can validate the received massages from vehicles using Bayesian Inference Model. Based on the verification results, the road condition information is sent to the real-time map updating server so that the server can update the map in time and prevent the secondary traffic accident. In order to calculate the trust value offset for the vehicle, the fog node generates a rating for each message source vehicle, and finally adds the relevant data to the blockchain. According to the result of security analysis, this scheme can guarantee the anonymity and prevent the Sybil attack. Simulation results show that the proposed scheme is effective and accurate in terms of real-time map updating and trust values calculating.
Vehicular Ad-hoc Networks (VANETs) play an essential role in ensuring safe, reliable and faster transportation with the help of an Intelligent Transportation system. The trustworthiness of vehicles in VANETs is extremely important to ensure the authenticity of messages and traffic information transmitted in extremely dynamic topographical conditions where vehicles move at high speed. False or misleading information may cause substantial traffic congestions, road accidents and may even cost lives. Many approaches exist in literature to measure the trustworthiness of GPS data and messages of an Autonomous Vehicle (AV). To the best of our knowledge, they have not considered the trustworthiness of other On-Board Unit (OBU) components of an AV, along with GPS data and transmitted messages, though they have a substantial relevance in overall vehicle trust measurement. In this paper, we introduce a novel model to measure the overall trustworthiness of an AV considering four different OBU components additionally. The performance of the proposed method is evaluated with a traffic simulation model developed by Simulation of Urban Mobility (SUMO) using realistic traffic data and considering different levels of uncertainty.
The nodes in Mobile Ad hoc Network (MANET) can self-assemble themselves, locomote unreservedly and can interact with one another without taking any help from a centralized authority or fixed infrastructure. Due to its continuously changing and self-organizing nature, MANET is vulnerable to a variety of attacks like spoofing attack, wormhole attack, black hole attack, etc. This paper compares and analyzes the repercussion of the wormhole attack on MANET's two common routing protocols of reactive category, specifically, Dynamic Source Routing (DSR) and Ad-hoc On-Demand Distance Vector (AODV) by increasing the number of wormhole tunnels in MANET. The results received by simulation will reveal that DSR is greatly affected by this attack. So, as a solution, a routing algorithm for DSR which is based on trust is proposed to prevent the routes from caching malicious nodes.