Biblio
The Internet of Things technology has been used in a wide range of fields, ranging from industrial applications to individual lives. As a result, a massive amount of sensitive data is generated and transmitted by IoT devices. Those data may be accessed by a large number of complex users. Therefore, it is necessary to adopt an encryption scheme with access control to achieve more flexible and secure access to sensitive data. The Ciphertext Policy Attribute-Based Encryption (CP-ABE) can achieve access control while encrypting data can match the requirements mentioned above. However, the long ciphertext and the slow decryption operation makes it difficult to be used in most IoT devices which have limited memory size and computing capability. This paper proposes a modified CP-ABE scheme, which can implement the full security (adaptive security) under the access structure of AND gate. Moreover, the decryption overhead and the length of ciphertext are constant. Finally, the analysis and experiments prove the feasibility of our scheme.
The growth of IoT devices during the last decade has led to the development of smart ecosystems, such as smart homes, prone to cyberattacks. Traditional security methodologies support to some extend the requirement for preserving privacy and security of such deployments, but their centralized nature in conjunction with low computational capabilities of smart home gateways make such approaches not efficient. Last achievements on blockchain technologies allowed the use of such decentralized architectures to support cybersecurity defence mechanisms. In this work, a blockchain framework is presented to support the cybersecurity mechanisms of smart homes installations, focusing on the immutability of users and devices that constitute such environments. The proposed methodology provides also the appropriate smart contracts support for ensuring the integrity of the smart home gateway and IoT devices, as well as the dynamic and immutable management of blocked malicious IPs. The framework has been deployed on a real smart home environment demonstrating its applicability and efficiency.
With the increasing diversity of application needs (datacenters, IoT, content retrieval, industrial automation, etc.), new network architectures are continually being proposed to address specific and particular requirements. From a network management perspective, it is both important and challenging to enable evolution towards such new architectures. Given the ubiquity of the Internet, a clean-slate change of the entire infrastructure to a new architecture is impractical. It is believed that we will see new network architectures coming into existence with support for interoperability between separate architectural islands. We may have servers, and more importantly, content, residing in domains having different architectures. This paper presents COIN, a content-oriented interoperability framework for current and future Internet architectures. We seek to provide seamless connectivity and content accessibility across multiple of these network architectures, including the current Internet. COIN preserves each domain's key architectural features and mechanisms, while allowing flexibility for evolvability and extensibility. We focus on Information-Centric Networks (ICN), the prominent class of Future Internet architectures. COIN avoids expanding domain-specific protocols or namespaces. Instead, it uses an application-layer Object Resolution Service to deliver the right "foreign" names to consumers. COIN uses translation gateways that retain essential interoperability state, leverages encryption for confidentiality, and relies on domain-specific signatures to guarantee provenance and data integrity. Using NDN and MobilityFirst as important candidate solutions of ICN, and IP, we evaluate COIN. Measurements from an implementation of the gateways show that the overhead is manageable and scales well.
TV networks are no longer just closed networks. They are increasingly carrying Internet services, integrating and interoperating with home IoT and the Internet. In addition, client devices are becoming intelligent. At the same time, they are facing more security risks. Security incidents such as attacks on TV systems are commonplace, and there are many incidents that cause negative effects. The security protection of TV networks mainly adopts security protection schemes similar to other networks, such as constructing a security perimeter; there are few security researches specifically carried out for client-side devices. This paper focuses on the mainstream architecture of the integration of HFC TV network and the Internet, and conducts a comprehensive security test and analysis for client-side devices including EOC cable bridge gateways and smart TV Set-Top-BoX. Results show that the TV network client devices have severe vulnerabilities such as command injection and system debugging interfaces. Attackers can obtain the system control of TV clients without authorization. In response to the results, we put forward systematic suggestions on the client security protection of smart TV networks in current days.
We propose a high efficiency Early-Complete Brute Force Elimination method that speeds up the analysis flow of the Camouflage Integrated Circuit (IC). The proposed method is targeted for security qualification of the Camouflaged IC netlists in Intellectual Property (IP) protection. There are two main features in the proposed method. First, the proposed method features immediate elimination of the incorrect Camouflage gates combination for the rest of computation, concentrating the resources into other potential correct Camouflage gates combination. Second, the proposed method features early complete, i.e. revealing the correct Camouflage gates once all incorrect gates combination are eliminated, increasing the computation speed for the overall security analysis. Based on the Python programming platform, we implement the algorithm of the proposed method and test it for three circuits including ISCAS’89 benchmarks. From the simulation results, our proposed method, on average, features 71% lesser number of trials and 79% shorter run time as compared to the conventional method in revealing the correct Camouflage gates from the Camouflaged IC netlist.
We consider the problem of protecting cloud services from simultaneous white-box and black-box attacks. Recent research in cryptographic program obfuscation considers the problem of protecting the confidentiality of programs and any secrets in them. In this model, a provable program obfuscation solution makes white-box attacks to the program not more useful than black-box attacks. Motivated by very recent results showing successful black-box attacks to machine learning programs run by cloud servers, we propose and study the approach of augmenting the program obfuscation solution model so to achieve, in at least some class of application scenarios, program confidentiality in the presence of both white-box and black-box attacks.We propose and formally define encrypted-input program obfuscation, where a key is shared between the entity obfuscating the program and the entity encrypting the program's inputs. We believe this model might be of interest in practical scenarios where cloud programs operate over encrypted data received by associated sensors (e.g., Internet of Things, Smart Grid).Under standard intractability assumptions, we show various results that are not known in the traditional cryptographic program obfuscation model; most notably: Yao's garbled circuit technique implies encrypted-input program obfuscation hiding all gates of an arbitrary polynomial circuit; and very efficient encrypted-input program obfuscation for range membership programs and a class of machine learning programs (i.e., decision trees). The performance of the latter solutions has only a small constant overhead over the equivalent unobfuscated program.