Visible to the public Biblio

Found 271 results

Filters: Keyword is Logic gates  [Clear All Filters]
2022-05-10
Lin, Wei, Cai, Saihua.  2021.  An Empirical Study on Vulnerability Detection for Source Code Software based on Deep Learning. 2021 IEEE 21st International Conference on Software Quality, Reliability and Security Companion (QRS-C). :1159–1160.
In recent years, the complexity of software vulnera-bilities has continued to increase. Manual vulnerability detection methods alone no longer meet the demand. With the rapid development of the deep learning, many neural network models have been widely applied to source code vulnerability detection. The variant of recurrent neural network (RNN), bidirectional Long Short-Term Memory (BiLSTM), has been a popular choice in vulnerability detection. However, is BiLSTM the most suitable choice? To answer this question, we conducted a series of experiments to investigate the effectiveness of different neural network models for source code vulnerability detection. The results shows that the variants of RNN, gated recurrent unit (GRU) and bidirectional GRU, are more capable of detecting source code fragments with mixed vulnerability types. And the concatenated convolutional neural network is more capable of detecting source code fragments of single vulnerability types.
2022-05-03
Hassan, Rakibul, Rafatirad, Setareh, Homayoun, Houman, Dinakarrao, Sai Manoj Pudukotai.  2021.  Performance-aware Malware Epidemic Confinement in Large-Scale IoT Networks. ICC 2021 - IEEE International Conference on Communications. :1—6.

As millions of IoT devices are interconnected together for better communication and computation, compromising even a single device opens a gateway for the adversary to access the network leading to an epidemic. It is pivotal to detect any malicious activity on a device and mitigate the threat. Among multiple feasible security threats, malware (malicious applications) poses a serious risk to modern IoT networks. A wide range of malware can replicate itself and propagate through the network via the underlying connectivity in the IoT networks making the malware epidemic inevitable. There exist several techniques ranging from heuristics to game-theory based technique to model the malware propagation and minimize the impact on the overall network. The state-of-the-art game-theory based approaches solely focus either on the network performance or the malware confinement but does not optimize both simultaneously. In this paper, we propose a throughput-aware game theory-based end-to-end IoT network security framework to confine the malware epidemic while preserving the overall network performance. We propose a two-player game with one player being the attacker and other being the defender. Each player has three different strategies and each strategy leads to a certain gain to that player with an associated cost. A tailored min-max algorithm was introduced to solve the game. We have evaluated our strategy on a 500 node network for different classes of malware and compare with existing state-of-the-art heuristic and game theory-based solutions.

2022-04-19
Kumar, Vipin, Malik, Navneet.  2021.  Dynamic Key Management Scheme for Clustered Sensor Networks with Node Addition Support. 2021 2nd International Conference on Intelligent Engineering and Management (ICIEM). :102–107.
A sensor network is wireless with tiny nodes and widely used in various applications. To track the event and collect the data from a remote area or a hostile area sensor network is used. A WSN collects wirelessly connected tiny sensors with minimal resources like the battery, computation power, and memory. When a sensor collects data, it must be transferred to the control center through the gateway (Sink), and it must be transferred safely. For secure transfer of data in the network, the routing protocol must be safe and can use the cryptography method for authentication and confidentiality. An essential issue in WSN structure is the key management. WSN relies on the strength of the communicating devices, battery power, and sensor nodes to communicate in the wireless environment over a limited region. Due to energy and memory limitations, the construction of a fully functional network needs to be well arranged. Several techniques are available in the current literature for such key management techniques. Among the distribution of key over the network, sharing private and public keys is the most important. Network security is not an easy problem because of its limited resources, and these networks are deployed in unattended areas where they work without any human intervention. These networks are used to monitor buildings and airports, so security is always a major issue for these networks. In this paper, we proposed a dynamic key management scheme for the clustered sensor network that also supports the addition of a new node in the network later. Keys are dynamically generated and securely distributed to communication parties with the help of a cluster head. We verify the immunity of the scheme against various attacks like replay attack and node captured attacker. A simulation study was also done on energy consumption for key setup and refreshed the keys. Security analysis of scheme shows batter resiliency against node capture attack.
2022-04-13
Yaegashi, Ryo, Hisano, Daisuke, Nakayama, Yu.  2021.  Light-Weight DDoS Mitigation at Network Edge with Limited Resources. 2021 IEEE 18th Annual Consumer Communications Networking Conference (CCNC). :1—6.

The Internet of Things (IoT) has been growing rapidly in recent years. With the appearance of 5G, it is expected to become even more indispensable to people's lives. In accordance with the increase of Distributed Denial-of-Service (DDoS) attacks from IoT devices, DDoS defense has become a hot research topic. DDoS detection mechanisms executed on routers and SDN environments have been intensely studied. However, these methods have the disadvantage of requiring the cost and performance of the devices. In addition, there is no existing DDoS mitigation algorithm on the network edge that can be performed with the low-cost and low-performance equipment. Therefore, this paper proposes a light-weight DDoS mitigation scheme at the network edge using limited resources of inexpensive devices such as home gateways. The goal of the proposed scheme is to detect and mitigate flooding attacks. It utilizes unused queue resources to detect malicious flows by random shuffling of queue allocation and discard the packets of the detected flows. The performance of the proposed scheme was confirmed via theoretical analysis and computer simulation. The simulation results match the theoretical results and the proposed algorithm can efficiently detect malicious flows using limited resources.

Wang, Chengyan, Li, Yuling, Zhang, Yong.  2021.  Hybrid Data Fast Distribution Algorithm for Wireless Sensor Networks in Visual Internet of Things. 2021 International Conference on Big Data Analysis and Computer Science (BDACS). :166–169.
With the maturity of Internet of things technology, massive data transmission has become the focus of research. In order to solve the problem of low speed of traditional hybrid data fast distribution algorithm for wireless sensor networks, a hybrid data fast distribution algorithm for wireless sensor networks based on visual Internet of things is designed. The logic structure of mixed data input gate in wireless sensor network is designed through the visual Internet of things. The objective function of fast distribution of mixed data in wireless sensor network is proposed. The number of copies of data to be distributed is dynamically calculated and the message deletion strategy is determined. Then the distribution parameters are calibrated, and the fitness ranking is performed according to the distribution quantity to complete the algorithm design. The experimental results show that the distribution rate of the designed algorithm is significantly higher than that of the control group, which can solve the problem of low speed of traditional data fast distribution algorithm.
2022-04-01
Thorat, Pankaj, Dubey, Niraj Kumar, Khetan, Kunal, Challa, Rajesh.  2021.  SDN-based Predictive Alarm Manager for Security Attacks Detection at the IoT Gateways. 2021 IEEE 18th Annual Consumer Communications Networking Conference (CCNC). :1–2.

The growing adoption of IoT devices is creating a huge positive impact on human life. However, it is also making the network more vulnerable to security threats. One of the major threats is malicious traffic injection attack, where the hacked IoT devices overwhelm the application servers causing large-scale service disruption. To address such attacks, we propose a Software Defined Networking based predictive alarm manager solution for malicious traffic detection and mitigation at the IoT Gateway. Our experimental results with the proposed solution confirms the detection of malicious flows with nearly 95% precision on average and at its best with around 99% precision.

Song, Yan, Luo, Wenjing, Li, Jian, Xu, Panfeng, Wei, Jianwei.  2021.  SDN-based Industrial Internet Security Gateway. 2021 International Conference on Security, Pattern Analysis, and Cybernetics(SPAC). :238–243.
Industrial Internet is widely used in the production field. As the openness of networks increases, industrial networks facing increasing security risks. Information and communication technologies are now available for most industrial manufacturing. This industry-oriented evolution has driven the emergence of cloud systems, the Internet of Things (IoT), Big Data, and Industry 4.0. However, new technologies are always accompanied by security vulnerabilities, which often expose unpredictable risks. Industrial safety has become one of the most essential and challenging requirements. In this article, we highlight the serious challenges facing Industry 4.0, introduce industrial security issues and present the current awareness of security within the industry. In this paper, we propose solutions for the anomaly detection and defense of the industrial Internet based on the demand characteristics of network security, the main types of intrusions and their vulnerability characteristics. The main work is as follows: This paper first analyzes the basic network security issues, including the network security needs, the security threats and the solutions. Secondly, the security requirements of the industrial Internet are analyzed with the characteristics of industrial sites. Then, the threats and attacks on the network are analyzed, i.e., system-related threats and process-related threats; finally, the current research status is introduced from the perspective of network protection, and the research angle of this paper, i.e., network anomaly detection and network defense, is proposed in conjunction with relevant standards. This paper proposes a software-defined network (SDN)-based industrial Internet security gateway for the security protection of the industrial Internet. Since there are some known types of attacks in the industrial network, in order to fully exploit the effective information, we combine the ExtratreesClassifier to enhance the detection rate of anomaly detection. In order to verify the effectiveness of the algorithm, this paper simulates an industrial network attack, using the acquired training data for testing. The test data are industrial network traffic datasets, and the experimental results show that the algorithm is suitable for anomaly detection in industrial networks.
Marru, Suresh, Kuruvilla, Tanya, Abeysinghe, Eroma, McMullen, Donald, Pierce, Marlon, Morgan, David Gene, Tait, Steven L., Innes, Roger W..  2021.  User-Centric Design and Evolvable Architecture for Science Gateways: A Case Study. 2021 IEEE/ACM 21st International Symposium on Cluster, Cloud and Internet Computing (CCGrid). :267–276.
Scientific applications built on wide-area distributed systems such as emerging cloud based architectures and the legacy grid computing infrastructure often struggle with user adoption even though they succeed from a systems research perspective. This paper examines the coupling of user-centered design processes with modern distributed systems. Further in this paper, we describe approaches for conceptualizing a product that solves a recognized need: to develop a data gateway to serve the data management and research needs of experimentalists of electron microscopes and similar shared scientific instruments in the context of a research service laboratory. The purpose of the data gateway is to provide secure, controlled access to data generated from a wide range of scientific instruments. From the functional perspective, we focus on the basic processing of raw data that underlies the lab's "business" processes, the movement of data from the laboratory to central access and archival storage points, and the distribution of data to respective authorized users. Through the gateway interface, users will be able to share the instrument data with collaborators or copy it to remote storage servers. Basic pipelines for extracting additional metadata (through a pluggable parser framework) will be enabled. The core contribution described in this paper, building on the aforementioned distributed data management capabilities, is the adoption of user-centered design processes for developing the scientific user interface. We describe the user-centered design methodology for exploring user needs, iteratively testing the design, learning from user experiences, and adapting what we learn to improve design and capabilities. We further conclude that user-centered design is, in turn, best enabled by an adaptable distributed systems framework. A key challenge to implementing a user-centered design is to have design tools closely linked with a software system architecture that can evolve over time while providing a highly available data gateway. A key contribution of this paper is to share the insights from crafting such an evolvable design-build-evaluate-deploy architecture and plans for iterative development and deployment.
Neumann, Niels M. P., van Heesch, Maran P. P., Phillipson, Frank, Smallegange, Antoine A. P..  2021.  Quantum Computing for Military Applications. 2021 International Conference on Military Communication and Information Systems (ICMCIS). :1–8.
Quantum computers have the potential to outshine classical alternatives in solving specific problems, under the assumption of mature enough hardware. A specific subset of these problems relate to military applications. In this paper we consider the state-of-the-art of quantum technologies and different applications of this technology. Additionally, four use-cases of quantum computing specific for military applications are presented. These use-cases are directly in line with the 2021 AI strategic agenda of the Netherlands Ministry of Defense.
2022-03-14
Romero Goyzueta, Christian Augusto, Cruz De La Cruz, Jose Emmanuel, Cahuana, Cristian Delgado.  2021.  VPNoT: End to End Encrypted Tunnel Based on OpenVPN and Raspberry Pi for IoT Security. 2021 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME). :1–5.
Internet of Things (IoT) devices use different types of media and protocols to communicate to Internet, but security is compromised since the devices are not using encryption, authentication and integrity. Virtual Private Network of Things (VPNoT) is a new technology designed to create end to end encrypted tunnels for IoT devices, in this case, the VPNoT device is based on OpenVPN that provides confidentiality and integrity, also based on Raspberry Pi as the hardware and Linux as the operating system, both provide connectivity using different types of media to access Internet and network management. IoT devices and sensors can be connected to the VPNoT device so an encrypted tunnel is created to an IoT Server. VPNoT device uses a profile generated by the server, then all devices form a virtual private network (VPN). VPNoT device can act like a router when necessary and this environment works for IPv6 and IPv4 with a great advantage that OpenVPN traverses NAT permitting private IoT servers be accessible to the VPN. The annual cost of the improvement is about \$455 USD per year for 10 VPNoT devices.
2022-03-01
Gordon, Holden, Park, Conrad, Tushir, Bhagyashri, Liu, Yuhong, Dezfouli, Behnam.  2021.  An Efficient SDN Architecture for Smart Home Security Accelerated by FPGA. 2021 IEEE International Symposium on Local and Metropolitan Area Networks (LANMAN). :1–3.
With the rise of Internet of Things (IoT) devices, home network management and security are becoming complex. There is an urgent requirement to make smart home network management more efficient. This work proposes an SDN-based architecture to secure smart home networks through K-Nearest Neighbor (KNN) based device classifications and malicious traffic detection. The efficiency is enhanced by offloading the computation-intensive KNN model to a Field Programmable Gate Arrays (FPGA). Furthermore, we propose a custom KNN solution that exhibits the best performance on an FPGA compared with four alternative KNN instances (i.e., 78% faster than a parallel Bubble Sort-based implementation and 99% faster than three other sorting algorithms). Moreover, with 36,225 training samples, the proposed KNN solution classifies a test query with 95% accuracy in approximately 4 ms on an FPGA compared to 57 seconds on a CPU platform. This highlights the promise of FPGA-based platforms for edge computing applications in the smart home.
2022-02-07
Abbood, Zainab Ali, Atilla, Doğu Çağdaş, Aydin, Çağatay, Mahmoud, Mahmoud Shuker.  2021.  A Survey on Intrusion Detection System in Ad Hoc Networks Based on Machine Learning. 2021 International Conference of Modern Trends in Information and Communication Technology Industry (MTICTI). :1–8.
This advanced research survey aims to perform intrusion detection and routing in ad hoc networks in wireless MANET networks using machine learning techniques. The MANETs are composed of several ad-hoc nodes that are randomly or deterministically distributed for communication and acquisition and to forward the data to the gateway for enhanced communication securely. MANETs are used in many applications such as in health care for communication; in utilities such as industries to monitor equipment and detect any malfunction during regular production activity. In general, MANETs take measurements of the desired application and send this information to a gateway, whereby the user can interpret the information to achieve the desired purpose. The main importance of MANETs in intrusion detection is that they can be trained to detect intrusion and real-time attacks in the CIC-IDS 2019 dataset. MANETs routing protocols are designed to establish routes between the source and destination nodes. What these routing protocols do is that they decompose the network into more manageable pieces and provide ways of sharing information among its neighbors first and then throughout the whole network. The landscape of exciting libraries and techniques is constantly evolving, and so are the possibilities and options for experiments. Implementing the framework in python helps in reducing syntactic complexity, increases performance compared to implementations in scripting languages, and provides memory safety.
2022-01-25
Wu, Qing, Li, Liangjun.  2021.  Ciphertext-Policy Attribute-Based Encryption for General Circuits in Cloud Computing. 2021 International Conference on Control, Automation and Information Sciences (ICCAIS). :620–625.
Driven by the development of Internet and information technology, cloud computing has been widely recognized and accepted by the public. However, with the occurrence of more and more information leakage, cloud security has also become one of the core problem of cloud computing. As one of the resolve methods of it, ciphertext-policy attribute-based encryption (CP-ABE) by embedding access policy into ciphertext can make data owner to decide which attributes can access ciphertext. It achieves ensuring data confidentiality with realizing fine-grained access control. However, the traditional access policy has some limitations. Compared with other access policies, the circuit-based access policy ABE supports more flexible access control to encrypted data. But there are still many challenges in the existing circuit-based access policy ABE, such as privacy leakage and low efficiency. Motivated by the above, a new circuit-based access policy ABE is proposed. By converting the multi output OR gates in monotonic circuit, the backtracking attacks in circuit access structure is avoided. In order to overcome the low efficiency issued by circuit conversion, outsourcing computing is adopted to Encryption/Decryption algorithms, which makes the computing overhead for data owners and users be decreased and achieve constant level. Security analysis shows that the scheme is secure under the decision bilinear Diffie-Hellman (DBDH) assumption. Numerical results show the proposed scheme has a higher computation efficiency than the other circuit-based schemes.
Fan, Chun-I, Tseng, Yi-Fan, Feng, Cheng-Chun.  2021.  CCA-Secure Attribute-Based Encryption Supporting Dynamic Membership in the Standard Model. 2021 IEEE Conference on Dependable and Secure Computing (DSC). :1–8.
Attribute-based encryption (ABE) is an access control mechanism where a sender encrypts messages according to an attribute set for multiple receivers. With fine-grained access control, it has been widely applied to cloud storage and file sharing systems. In such a mechanism, it is a challenge to achieve the revocation efficiently on a specific user since different users may share common attributes. Thus, dynamic membership is a critical issue to discuss. On the other hand, most works on LSSS-based ABE do not address the situation about threshold on the access structure, and it lowers the diversity of access policies. This manuscript presents an efficient attribute-based encryption scheme with dynamic membership by using LSSS. The proposed scheme can implement threshold gates in the access structure. Furthermore, it is the first ABE supporting complete dynamic membership that achieves the CCA security in the standard model, i.e. without the assumption of random oracles.
2021-11-29
Zhang, Qiang, Chai, Bo, Song, Bochuan, Zhao, Jingpeng.  2020.  A Hierarchical Fine-Tuning Based Approach for Multi-Label Text Classification. 2020 IEEE 5th International Conference on Cloud Computing and Big Data Analytics (ICCCBDA). :51–54.
Hierarchical Text classification has recently become increasingly challenging with the growing number of classification labels. In this paper, we propose a hierarchical fine-tuning based approach for hierarchical text classification. We use the ordered neurons LSTM (ONLSTM) model by combining the embedding of text and parent category for hierarchical text classification with a large number of categories, which makes full use of the connection between the upper-level and lower-level labels. Extensive experiments show that our model outperforms the state-of-the-art hierarchical model at a lower computation cost.
Kamal, Syed Osama, Muhammad Khan, Bilal.  2021.  Hardware Implementation of IP-Enabled Wireless Sensor Network Using 6LoWPAN. 2021 1st International Conference on Artificial Intelligence and Data Analytics (CAIDA). :227–233.
Wireless sensor networks have become so popular in many applications such as vehicle tracking and monitoring, environmental measurements and radiation analysis. These applications can be ready to go for further processing by connecting it to remote servers through protocols that outside world used such as internet. This brings IPv6 over low power wireless sensor network (6LowPAN) into very important role to develop a bridge between internet and WSN network. Though a reliable communication demands many parameters such as data rate, effective data transmission, data security as well as packet size etc. A gateway between 6lowPAN network and IPV6 is needed where frame size compression is required in order to increase payload of data frame on hardware platform.
2021-11-08
Aygül, Mehmet Ali, Nazzal, Mahmoud, Ekti, Ali Rıza, Görçin, Ali, da Costa, Daniel Benevides, Ateş, Hasan Fehmi, Arslan, Hüseyin.  2020.  Spectrum Occupancy Prediction Exploiting Time and Frequency Correlations Through 2D-LSTM. 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring). :1–5.
The identification of spectrum opportunities is a pivotal requirement for efficient spectrum utilization in cognitive radio systems. Spectrum prediction offers a convenient means for revealing such opportunities based on the previously obtained occupancies. As spectrum occupancy states are correlated over time, spectrum prediction is often cast as a predictable time-series process using classical or deep learning-based models. However, this variety of methods exploits time-domain correlation and overlooks the existing correlation over frequency. In this paper, differently from previous works, we investigate a more realistic scenario by exploiting correlation over time and frequency through a 2D-long short-term memory (LSTM) model. Extensive experimental results show a performance improvement over conventional spectrum prediction methods in terms of accuracy and computational complexity. These observations are validated over the real-world spectrum measurements, assuming a frequency range between 832-862 MHz where most of the telecom operators in Turkey have private uplink bands.
Li, Gao, Xu, Jianliang, Shen, Weiguo, Wang, Wei, Liu, Zitong, Ding, Guoru.  2020.  LSTM-based Frequency Hopping Sequence Prediction. 2020 International Conference on Wireless Communications and Signal Processing (WCSP). :472–477.
The continuous change of communication frequency brings difficulties to the reconnaissance and prediction of non-cooperative communication. The core of this communication process is the frequency-hopping (FH) sequence with pseudo-random characteristics, which controls carrier frequency hopping. However, FH sequence is always generated by a certain model and is a kind of time sequence with certain regularity. Long Short-Term Memory (LSTM) neural network in deep learning has been proved to have strong ability to solve time series problems. Therefore, in this paper, we establish LSTM model to implement FH sequence prediction. The simulation results show that LSTM-based scheme can effectively predict frequency point by point based on historical HF frequency data. Further, we achieve frequency interval prediction based on frequency point prediction.
Maruthi, Vangalli, Balamurugan, Karthigha, Mohankumar, N..  2020.  Hardware Trojan Detection Using Power Signal Foot Prints in Frequency Domain. 2020 International Conference on Communication and Signal Processing (ICCSP). :1212–1216.
This work proposes a plausible detection scheme for Hardware Trojan (HT) detection in frequency domain analysis. Due to shrinking technology every node consumes low power values (in the range of $μ$W) which are difficult to manipulate for HT detection using conventional methods. The proposed method utilizes the time domain power signals which is converted to frequency domain that represents the implausible signals and analyzed. The precision of HT detection is found to be increased because of the magnified power values in frequency domain. This work uses ISCAS89 bench mark circuits for conducting experiments. In this, the wide range of power values that spans from 695 $μ$W to 22.3 $μ$W are observed in frequency domain whereas the respective powers in time domain have narrow span of 2.29 $μ$W to 0.783 $μ$W which is unconvincing. This work uses the wide span of power values to identify HT and observed that the mid-band of frequencies have larger footprints than the side bands. These methods intend to help the designers in easy identification of HT even of single gate events.
2021-10-04
Tian, Yanhui, Zhang, Weiyan, Zhou, Dali, Kong, Siqi, Ren, Ming, Li, Danping.  2020.  Research on Multi-object-oriented Automatic Defense Technology for ARP Attack. 2020 IEEE International Conference on Information Technology,Big Data and Artificial Intelligence (ICIBA). 1:150–153.
ARP-attack often occurs in LAN network [1], which directly affects the user's online experience. The common type of ARP-attack is MITM-Attack (Man-in-the-Middle Attack) with two-types, disguising a host or a gateway. Common means of ARP-attack prevention is by deploying network-security equipment or binding IP-MAC in LAN manually[10]. This paper studies an automatic ARP-attack prevention technology for multi-object, based on the domain-control technology and batch-processing technology. Compared with the common ARP-attack-prevention measure, this study has advantages of low-cost, wide-application, and maintenance-free. By experimentally researching, this paper demonstrates the research correctness and technical feasibility. This research result, multi-object-oriented automatic defense technology for ARP-attacking, can apply to enterprise network.
Karfa, Chandan, Chouksey, Ramanuj, Pilato, Christian, Garg, Siddharth, Karri, Ramesh.  2020.  Is Register Transfer Level Locking Secure? 2020 Design, Automation Test in Europe Conference Exhibition (DATE). :550–555.
Register Transfer Level (RTL) locking seeks to prevent intellectual property (IP) theft of a design by locking the RTL description that functions correctly on the application of a key. This paper evaluates the security of a state-of-the-art RTL locking scheme using a satisfiability modulo theories (SMT) based algorithm to retrieve the secret key. The attack first obtains the high-level behavior of the locked RTL, and then use an SMT based formulation to find so-called distinguishing input patterns (DIP)1 The attack methodology has two main advantages over the gate-level attacks. First, since the attack handles the design at the RTL, the method scales to large designs. Second, the attack does not apply separate unlocking strategies for the combinational and sequential parts of a design; it handles both styles via a unifying abstraction. We demonstrate the attack on locked RTL generated by TAO [1], a state-of-the-art RTL locking solution. Empirical results show that we can partially or completely break designs locked by TAO.
Jain, Ayush, Rahman, M Tanjidur, Guin, Ujjwal.  2020.  ATPG-Guided Fault Injection Attacks on Logic Locking. 2020 IEEE Physical Assurance and Inspection of Electronics (PAINE). :1–6.
Logic Locking is a well-accepted protection technique to enable trust in the outsourced design and fabrication processes of integrated circuits (ICs) where the original design is modified by incorporating additional key gates in the netlist, resulting in a key-dependent functional circuit. The original functionality of the chip is recovered once it is programmed with the secret key, otherwise, it produces incorrect results for some input patterns. Over the past decade, different attacks have been proposed to break logic locking, simultaneously motivating researchers to develop more secure countermeasures. In this paper, we propose a novel stuck-at fault-based differential fault analysis (DFA) attack, which can be used to break logic locking that relies on a stored secret key. This proposed attack is based on self-referencing, where the secret key is determined by injecting faults in the key lines and comparing the response with its fault-free counterpart. A commercial ATPG tool can be used to generate test patterns that detect these faults, which will be used in DFA to determine the secret key. One test pattern is sufficient to determine one key bit, which results in at most \textbackslashtextbarK\textbackslashtextbar test patterns to determine the entire secret key of size \textbackslashtextbarK\textbackslashtextbar. The proposed attack is generic and can be extended to break any logic locked circuits.
Sweeney, Joseph, Mohammed Zackriya, V, Pagliarini, Samuel, Pileggi, Lawrence.  2020.  Latch-Based Logic Locking. 2020 IEEE International Symposium on Hardware Oriented Security and Trust (HOST). :132–141.
Globalization of IC manufacturing has led to increased security concerns, notably IP theft. Several logic locking techniques have been developed for protecting designs, but they typically display very large overhead, and are generally susceptible to deciphering attacks. In this paper, we propose latch-based logic locking, which manipulates both the flow of data and logic in the design. This method converts an interconnected subset of existing flip-flops to pairs of latches with programmable phase. In tandem, decoy latches and logic are added, inhibiting an attacker from determining the actual design functionality. To validate this technique, we developed and verified a locking insertion flow, analyzed PPA and ATPG overhead on benchmark circuits and industry cores, extended existing attacks to account for the technique, and taped out a demonstration chip. Importantly, we show that the design overhead with this approach is significantly less than with previous logic locking schemes, while resisting model checker-based, oracle-driven attacks. With minimal delay overhead, large numbers of decoy latches can be added, cheaply increasing attack resistance.
2021-09-30
Bagbaba, Ahmet Cagri, Jenihhin, Maksim, Ubar, Raimund, Sauer, Christian.  2020.  Representing Gate-Level SET Faults by Multiple SEU Faults at RTL. 2020 IEEE 26th International Symposium on On-Line Testing and Robust System Design (IOLTS). :1–6.
The advanced complex electronic systems increasingly demand safer and more secure hardware parts. Correspondingly, fault injection became a major verification milestone for both safety- and security-critical applications. However, fault injection campaigns for gate-level designs suffer from huge execution times. Therefore, designers need to apply early design evaluation techniques to reduce the execution time of fault injection campaigns. In this work, we propose a method to represent gate-level Single-Event Transient (SET) faults by multiple Single-Event Upset (SEU) faults at the Register-Transfer Level. Introduced approach is to identify true and false logic paths for each SET in the flip-flops' fan-in logic cones to obtain more accurate sets of flip-flops for multiple SEUs injections at RTL. Experimental results demonstrate the feasibility of the proposed method to successfully reduce the fault space and also its advantage with respect to state of the art. It was shown that the approach is able to reduce the fault space, and therefore the fault-injection effort, by up to tens to hundreds of times.
2021-09-21
Snow, Elijah, Alam, Mahbubul, Glandon, Alexander, Iftekharuddin, Khan.  2020.  End-to-End Multimodel Deep Learning for Malware Classification. 2020 International Joint Conference on Neural Networks (IJCNN). :1–7.
Malicious software (malware) is designed to cause unwanted or destructive effects on computers. Since modern society is dependent on computers to function, malware has the potential to do untold damage. Therefore, developing techniques to effectively combat malware is critical. With the rise in popularity of polymorphic malware, conventional anti-malware techniques fail to keep up with the rate of emergence of new malware. This poses a major challenge towards developing an efficient and robust malware detection technique. One approach to overcoming this challenge is to classify new malware among families of known malware. Several machine learning methods have been proposed for solving the malware classification problem. However, these techniques rely on hand-engineered features extracted from malware data which may not be effective for classifying new malware. Deep learning models have shown paramount success for solving various classification tasks such as image and text classification. Recent deep learning techniques are capable of extracting features directly from the input data. Consequently, this paper proposes an end-to-end deep learning framework for multimodels (henceforth, multimodel learning) to solve the challenging malware classification problem. The proposed model utilizes three different deep neural network architectures to jointly learn meaningful features from different attributes of the malware data. End-to-end learning optimizes all processing steps simultaneously, which improves model accuracy and generalizability. The performance of the model is tested with the widely used and publicly available Microsoft Malware Challenge Dataset and is compared with the state-of-the-art deep learning-based malware classification pipeline. Our results suggest that the proposed model achieves comparable performance to the state-of-the-art methods while offering faster training using end-to-end multimodel learning.