Biblio
Aiming at the problems of imperfect dynamic verification of power grid security and stability control strategy and high test cost, a reliability test method of power grid security control system based on BP neural network and dynamic group simulation is proposed. Firstly, the fault simulation results of real-time digital simulation system (RTDS) software are taken as the data source, and the dynamic test data are obtained with the help of the existing dispatching data network, wireless virtual private network, global positioning system and other communication resources; Secondly, the important test items are selected through the minimum redundancy maximum correlation algorithm, and the test items are used to form a feature set, and then the BP neural network model is used to predict the test results. Finally, the dynamic remote test platform is tested by the dynamic whole group simulation of the security and stability control system. Compared with the traditional test methods, the proposed method reduces the test cost by more than 50%. Experimental results show that the proposed method can effectively complete the reliability test of power grid security control system based on dynamic group simulation, and reduce the test cost.
In this paper we propose a security and cost aware scheduling heuristic for real-time workflow jobs that process Internet of Things (IoT) data with various security requirements. The environment under study is a four-tier architecture, consisting of IoT, mist, fog and cloud layers. The resources in the mist, fog and cloud tiers are considered to be heterogeneous. The proposed scheduling approach is compared to a baseline strategy, which is security aware, but not cost aware. The performance evaluation of both heuristics is conducted via simulation, under different values of security level probabilities for the initial IoT input data of the entry tasks of the workflow jobs.
The signcryption technique was first proposed by Y. Zheng, where two cryptographic operations digital signature and message encryption are made combinedly. We cryptanalyze the technique and observe that the signature and encryption become vulnerable if the forged public keys are used. This paper proposes an improvement using modified DSS (Digital Signature Standard) version of ElGamal signature and DHP (Diffie-Hellman key exchange protocol), and shows that the vulnerabilities in both the signature and encryption methods used in Zheng's signcryption are circumvented. DHP is used for session symmetric key establishment and it is combined with the signature in such a way that the vulnerabilities of DHP can be avoided. The security and performance analysis of our signcryption technique are provided and found that our scheme is secure and designed using minimum possible operations with comparable computation cost of Zheng's scheme.
Swarm intelligence, a nature-inspired concept that includes multiplicity, stochasticity, randomness, and messiness is emergent in most real-life problem-solving. The concept of swarming can be integrated with herding predators in an ecological system. This paper presents the development of stabilizing velocity-based controllers for a Lagrangian swarm of \$nın \textbackslashtextbackslashmathbbN\$ individuals, which are supposed to capture a moving target (intruder). The controllers are developed from a Lyapunov function, total potentials, designed via Lyapunov-based control scheme (LbCS) falling under the classical approach of artificial potential fields method. The interplay of the three central pillars of LbCS, which are safety, shortness, and smoothest course for motion planning, results in cost and time effectiveness and efficiency of velocity controllers. Computer simulations illustrate the effectiveness of control laws.