Visible to the public Biblio

Found 165 results

Filters: Keyword is Costs  [Clear All Filters]
2023-03-03
Krishnan, Ashwin A, Rajendran, Satish Kumar, Sunil Kumar, T K.  2022.  Improved PKI Certificate Lifecycle Management With Centralized Device Management For Industrial IoT. 2022 IEEE International Conference on Public Key Infrastructure and its Applications (PKIA). :1–5.
The present industrial scenario requires frequent transfer of data between remote servers and on premise devices and hence the risk of attacks on these data cannot be overlooked. Such security risk is even aggravated in case of sensitive information being compromised due to inefficient security implementations. Various forms of security implementations are being discussed and experimented for the same. With the introduction of devices with better processing capabilities, Public Key Infrastructure is a very popular technique being widely implemented, wherein symmetric and asymmetric key based encryptions are used inorder to secure the data being transferred and it has proven to be an effective technique. The PKI however suffers certain drawbacks and it is evident from the attacks. A system specifically designed for scenarios such as a factory having a centralised device management system requiring multiple devices to communicate and upload data safely to server is being put forward in this paper.
2023-02-28
Gopalakrishna, Nikhil Krishna, Anandayuvaraj, Dharun, Detti, Annan, Bland, Forrest Lee, Rahaman, Sazzadur, Davis, James C..  2022.  “If security is required”: Engineering and Security Practices for Machine Learning-based IoT Devices. 2022 IEEE/ACM 4th International Workshop on Software Engineering Research and Practices for the IoT (SERP4IoT). :1—8.
The latest generation of IoT systems incorporate machine learning (ML) technologies on edge devices. This introduces new engineering challenges to bring ML onto resource-constrained hardware, and complications for ensuring system security and privacy. Existing research prescribes iterative processes for machine learning enabled IoT products to ease development and increase product success. However, these processes mostly focus on existing practices used in other generic software development areas and are not specialized for the purpose of machine learning or IoT devices. This research seeks to characterize engineering processes and security practices for ML-enabled IoT systems through the lens of the engineering lifecycle. We collected data from practitioners through a survey (N=25) and interviews (N=4). We found that security processes and engineering methods vary by company. Respondents emphasized the engineering cost of security analysis and threat modeling, and trade-offs with business needs. Engineers reduce their security investment if it is not an explicit requirement. The threats of IP theft and reverse engineering were a consistent concern among practitioners when deploying ML for IoT devices. Based on our findings, we recommend further research into understanding engineering cost, compliance, and security trade-offs.
Ahmed, Sabrina, Subah, Zareen, Ali, Mohammed Zamshed.  2022.  Cryptographic Data Security for IoT Healthcare in 5G and Beyond Networks. 2022 IEEE Sensors. :1—4.
While 5G Edge Computing along with IoT technology has transformed the future of healthcare data transmission, it presents security vulnerabilities and risks when transmitting patients' confidential information. Currently, there are very few reliable security solutions available for healthcare data that routes through SDN routers in 5G Edge Computing. These solutions do not provide cryptographic security from IoT sensor devices. In this paper, we studied how 5G edge computing integrated with IoT network helps healthcare data transmission for remote medical treatment, explored security risks associated with unsecured data transmission, and finally proposed a cryptographic end-to-end security solution initiated at IoT sensor devices and routed through SDN routers. Our proposed solution with cryptographic security initiated at IoT sensor goes through SDN control plane and data plane in 5G edge computing and provides an end-to-end secured communication from IoT device to doctor's office. A prototype built with two-layer encrypted communication has been lab tested with promising results. This analysis will help future security implementation for eHealth in 5G and beyond networks.
2023-02-17
Headrick, William J.  2022.  Information Assurance in modern ATE. 2022 IEEE AUTOTESTCON. :1–3.

For modern Automatic Test Equipment (ATE), one of the most daunting tasks conducting Information Assurance (IA). In addition, there is a desire to Network ATE to allow for information sharing and deployment of software. This is complicated by the fact that typically ATE are “unmanaged” systems in that most are configured, deployed, and then mostly left alone. This results in systems that are not patched with the latest Operating System updates and in fact may be running on legacy Operating Systems which are no longer supported (like Windows XP or Windows 7 for instance). A lot of this has to do with the cost of keeping a system updated on a continuous basis and regression testing the Test Program Sets (TPS) that run on them. Given that an Automated Test System can have thousands of Test Programs running on it, the cost and time involved in doing complete regression testing on all the Test Programs can be extremely expensive. In addition to the Test Programs themselves some Test Programs rely on third party Software and / or custom developed software that is required for the Test Programs to run. Add to this the requirement to perform software steering through all the Test Program paths, the length of time required to validate a Test Program could be measured in months in some cases. If system updates are performed once a month like some Operating System updates this could consume all the available time of the Test Station or require a fleet of Test Stations to be dedicated just to do the required regression testing. On the other side of the coin, a Test System running an old unpatched Operating System is a prime target for any manner of virus or other IA issues. This paper will discuss some of the pro's and con's of a managed Test System and how it might be accomplished.

Sasikala, V., Mounika, K., Sravya Tulasi, Y., Gayathri, D., Anjani, M..  2022.  Performance evaluation of Spam and Non-Spam E-mail detection using Machine Learning algorithms. 2022 International Conference on Electronics and Renewable Systems (ICEARS). :1359–1365.
All of us are familiar with the importance of social media in facilitating communication. e-mail is one of the safest social media platforms for online communications and information transfer over the internet. As of now, many people rely on email or communications provided by strangers. Because everyone may send emails or a message, spammers have a great opportunity to compose spam messages about our many hobbies and passions, interests, and concerns. Our internet speeds are severely slowed down by spam, which also collects personal information like our phone numbers from our contact list. There is a lot of work involved in identifying these fraudsters and also identifying spam content. Email spam refers to the practice of sending large numbers of messages via email. The recipient bears the bulk of the cost of spam, therefore it's practically free advertising. Spam email is a form of commercial advertising for hackers that is financially viable due of the low cost of sending email. Anti-spam filters have become increasingly important as the volume of unwanted bulk e-mail (also spamming) grows. We can define a message, if it is a spam or not using this proposed model. Machine learning algorithms can be discussed in detail, and our data sets will be used to test them all, with the goal of identifying the one that is most accurate and precise in its identification of email spam. Society of machine learning techniques for detecting unsolicited mass email and spam.
Jo, Hyeonjun, Kim, Kyungbaek.  2022.  Security Service-aware Reinforcement Learning for Efficient Network Service Provisioning. 2022 23rd Asia-Pacific Network Operations and Management Symposium (APNOMS). :1–4.
In case of deploying additional network security equipment in a new location, network service providers face difficulties such as precise management of large number of network security equipment and expensive network operation costs. Accordingly, there is a need for a method for security-aware network service provisioning using the existing network security equipment. In order to solve this problem, there is an existing reinforcement learning-based routing decision method fixed for each node. This method performs repeatedly until a routing decision satisfying end-to-end security constraints is achieved. This generates a disadvantage of longer network service provisioning time. In this paper, we propose security constraints reinforcement learning based routing (SCRR) algorithm that generates routing decisions, which satisfies end-to-end security constraints by giving conditional reward values according to the agent state-action pairs when performing reinforcement learning.
ISSN: 2576-8565
Liu, Xuanyu, Cheng, Guozhen, Wang, Yawen, Zhang, Shuai.  2022.  Overview of Scientific Workflow Security Scheduling in Clouds. 2021 International Conference on Advanced Computing and Endogenous Security. :1–6.
With the development of cloud computing technology, more and more scientific researchers choose to deliver scientific workflow tasks to public cloud platforms for execution. This mode effectively reduces scientific research costs while also bringing serious security risks. In response to this problem, this article summarizes the current security issues facing cloud scientific workflows, and analyzes the importance of studying cloud scientific workflow security issues. Then this article analyzes, summarizes and compares the current cloud scientific workflow security methods from three perspectives: system architecture, security model, and security strategy. Finally made a prospect for the future development direction.
Chen, Di.  2022.  Practice on the Data Service of University Scientific Research Management Based on Cloud Computing. 2022 World Automation Congress (WAC). :424–428.
With the continuous development of computer technology, the coverage of informatization solutions covers all walks of life and all fields of society. For colleges and universities, teaching and scientific research are the basic tasks of the school. The scientific research ability of the school will affect the level of teachers and the training of students. The establishment of a good scientific research environment has become a more important link in the development of universities. SR(Scientific research) data is a prerequisite for SR activities. High-quality SR management data services are conducive to ensuring the quality and safety of SRdata, and further assisting the smooth development of SR projects. Therefore, this article mainly conducts research and practice on cloud computing-based scientific research management data services in colleges and universities. First, analyze the current situation of SR data management in colleges and universities, and the results show that the popularity of SR data management in domestic universities is much lower than that of universities in Europe and the United States, and the data storage awareness of domestic researchers is relatively weak. Only 46% of schools have developed SR data management services, which is much lower than that of European and American schools. Second, analyze the effect of CC(cloud computing )on the management of SR data in colleges and universities. The results show that 47% of SR believe that CC is beneficial to the management of SR data in colleges and universities to reduce scientific research costs and improve efficiency, the rest believe that CC can speed up data storage and improve security by acting on SR data management in colleges and universities.
ISSN: 2154-4824
Mahmood, Riyadh, Pennington, Jay, Tsang, Danny, Tran, Tan, Bogle, Andrea.  2022.  A Framework for Automated API Fuzzing at Enterprise Scale. 2022 IEEE Conference on Software Testing, Verification and Validation (ICST). :377–388.
Web-based Application Programming Interfaces (APIs) are often described using SOAP, OpenAPI, and GraphQL specifications. These specifications provide a consistent way to define web services and enable automated fuzz testing. As such, many fuzzers take advantage of these specifications. However, in an enterprise setting, the tools are usually installed and scaled by individual teams, leading to duplication of efforts. There is a need for an enterprise-wide fuzz testing solution to provide shared, cost efficient, off-nominal testing at scale where fuzzers can be plugged-in as needed. Internet cloud-based fuzz testing-as-a-service solutions mitigate scalability concerns but are not always feasible as they require artifacts to be uploaded to external infrastructure. Typically, corporate policies prevent sharing artifacts with third parties due to cost, intellectual property, and security concerns. We utilize API specifications and combine them with cluster computing elasticity to build an automated, scalable framework that can fuzz multiple apps at once and retain the trust boundary of the enterprise.
ISSN: 2159-4848
Li, Ying, Chen, Lan, Wang, Jian, Gong, Guanfei.  2022.  Partial Reconfiguration for Run-time Memory Faults and Hardware Trojan Attacks Detection. 2022 IEEE International Symposium on Hardware Oriented Security and Trust (HOST). :173–176.
Embedded memory are important components in system-on-chip, which may be crippled by aging and wear faults or Hardware Trojan attacks to compromise run-time security. The current built-in self-test and pre-silicon verification lack efficiency and flexibility to solve this problem. To this end, we address such vulnerabilities by proposing a run-time memory security detecting framework in this paper. The solution builds mainly upon a centralized security detection controller for partially reconfigurable inspection content, and a static memory wrapper to handle access conflicts and buffering testing cells. We show that a field programmable gate array prototype of the proposed framework can pursue 16 memory faults and 3 types Hardware Trojans detection with one reconfigurable partition, whereas saves 12.7% area and 2.9% power overhead compared to a static implementation. This architecture has more scalable capability with little impact on the memory accessing throughput of the original chip system in run-time detection.
Islam, Tariqul, Hasan, Kamrul, Singh, Saheb, Park, Joon S..  2022.  A Secure and Decentralized Auditing Scheme for Cloud Ensuring Data Integrity and Fairness in Auditing. 2022 IEEE 9th International Conference on Cyber Security and Cloud Computing (CSCloud)/2022 IEEE 8th International Conference on Edge Computing and Scalable Cloud (EdgeCom). :74–79.
With the advent of cloud storage services many users tend to store their data in the cloud to save storage cost. However, this has lead to many security concerns, and one of the most important ones is ensuring data integrity. Public verification schemes are able to employ a third party auditor to perform data auditing on behalf of the user. But most public verification schemes are vulnerable to procrastinating auditors who may not perform auditing on time. These schemes do not have fair arbitration also, i.e. they lack a way to punish the malicious Cloud Service Provider (CSP) and compensate user whose data has been corrupted. On the other hand, CSP might be storing redundant data that could increase the storage cost for the CSP and computational cost of data auditing for the user. In this paper, we propose a Blockchain-based public auditing and deduplication scheme with a fair arbitration system against procrastinating auditors. The key idea requires auditors to record each verification using smart contract and store the result into a Blockchain as a transaction. Our scheme can detect and punish the procrastinating auditors and compensate users in the case of any data loss. Additionally, our scheme can detect and delete duplicate data that improve storage utilization and reduce the computational cost of data verification. Experimental evaluation demonstrates that our scheme is provably secure and does not incur overhead compared to the existing public auditing techniques while offering an additional feature of verifying the auditor’s performance.
ISSN: 2693-8928
Li, Nige, Zhou, Peng, Wang, Tengyan, Chen, Jingnan.  2022.  Control flow integrity check based on LBR register in power 5G environment. 2022 China International Conference on Electricity Distribution (CICED). :1211–1216.
This paper proposes a control flow integrity checking method based on the LBR register: through an analysis of the static target program loaded binary modules, gain function attributes such as borders and build the initial transfer of legal control flow boundary, real-time maintenance when combined with the dynamic execution of the program flow of control transfer record, build a complete profile control flow transfer security; Get the call location of /bin/sh or system() in the program to build an internal monitor for control-flow integrity checks. In the process of program execution, on the one hand, the control flow transfer outside the outline is judged as the abnormal control flow transfer with attack threat; On the other hand, abnormal transitions across the contour are picked up by an internal detector. In this method, by identifying abnormal control flow transitions, attacks are initially detected before the attack code is executed, while some attacks that bypass the coarse-grained verification of security profile are captured by the refined internal detector of control flow integrity. This method reduces the cost of control flow integrity check by using the safety profile analysis of coarse-grained check. In addition, a fine-grained shell internal detector is inserted into the contour to improve the safety performance of the system and achieve a good balance between performance and efficiency.
2023-02-13
Rupasri, M., Lakhanpal, Anupam, Ghosh, Soumalya, Hedage, Atharav, Bangare, Manoj L., Ketaraju, K. V. Daya Sagar.  2022.  Scalable and Adaptable End-To-End Collection and Analysis of Cloud Computing Security Data: Towards End-To-End Security in Cloud Computing Systems. 2022 2nd International Conference on Innovative Practices in Technology and Management (ICIPTM). 2:8—14.

Cloud computing provides customers with enormous compute power and storage capacity, allowing them to deploy their computation and data-intensive applications without having to invest in infrastructure. Many firms use cloud computing as a means of relocating and maintaining resources outside of their enterprise, regardless of the cloud server's location. However, preserving the data in cloud leads to a number of issues related to data loss, accountability, security etc. Such fears become a great barrier to the adoption of the cloud services by users. Cloud computing offers a high scale storage facility for internet users with reference to the cost based on the usage of facilities provided. Privacy protection of a user's data is considered as a challenge as the internal operations offered by the service providers cannot be accessed by the users. Hence, it becomes necessary for monitoring the usage of the client's data in cloud. In this research, we suggest an effective cloud storage solution for accessing patient medical records across hospitals in different countries while maintaining data security and integrity. In the suggested system, multifactor authentication for user login to the cloud, homomorphic encryption for data storage with integrity verification, and integrity verification have all been implemented effectively. To illustrate the efficacy of the proposed strategy, an experimental investigation was conducted.

2023-02-03
Shah, Rajeev Kumar, Hasan, Mohammad Kamrul, Islam, Shayla, Khan, Asif, Ghazal, Taher M., Khan, Ahmad Neyaz.  2022.  Detect Phishing Website by Fuzzy Multi-Criteria Decision Making. 2022 1st International Conference on AI in Cybersecurity (ICAIC). :1–8.
Phishing activity is undertaken by the hackers to compromise the computer networks and financial system. A compromised computer system or network provides data and or processing resources to the world of cybercrime. Cybercrimes are projected to cost the world \$6 trillion by 2021, in this context phishing is expected to continue being a growing challenge. Statistics around phishing growth over the last decade support this theory as phishing numbers enjoy almost an exponential growth over the period. Recent reports on the complexity of the phishing show that the fight against phishing URL as a means of building more resilient cyberspace is an evolving challenge. Compounding the problem is the lack of cyber security expertise to handle the expected rise in incidents. Previous research have proposed different methods including neural network, data mining technique, heuristic-based phishing detection technique, machine learning to detect phishing websites. However, recently phishers have started to use more sophisticated techniques to attack the internet users such as VoIP phishing, spear phishing etc. For these modern methods, the traditional ways of phishing detection provide low accuracy. Hence, the requirement arises for the application and development of modern tools and techniques to use as a countermeasure against such phishing attacks. Keeping in view the nature of recent phishing attacks, it is imperative to develop a state-of-the art anti-phishing tool which should be able to predict the phishing attacks before the occurrence of actual phishing incidents. We have designed such a tool that will work efficiently to detect the phishing websites so that a user can understand easily the risk of using of his personal and financial data.
Forti, Stefano.  2022.  Keynote: The fog is rising, in sustainable smart cities. 2022 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops). :469–471.
With their variety of application verticals, smart cities represent a killer scenario for Cloud-IoT computing, e.g. fog computing. Such applications require a management capable of satisfying all their requirements through suitable service placements, and of balancing among QoS-assurance, operational costs, deployment security and, last but not least, energy consumption and carbon emissions. This keynote discusses these aspects over a motivating use case and points to some open challenges.
Doshi, Om B., Bendale, Hitesh N., Chavan, Aarti M., More, Shraddha S..  2022.  A Smart Door Lock Security System using Internet of Things. 2022 International Conference on Applied Artificial Intelligence and Computing (ICAAIC). :1457–1463.
Security is a key concern across the world, and it has been a common thread for all critical sectors. Nowadays, it may be stated that security is a backbone that is absolutely necessary for personal safety. The most important requirements of security systems for individuals are protection against theft and trespassing. CCTV cameras are often employed for security purposes. The biggest disadvantage of CCTV cameras is their high cost and the need for a trustworthy individual to monitor them. As a result, a solution that is both easy and cost-effective, as well as secure has been devised. The smart door lock is built on Raspberry Pi technology, and it works by capturing a picture through the Pi Camera module, detecting a visitor's face, and then allowing them to enter. Local binary pattern approach is used for Face recognition. Remote picture viewing, notification, on mobile device are all possible with an IOT based application. The proposed system may be installed at front doors, lockers, offices, and other locations where security is required. The proposed system has an accuracy of 89%, with an average processing time is 20 seconds for the overall process.
Fu, Shichong, Li, Xiaoling, Zhao, Yao.  2022.  Improved Steganography Based on Referential Cover and Non-symmetric Embedding. 2022 IEEE 5th International Conference on Electronics Technology (ICET). :1202–1206.
Minimizing embedding impact model of steganography has good performance for steganalysis detection. By using effective distortion cost function and coding method, steganography under this model becomes the mainstream embedding framework recently. In this paper, to improve the anti-detection performance, a new steganography optimization model by constructing a reference cover is proposed. First, a reference cover is construed by performing a filtering operation on the cover image. Then, by minimizing the residual between the reference cover and the original cover, the optimization function is formulated considering the effect of different modification directions. With correcting the distortion cost of +1 and \_1 modification operations, the stego image obtained by the proposed method is more consistent with the natural image. Finally, by applying the proposed framework to the cost function of the well-known HILL embedding, experimental results show that the anti-detection performance of the proposed method is better than the traditional method.
ISSN: 2768-6515
Khoury, David, Balian, Patrick, Kfoury, Elie.  2022.  Implementation of Blockchain Domain Control Verification (B-DCV). 2022 45th International Conference on Telecommunications and Signal Processing (TSP). :17–22.
Security in the communication systems rely mainly on a trusted Public Key Infrastructure (PKI) and Certificate Authorities (CAs). Besides the lack of automation, the complexity and the cost of assigning a signed certificate to a device, several allegations against CAs have been discovered, which has created trust issues in adopting this standard model for secure systems. The automation of the servers certificate assignment was achieved by the Automated Certificate Management Environment (ACME) method, but without confirming the trust of assigned certificate. This paper presents a complete tested and implemented solution to solve the trust of the Certificates provided to the servers by using the blockchain platform for certificate validation. The Blockchain network provides an immutable data store, holding the public keys of all domain names, while resolving the trust concerns by applying an automated Blockchain-based Domain Control Validation (B-DCV) for the server and client server verification. The evaluation was performed on the Ethereum Rinkeby testnet adopting the Proof of Authority (PoA) consensus algorithm which is an improved version of Proof of Stake (Po \$S\$) applied on Ethereum 2.0 providing superior performance compared to Ethereum 1.0.
2023-02-02
Utture, Akshay, Palsberg, Jens.  2022.  Fast and Precise Application Code Analysis using a Partial Library. 2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE). :934–945.
Long analysis times are a key bottleneck for the widespread adoption of whole-program static analysis tools. Fortunately, however, a user is often only interested in finding errors in the application code, which constitutes a small fraction of the whole program. Current application-focused analysis tools overapproximate the effect of the library and hence reduce the precision of the analysis results. However, empirical studies have shown that users have high expectations on precision and will ignore tool results that don't meet these expectations. In this paper, we introduce the first tool QueryMax that significantly speeds up an application code analysis without dropping any precision. QueryMax acts as a pre-processor to an existing analysis tool to select a partial library that is most relevant to the analysis queries in the application code. The selected partial library plus the application is given as input to the existing static analysis tool, with the remaining library pointers treated as the bottom element in the abstract domain. This achieves a significant speedup over a whole-program analysis, at the cost of a few lost errors, and with no loss in precision. We instantiate and run experiments on QueryMax for a cast-check analysis and a null-pointer analysis. For a particular configuration, QueryMax enables these two analyses to achieve, relative to a whole-program analysis, an average recall of 87%, a precision of 100% and a geometric mean speedup of 10x.
Yangfang, Ye, Jing, Ma, Wenhui, Zhang, Dekang, Zhang, Shuhua, Zhou, Zhangping, You.  2022.  Static Analysis of Axisymmetric Structure of High Speed Wheel Based on ANSYS. 2022 IEEE International Conference on Advances in Electrical Engineering and Computer Applications (AEECA). :1118–1122.
In this paper, the axial symmetry is used to analyze the deformation and stress change of the wheel, so as to reduce the scale of analysis and reduce the cost in industrial production. Firstly, the material properties are defined, then the rotation section of the wheel is established, the boundary conditions are defined, the model is divided by finite element, the angular velocity and pressure load during rotation are applied, and the radial and axial deformation diagram, radial, axial and equivalent stress distribution diagram of the wheel are obtained through analysis and solution. The use of axisymmetric characteristics can reduce the analysis cost in the analysis, and can be applied to materials or components with such characteristics, so as to facilitate the design and improvement of products and reduce the production cost.
2023-01-20
Yu, Yue, Yao, Jiming, Wang, Wei, Qiu, Lanxin, Xu, Yangzhou.  2022.  A Lightweight Identity-Based Secondary Authentication Method in Smart Grid. 2022 IEEE 10th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). 10:2190—2195.
5G network slicing plays a key role in the smart grid business. The existing authentication schemes for 5G slicing in smart grids require high computing costs, so they are time-consuming and do not fully consider the security of authentication. Aiming at the application scenario of 5G smart grid, this paper proposes an identity-based lightweight secondary authentication scheme. Compared with other well-known methods, in the protocol interaction of this paper, both the user Ui and the grid server can authenticate each other's identities, thereby preventing illegal users from pretending to be identities. The grid user Ui and the grid server can complete the authentication process without resorting to complex bilinear mapping calculations, so the computational overhead is small. The grid user and grid server can complete the authentication process without transmitting the original identification. Therefore, this scheme has the feature of anonymous authentication. In this solution, the authentication process does not require infrastructure such as PKI, so the deployment is simple. Experimental results show that the protocol is feasible in practical applications
Feng, Guocong, Mu, Tianshi, Lyu, Huahui, Yang, Hang, Lai, Yuyang, Li, Huijuan.  2022.  A Lightweight Attribute-based Encryption Scheme for Data Access Control in Smart Grids. 2022 IEEE 5th International Conference on Computer and Communication Engineering Technology (CCET). :280—284.
Smart grids are envisioned as the next-generation electricity grids. The data measured from the smart grid is very sensitive. It is thus highly necessary to adopt data access control in smart grids to guarantee the security and privacy of the measured data. Due to its flexibility and scalability, attribute-based encryption (ABE) is widely utilized to realize data access control in smart grids. However, most existing ABE solutions impose a heavy decryption overhead on their users. To this end, we propose a lightweight attribute-based encryption scheme for data access control in smart grids by adopting the idea of computation outsourcing. Under our proposed scheme, users can outsource a large amount of computation to a server during the decryption phase while still guaranteeing the security and privacy of the data. Theoretical analysis and experimental evaluation demonstrate that our scheme outperforms the existing schemes by achieving a very low decryption cost.
Park, Jee-Tae, Baek, Ui-Jun, Kim, Myung-Sup, Lee, Min-Seong, Shin, Chang-Yui.  2022.  Rule-based User Behavior Detection System for SaaS Application. 2022 23rd Asia-Pacific Network Operations and Management Symposium (APNOMS). :1–4.
SaaS is a cloud-based application service that allows users to use applications that work in a cloud environment. SaaS is a subscription type, and the service expenditure varies depending on the license, the number of users, and duration of use. For efficient network management, security and cost management, accurate detection of user behavior for SaaS applications is required. In this paper, we propose a rule-based traffic analysis method for the user behavior detection. We conduct comparative experiments with signature-based method by using the real SaaS application and demonstrate the validity of the proposed method.
Fujii, Shota, Kawaguchi, Nobutaka, Kojima, Shoya, Suzuki, Tomoya, Yamauchi, Toshihiro.  2022.  Design and Implementation of System for URL Signature Construction and Impact Assessment. 2022 12th International Congress on Advanced Applied Informatics (IIAI-AAI). :95–100.
The attacker’s server plays an important role in sending attack orders and receiving stolen information, particularly in the more recent cyberattacks. Under these circumstances, it is important to use network-based signatures to block malicious communications in order to reduce the damage. However, in addition to blocking malicious communications, signatures are also required not to block benign communications during normal business operations. Therefore, the generation of signatures requires a high level of understanding of the business, and highly depends on individual skills. In addition, in actual operation, it is necessary to test whether the generated signatures do not interfere with benign communications, which results in high operational costs. In this paper, we propose SIGMA, a system that automatically generates signatures to block malicious communication without interfering with benign communication and then automatically evaluates the impact of the signatures. SIGMA automatically extracts the common parts of malware communication destinations by clustering them and generates multiple candidate signatures. After that, SIGMA automatically calculates the impact on normal communication based on business logs, etc., and presents the final signature to the analyst, which has the highest blockability of malicious communication and non-blockability of normal communication. Our objectives with this system are to reduce the human factor in generating the signatures, reduce the cost of the impact evaluation, and support the decision of whether to apply the signatures. In the preliminary evaluation, we showed that SIGMA can automatically generate a set of signatures that detect 100% of suspicious URLs with an over-detection rate of just 0.87%, using the results of 14,238 malware analyses and actual business logs. This result suggests that the cost for generation of signatures and the evaluation of their impact on business operations can be suppressed, which used to be a time-consuming and human-intensive process.
Paudel, Amrit, Sampath, Mohasha, Yang, Jiawei, Gooi, Hoay Beng.  2022.  Peer-to-Peer Energy Trading in Smart Grid Considering Power Losses and Network Fees. 2022 IEEE Power & Energy Society General Meeting (PESGM). :1—1.

Peer-to-peer (P2P) energy trading is one of the promising approaches for implementing decentralized electricity market paradigms. In the P2P trading, each actor negotiates directly with a set of trading partners. Since the physical network or grid is used for energy transfer, power losses are inevitable, and grid-related costs always occur during the P2P trading. A proper market clearing mechanism is required for the P2P energy trading between different producers and consumers. This paper proposes a decentralized market clearing mechanism for the P2P energy trading considering the privacy of the agents, power losses as well as the utilization fees for using the third party owned network. Grid-related costs in the P2P energy trading are considered by calculating the network utilization fees using an electrical distance approach. The simulation results are presented to verify the effectiveness of the proposed decentralized approach for market clearing in P2P energy trading.