Biblio
For modern Automatic Test Equipment (ATE), one of the most daunting tasks conducting Information Assurance (IA). In addition, there is a desire to Network ATE to allow for information sharing and deployment of software. This is complicated by the fact that typically ATE are “unmanaged” systems in that most are configured, deployed, and then mostly left alone. This results in systems that are not patched with the latest Operating System updates and in fact may be running on legacy Operating Systems which are no longer supported (like Windows XP or Windows 7 for instance). A lot of this has to do with the cost of keeping a system updated on a continuous basis and regression testing the Test Program Sets (TPS) that run on them. Given that an Automated Test System can have thousands of Test Programs running on it, the cost and time involved in doing complete regression testing on all the Test Programs can be extremely expensive. In addition to the Test Programs themselves some Test Programs rely on third party Software and / or custom developed software that is required for the Test Programs to run. Add to this the requirement to perform software steering through all the Test Program paths, the length of time required to validate a Test Program could be measured in months in some cases. If system updates are performed once a month like some Operating System updates this could consume all the available time of the Test Station or require a fleet of Test Stations to be dedicated just to do the required regression testing. On the other side of the coin, a Test System running an old unpatched Operating System is a prime target for any manner of virus or other IA issues. This paper will discuss some of the pro's and con's of a managed Test System and how it might be accomplished.
Cloud computing provides customers with enormous compute power and storage capacity, allowing them to deploy their computation and data-intensive applications without having to invest in infrastructure. Many firms use cloud computing as a means of relocating and maintaining resources outside of their enterprise, regardless of the cloud server's location. However, preserving the data in cloud leads to a number of issues related to data loss, accountability, security etc. Such fears become a great barrier to the adoption of the cloud services by users. Cloud computing offers a high scale storage facility for internet users with reference to the cost based on the usage of facilities provided. Privacy protection of a user's data is considered as a challenge as the internal operations offered by the service providers cannot be accessed by the users. Hence, it becomes necessary for monitoring the usage of the client's data in cloud. In this research, we suggest an effective cloud storage solution for accessing patient medical records across hospitals in different countries while maintaining data security and integrity. In the suggested system, multifactor authentication for user login to the cloud, homomorphic encryption for data storage with integrity verification, and integrity verification have all been implemented effectively. To illustrate the efficacy of the proposed strategy, an experimental investigation was conducted.
Peer-to-peer (P2P) energy trading is one of the promising approaches for implementing decentralized electricity market paradigms. In the P2P trading, each actor negotiates directly with a set of trading partners. Since the physical network or grid is used for energy transfer, power losses are inevitable, and grid-related costs always occur during the P2P trading. A proper market clearing mechanism is required for the P2P energy trading between different producers and consumers. This paper proposes a decentralized market clearing mechanism for the P2P energy trading considering the privacy of the agents, power losses as well as the utilization fees for using the third party owned network. Grid-related costs in the P2P energy trading are considered by calculating the network utilization fees using an electrical distance approach. The simulation results are presented to verify the effectiveness of the proposed decentralized approach for market clearing in P2P energy trading.